Results for 'Y. -F. Tsai'

7 found
  1.  11
    TEM Spectroscopy Study of Electronic Structures of Quasicrystals and Approximants.M. Terauchi, Y. Uemichi, H. Ueda, A. P. Tsai, T. Takeuchi & U. Mizutani - 2007 - Philosophical Magazine 87 (18-21):2947-2955.
    No categories
    Direct download (2 more)  
    Export citation  
    Bookmark   5 citations  
  2.  12
    Influencing and Adjusting in Daily Emotional Situations: A Comparison of European and Asian American Action Styles.Michael Boiger, Batja Mesquita, Annie Y. Tsai & Hazel Markus - 2012 - Cognition and Emotion 26 (2):332-340.
  3.  13
    Ab Initioreconstruction of P-Type Icosahedral Zn–Mg–Ho Quasicrystal Structures.H. Takakura, A. Yamamoto, T. J. Sato, A. P. Tsai, Y. Ozawa, N. Yasuda & K. Toriumi - 2006 - Philosophical Magazine 86 (3-5):621-627.
  4.  13
    Conscious Mental Tasks and Their EEG Signals.S. Lin, Y. Tsai & C. Liou - 1993 - Medical and Biological Engineering and Computing 31:421-26.
  5.  9
    Atomic Pair Distribution Function Analysis of Raney Pd and Rh Fine Particles.R. Murao, K. Sugiyama, Y. Kashiwagi, S. Kameoka & A. P. Tsai - 2011 - Philosophical Magazine 91 (19-21):2954-2961.
    Direct download (2 more)  
    Export citation  
  6.  9
    Solidification of Tin on Quasicrystalline Surfaces.Alok Singh, H. Somekawa, Y. Matsushita & A. P. Tsai - 2012 - Philosophical Magazine 92 (9):1106-1128.
    Direct download (2 more)  
    Export citation  
  7.  49
    Decidability of General Extensional Mereology.Hsing-Chien Tsai - 2013 - Studia Logica 101 (3):619-636.
    The signature of the formal language of mereology contains only one binary predicate P which stands for the relation “being a part of”. Traditionally, P must be a partial ordering, that is, ${\forall{x}Pxx, \forall{x}\forall{y}((Pxy\land Pyx)\to x=y)}$ and ${\forall{x}\forall{y}\forall{z}((Pxy\land Pyz)\to Pxz))}$ are three basic mereological axioms. The best-known mereological theory is “general extensional mereology”, which is axiomatized by the three basic axioms plus the following axiom and axiom schema: (Strong Supplementation) ${\forall{x}\forall{y}(\neg Pyx\to \exists z(Pzy\land \neg Ozx))}$ , where Oxy means ${\exists (...)
    Direct download (5 more)  
    Export citation  
    Bookmark   1 citation