26 found
Order:
  1.  1
    Equivalence and Quantifier Rules for Logic with Imperfect Information.Xavier Caicedo, Francien Dechesne & Theo Janssen - 2009 - Logic Journal of the IGPL 17 (1):91-129.
    In this paper, we present a prenex form theorem for a version of Independence Friendly logic, a logic with imperfect information. Lifting classical results to such logics turns out not to be straightforward, because independence conditions make the formulas sensitive to signalling phenomena. In particular, nested quantification over the same variable is shown to cause problems. For instance, renaming of bound variables may change the interpretations of a formula, there are only restricted quantifier extraction theorems, and slashed connectives cannot be (...)
    Direct download  
     
    Export citation  
     
    My bibliography   8 citations  
  2.  49
    Standard Gödel Modal Logics.Xavier Caicedo & Ricardo O. Rodriguez - 2010 - Studia Logica 94 (2):189-214.
    We prove strong completeness of the □-version and the ◊-version of a Gödel modal logic based on Kripke models where propositions at each world and the accessibility relation are both infinitely valued in the standard Gödel algebra [0,1]. Some asymmetries are revealed: validity in the first logic is reducible to the class of frames having two-valued accessibility relation and this logic does not enjoy the finite model property, while validity in the second logic requires truly fuzzy accessibility relations and this (...)
    Direct download (5 more)  
     
    Export citation  
     
    My bibliography   2 citations  
  3.  17
    Lindström’s Theorem for Positive Logics, a Topological View. [REVIEW]Xavier Caicedo - 2015 - In Andrés Villaveces, Roman Kossak, Juha Kontinen & Åsa Hirvonen (eds.), Logic Without Borders: Essays on Set Theory, Model Theory, Philosophical Logic and Philosophy of Mathematics. De Gruyter. pp. 73-90.
    Direct download  
     
    Export citation  
     
    My bibliography   1 citation  
  4.  29
    An Algebraic Approach to Intuitionistic Connectives.Xavier Caicedo & Roberto Cignoli - 2001 - Journal of Symbolic Logic 66 (4):1620-1636.
    It is shown that axiomatic extensions of intuitionistic propositional calculus defining univocally new connectives, including those proposed by Gabbay, are strongly complete with respect to valuations in Heyting algebras with additional operations. In all cases, the double negation of such a connective is equivalent to a formula of intuitionistic calculus. Thus, under the excluded third law it collapses to a classical formula, showing that this condition in Gabbay's definition is redundant. Moreover, such connectives can not be interpreted in all Heyting (...)
    Direct download (8 more)  
     
    Export citation  
     
    My bibliography   6 citations  
  5.  5
    Omitting Uncountable Types and the Strength of [0,1]-Valued Logics.Xavier Caicedo & José Iovino - 2014 - Annals of Pure and Applied Logic 165 (6):1169-1200.
    We study a class of [0,1][0,1]-valued logics. The main result of the paper is a maximality theorem that characterizes these logics in terms of a model-theoretic property, namely, an extension of the omitting types theorem to uncountable languages.
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography   1 citation  
  6. A Simple Solution to Friedman's Fourth Problem.Xavier Caicedo - 1986 - Journal of Symbolic Logic 51 (3):778-784.
    It is shown that Friedman's problem, whether there exists a proper extension of first order logic satisfying the compactness and interpolation theorems, has extremely simple positive solutions if one considers extensions by generalized (finitary) propositional connectives. This does not solve, however, the problem of whether such extensions exist which are also closed under relativization of formulas.
    Direct download (7 more)  
     
    Export citation  
     
    My bibliography  
  7. Meeting of the Association for Symbolic Logic: Bogotá, Colombia, 1981.Ayda I. Arruda, Xavier Caicedo, Rolando Chuaqui & Newton C. A. Costa - 1983 - Journal of Symbolic Logic 48 (3):884-892.
  8.  26
    Implicit Connectives of Algebraizable Logics.Xavier Caicedo - 2004 - Studia Logica 78 (1-2):155 - 170.
    An extensions by new axioms and rules of an algebraizable logic in the sense of Blok and Pigozzi is not necessarily algebraizable if it involves new connective symbols, or it may be algebraizable in an essentially different way than the original logic. However, extension whose axioms and rules define implicitly the new connectives are algebraizable, via the same equivalence formulas and defining equations of the original logic, by enriched algebras of its equivalente quasivariety semantics. For certain strongly algebraizable logics, all (...)
    Direct download (5 more)  
     
    Export citation  
     
    My bibliography   3 citations  
  9.  1
    Implicit Connectives of Algebraizable Logics.Xavier Caicedo - 2004 - Studia Logica 78 (1):155-170.
    An extensions by new axioms and rules of an algebraizable logic in the sense of Blok and Pigozzi is not necessarily algebraizable if it involves new connective symbols, or it may be algebraizable in an essentially different way than the original logic. However, extension whose axioms and rules define implicitly the new connectives are algebraizable, via the same equivalence formulas and defining equations of the original logic, by enriched algebras of its equivalente quasivariety semantics. For certain strongly algebraizable logics, all (...)
    Direct download  
     
    Export citation  
     
    My bibliography   2 citations  
  10.  4
    Compactness and Normality in Abstract Logics.Xavier Caicedo - 1993 - Annals of Pure and Applied Logic 59 (1):33-43.
    We generalize a theorem of Mundici relating compactness of a regular logic L to a strong form of normality of the associated spaces of models. Moreover, it is shown that compactness is in fact equivalent to ordinary normality of the model spaces when L has uniform reduction for infinite disjoint sums of structures. Some applications follow. For example, a countably generated logic is countably compact if and only if every clopen class in the model spaces is elementary. The model spaces (...)
    Direct download (3 more)  
     
    Export citation  
     
    My bibliography   3 citations  
  11.  12
    Continuous Operations on Spaces of Structures.Xavier Caicedo - 1995 - In M. Krynicki, M. Mostowski & L. Szczerba (eds.), Quantifiers: Logics, Models and Computation. Kluwer Academic Publishers. pp. 263--296.
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography   1 citation  
  12.  13
    Hilbert∈-Symbol in the Presence of Generalized Quantifiers.Xavier Caicedo - 1991 - Bulletin of the Section of Logic 20 (3/4):85-86.
    Direct download  
     
    Export citation  
     
    My bibliography  
  13.  17
    International Union of History and Philosophy of Science, Division of Logic, Methodology and Philosophy of Science.Graham Priest & Xavier Caicedo - 2007 - Synthese 158 (1):153-163.
  14.  16
    Definability Properties and the Congruence Closure.Xavier Caicedo - 1990 - Archive for Mathematical Logic 30 (4):231-240.
    We introduce a natural class of quantifiersTh containing all monadic type quantifiers, all quantifiers for linear orders, quantifiers for isomorphism, Ramsey type quantifiers, and plenty more, showing that no sublogic ofL ωω (Th) or countably compact regular sublogic ofL ∞ω (Th), properly extendingL ωω , satisfies the uniform reduction property for quotients. As a consequence, none of these logics satisfies eitherΔ-interpolation or Beth's definability theorem when closed under relativizations. We also show the failure of both properties for any sublogic ofL (...)
    Direct download (4 more)  
     
    Export citation  
     
    My bibliography  
  15.  11
    Definability and Automorphisms in Abstract Logics.Xavier Caicedo - 2004 - Archive for Mathematical Logic 43 (8):937-945.
    In any model theoretic logic, Beth’s definability property together with Feferman-Vaught’s uniform reduction property for pairs imply recursive compactness, and the existence of models with infinitely many automorphisms for sentences having infinite models. The stronger Craig’s interpolation property plus the uniform reduction property for pairs yield a recursive version of Ehrenfeucht-Mostowski’s theorem. Adding compactness, we obtain the full version of this theorem. Various combinations of definability and uniform reduction relative to other logics yield corresponding results on the existence of non-rigid (...)
    Direct download (3 more)  
     
    Export citation  
     
    My bibliography  
  16.  10
    Meeting of the Association for Symbolic Logic: Bogotá, Colombia, 1981.Ayda I. Arruda, Xavier Caicedo, Rolando Chuaqui & Newton C. A. da Costa - 1983 - Journal of Symbolic Logic 48 (3):884 - 892.
  17.  4
    On Extensions of $L{\Omega \Omega }(Q1)$.Xavier Caicedo - 1981 - Notre Dame Journal of Formal Logic 22 (1):85-93.
  18.  1
    Completud de dos cálculos logicos de Leibniz.Xavier Caicedo & Alejandro Martín - 2001 - Theoria: Revista de Teoría, Historia y Fundamentos de la Ciencia 16 (3):539-558.
    Este trabajo se encuadra dentro de una nueva visión de la lógica de Leibniz, la cual pretende mostrar que sus escritos fueron ricos no solamente en proyectos ambiciosos sino también en desarrollos lógico-matematicos concretos. Se demuestra que su “Caracteristica Numerica” que asigna pares de números a las proposiciones categóricas es una semántiea para la cual la silogística aristotélica es correcta y completa, y que el sistema algebraico presentado en Fundamentos de un Cálculo Lógico es una lógica algebraica similar a la (...)
    Translate
      Direct download (2 more)  
     
    Export citation  
     
    My bibliography  
  19.  4
    Meeting of the Assocaition for Symbolic Logic: Caracas, Venezuela, 1983.Xavier Caicedo, Rolando Chauqui, Newton C. D. da Costa & Carlos A. di Prisco - 1984 - Journal of Symbolic Logic 49 (4):1430-1440.
  20.  3
    Meeting of the Assocaition for Symbolic Logic: Caracas, Venezuela, 1983.Xavier Caicedo, Rolando Chauqui, Newton C. D. Costa & Carlos A. di Prisco - 1984 - Journal of Symbolic Logic 49 (4):1430-1440.
  21.  2
    Hilbert's Ε-Symbol in the Presence of Generalized Quantifiers.Xavier Caicedo - 1995 - In M. Krynicki, M. Mostowski & L. Szczerba (eds.), Quantifiers: Logics, Models and Computation. Kluwer Academic Publishers. pp. 63--78.
    Direct download  
     
    Export citation  
     
    My bibliography  
  22.  1
    X Latin American Symposium on Mathematical Logic.Xavier Caicedo - 1996 - Association for Symbolic Logic: The Bulletin of Symbolic Logic 2 (2):214-237.
  23.  1
    Meeting of the Assocaition for Symbolic Logic: Caracas, Venezuela, 1983.Xavier Caicedo, Rolando Chauqui, Newton C. D. da Costa & Carlos A. Di Prisco - 1984 - Journal of Symbolic Logic 49 (4):1430 - 1440.
  24. An Algebraic Approach to Intuitionistic Connectives.Xavier Caicedo & Roberto Cignoli - 2001 - Journal of Symbolic Logic 66 (4):1620-1636.
    It is shown that axiomatic extensions of intuitionistic propositional calculus defining univocally new connectives, including those proposed by Gabbay, are strongly complete with respect to valuations in Heyting algebras with additional operations. In all cases, the double negation of such a connective is equivalent to a formula of intuitionistic calculus. Thus, under the excluded third law it collapses to a classical formula, showing that this condition in Gabbay's definition is redundant. Moreover, such connectives can not be interpreted in all Heyting (...)
    Direct download  
     
    Export citation  
     
    My bibliography  
  25. Models, Algebras, and Proofs Selected Papers of the X Latin American Symposium on Mathematical Logic Held in Bogotá.Xavier Caicedo & Carlos H. Montenegro - 1999
     
    Export citation  
     
    My bibliography  
  26. Meeting of the Association for Symbolic Logic.Xavier Caicedo, Rolando Chuaqui, Newton C. A. Da Costa & Carlos A. Di Prisco - 1984 - Journal of Symbolic Logic 49 (4):1430-1440.