5 found
  1.  71
    The Meaning of Protective Measurements.Yakir Aharonov, Jeeva Anandan & Lev Vaidman - 1996 - Foundations of Physics 26 (1):117-126.
    Protective measurement, which we have introduced recently, allows one to observe properties of the state of a single quantum system and even the Schrödinger wave itself. These measurements require a protection, sometimes due to an additional procedure and sometimes due to the potential of the system itself The analysis of the protective measurements is presented and it is argued, contrary to recent claims, that they observe the quantum state and not the protective potential. Some other misunderstandings concerning our proposal are (...)
    Direct download (7 more)  
    Export citation  
    Bookmark   30 citations  
  2.  17
    Interaction-Free Effects Between Distant Atoms.Yakir Aharonov, Eliahu Cohen, Avshalom C. Elitzur & Lee Smolin - 2018 - Foundations of Physics 48 (1):1-16.
    A Gedanken experiment is presented where an excited and a ground-state atom are positioned such that, within the former’s half-life time, they exchange a photon with 50% probability. A measurement of their energy state will therefore indicate in 50% of the cases that no photon was exchanged. Yet other measurements would reveal that, by the mere possibility of exchange, the two atoms have become entangled. Consequently, the “no exchange” result, apparently precluding entanglement, is non-locally established between the atoms by this (...)
    Direct download (2 more)  
    Export citation  
    Bookmark   1 citation  
  3.  16
    A Vector Product Formulation of Special Relativity and Electromagnetism.Charles P. Poole, Horacio A. Farach & Yakir Aharonov - 1980 - Foundations of Physics 10 (7-8):531-553.
    The vector product method developed in previous articles for space rotations and Lorentz transformations is extended to the cases of four-vectors, anti-symmetric tensors, and their transformations in Minkowski space. The electromagnetic fields are expressed in “six-vector” form using the notationH +iE, and this vector form is shown to be relativistically invariant. The wave equations of electromagnetism are derived using these vector products. The following three equations are deduced, which summarize electrodynamics in a compact form: (1) Maxwell's four equations expressed as (...)
    Direct download (3 more)  
    Export citation  
    Bookmark   3 citations  
  4.  39
    Quantum-Related Reference Frames and the Local Physical Significance of Potentials.Yakir Aharonov & Gideon Carmi - 1974 - Foundations of Physics 4 (1):75-81.
    In a sequel to our previous paper we discuss two thought experiments which show that potentials in force-free regions have not only a nonlocal physically measurable significance (via, e.g., ∮A ·dl), but, in singly connected portions of that region, also have a necessary local significance (via their quantum spread ΔA, which cannot be neglected). We then show, in continuation to the foregoing paper, how suchA arise “geometrically” as kinematic quantities associated with the transformation between “quantum-related” reference frames, e.g., when the (...)
    Direct download (3 more)  
    Export citation  
    Bookmark   2 citations  
  5.  1
    Complex-Valued Classical Behavior from the Correspondence Limit of Quantum Mechanics with Two Boundary Conditions.Yakir Aharonov & Tomer Shushi - 2022 - Foundations of Physics 52 (3):1-7.
    The two-state-vector formalism presents a time-symmetric approach to the standard quantum mechanics, with particular importance in the description of experiments having pre- and post-selected ensembles. In this paper, using the correspondence limit of the quantum harmonic oscillator in the two-state-vector formalism, we produce harmonic oscillators that possess a classical behavior while having a complex-valued position and momentum. This allows us to discover novel effects that cannot be achieved otherwise. The proposed classical behavior does not describe the classical physics in the (...)
    Direct download (3 more)  
    Export citation