Results for 'mathematics'

862 found
Order:
  1.  42
    The applicability of mathematics in science: indispensability and ontology.Sorin Bangu - 2012 - New York: Palgrave-Macmillan.
    Suppose we are asked to draw up a list of things we take to exist. Certain items seem unproblematic choices, while others (such as God) are likely to spark controversy. The book sets the grand theological theme aside and asks a less dramatic question: should mathematical objects (numbers, sets, functions, etc.) be on this list? In philosophical jargon this is the ‘ontological’ question for mathematics; it asks whether we ought to include mathematicalia in our ontology. The goal of this (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   32 citations  
  2. The Order and Connection of Things.Are They Constructed Mathematically—Deductively - forthcoming - Kant Studien.
    No categories
     
    Export citation  
     
    Bookmark  
  3.  23
    (4 other versions)Principles of Mathematics.Bertrand Russell - 1903 - New York,: Routledge.
    First published in 1903, _Principles of Mathematics_ was Bertrand Russell’s first major work in print. It was this title which saw him begin his ascent towards eminence. In this groundbreaking and important work, Bertrand Russell argues that mathematics and logic are, in fact, identical and what is commonly called mathematics is simply later deductions from logical premises. Highly influential and engaging, this important work led to Russell’s dominance of analytical logic on western philosophy in the twentieth century.
    Direct download  
     
    Export citation  
     
    Bookmark   198 citations  
  4. (1 other version)Realism, Mathematics, and Modality.Hartry Field - 1988 - Philosophical Topics 16 (1):57-107.
  5.  53
    Mathematics and Scientific Representation.Christopher Pincock - 2011 - Oxford and New York: Oxford University Press USA.
    Mathematics plays a central role in much of contemporary science, but philosophers have struggled to understand what this role is or how significant it might be for mathematics and science. In this book Christopher Pincock tackles this perennial question in a new way by asking how mathematics contributes to the success of our best scientific representations. In the first part of the book this question is posed and sharpened using a proposal for how we can determine the (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   115 citations  
  6.  32
    Reconstructing Reality: Models, Mathematics, and Simulations.Margaret Morrison - 2014 - New York, US: Oup Usa.
    The book examines issues related to the way modeling and simulation enable us to reconstruct aspects of the world we are investigating. It also investigates the processes by which we extract concrete knowledge from those reconstructions and how that knowledge is legitimated.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   96 citations  
  7. (1 other version)Georg Cantor: His Mathematics and Philosophy of the Infinite.Joseph Warren Dauben - 1979 - Hup.
    One of the greatest revolutions in mathematics occurred when Georg Cantor (1845-1918) promulgated his theory of transfinite sets.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   62 citations  
  8. A Lattice of Chapters of Mathematics.Jan Mycielski, Pavel Pudlák, Alan S. Stern & American Mathematical Society - 1990 - American Mathematical Society.
     
    Export citation  
     
    Bookmark   7 citations  
  9. Professor, Water Science and Civil Engineering University of California Davis, California.A. Mathematical Model - 1968 - In Peter Koestenbaum (ed.), Proceedings. [San Jose? Calif.,: [San Jose? Calif.. pp. 31.
    No categories
     
    Export citation  
     
    Bookmark  
  10. (1 other version)The Principles of Mathematics Revisited.Jaakko Hintikka - 1996 - New York: Cambridge University Press.
    This book, written by one of philosophy's pre-eminent logicians, argues that many of the basic assumptions common to logic, philosophy of mathematics and metaphysics are in need of change. It is therefore a book of critical importance to logical theory. Jaakko Hintikka proposes a new basic first-order logic and uses it to explore the foundations of mathematics. This new logic enables logicians to express on the first-order level such concepts as equicardinality, infinity, and truth in the same language. (...)
     
    Export citation  
     
    Bookmark   81 citations  
  11.  8
    Minimal Degrees of Unsolvability and the Full Approximation Construction.American Mathematical Society, Donald I. Cartwright, John Williford Duskin & Richard L. Epstein - 1975 - American Mathematical Soc..
    For the purposes of this monograph, "by a degree" is meant a degree of recursive unsolvability. A degree [script bold]m is said to be minimal if 0 is the unique degree less than [script bold]m. Each of the six chapters of this self-contained monograph is devoted to the proof of an existence theorem for minimal degrees.
    Direct download  
     
    Export citation  
     
    Bookmark   2 citations  
  12.  14
    (1 other version)Kurt Gdel: Collected Works: Volume Iv: Selected Correspondence, a-G.Kurt Gdel & Stanford Unviersity of Mathematics - 1986 - Clarendon Press.
    Kurt Gdel was the most outstanding logician of the 20th century and a giant in the field. This book is part of a five volume set that makes available all of Gdel's writings. The first three volumes, already published, consist of the papers and essays of Gdel. The final two volumes of the set deal with Gdel's correspondence with his contemporary mathematicians, this fourth volume consists of material from correspondents from A-G.
    Direct download  
     
    Export citation  
     
    Bookmark  
  13. Intensional Mathematics.Stewart Shapiro - 1989 - Philosophy of Science 56 (1):177-178.
  14.  49
    (3 other versions)Philosophy of mathematics.Paul Benacerraf (ed.) - 1964 - Englewood Cliffs, N.J.,: Prentice-Hall.
    The present collection brings together in a convenient form the seminal articles in the philosophy of mathematics by these and other major thinkers.
    Direct download  
     
    Export citation  
     
    Bookmark   71 citations  
  15. Naturalism in mathematics.Penelope Maddy - 1997 - New York: Oxford University Press.
    Naturalism in Mathematics investigates how the most fundamental assumptions of mathematics can be justified. One prevalent philosophical approach to the problem--realism--is examined and rejected in favor of another approach--naturalism. Penelope Maddy defines this naturalism, explains the motivation for it, and shows how it can be successfully applied in set theory. Her clear, original treatment of this fundamental issue is informed by current work in both philosophy and mathematics, and will be accessible and enlightening to readers from both (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   242 citations  
  16.  94
    Mathematics and meaning in tractatus.Michael Kremer - 2002 - Philosophical Investigations 25 (3):272–303.
  17. Mathematics Without Numbers: Towards a Modal-Structural Interpretation.Geoffrey Hellman - 1989 - Oxford, England: Oxford University Press.
    Develops a structuralist understanding of mathematics, as an alternative to set- or type-theoretic foundations, that respects classical mathematical truth while ...
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   263 citations  
  18.  11
    (1 other version)A History of Mathematics: From Mesopotamia to Modernity.Luke Hodgkin - 2005 - Oxford University Press UK.
    A History of Mathematics: From Mesopotamia to Modernity covers the evolution of mathematics through time and across the major Eastern and Western civilizations. It begins in Babylon, then describes the trials and tribulations of the Greek mathematicians. The important, and often neglected, influence of both Chinese and Islamic mathematics is covered in detail, placing the description of early Western mathematics in a global context. The book concludes with modern mathematics, covering recent developments such as the (...)
    Direct download  
     
    Export citation  
     
    Bookmark   7 citations  
  19.  76
    Reverse mathematics and well-ordering principles: A pilot study.Bahareh Afshari & Michael Rathjen - 2009 - Annals of Pure and Applied Logic 160 (3):231-237.
    The larger project broached here is to look at the generally sentence “if X is well-ordered then f is well-ordered”, where f is a standard proof-theoretic function from ordinals to ordinals. It has turned out that a statement of this form is often equivalent to the existence of countable coded ω-models for a particular theory Tf whose consistency can be proved by means of a cut elimination theorem in infinitary logic which crucially involves the function f. To illustrate this theme, (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  20.  33
    Top-Down and Bottom-Up Philosophy of Mathematics.Carlo Cellucci - 2013 - Foundations of Science 18 (1):93-106.
    The philosophy of mathematics of the last few decades is commonly distinguished into mainstream and maverick, to which a ‘third way’ has been recently added, the philosophy of mathematical practice. In this paper the limitations of these trends in the philosophy of mathematics are pointed out, and it is argued that they are due to the fact that all of them are based on a top-down approach, that is, an approach which explains the nature of mathematics in (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  21.  92
    The Applicability of Mathematics as a Philosophical Problem.Mark Steiner - 1998 - Harvard University Press.
    This book analyzes the different ways mathematics is applicable in the physical sciences, and presents a startling thesis--the success of mathematical physics ...
    Direct download  
     
    Export citation  
     
    Bookmark   110 citations  
  22. Does mathematics need new axioms.Solomon Feferman, Harvey M. Friedman, Penelope Maddy & John R. Steel - 1999 - Bulletin of Symbolic Logic 6 (4):401-446.
    Part of the ambiguity lies in the various points of view from which this question might be considered. The crudest di erence lies between the point of view of the working mathematician and that of the logician concerned with the foundations of mathematics. Now some of my fellow mathematical logicians might protest this distinction, since they consider themselves to be just more of those \working mathematicians". Certainly, modern logic has established itself as a very respectable branch of mathematics, (...)
    Direct download (9 more)  
     
    Export citation  
     
    Bookmark   79 citations  
  23. Realism in mathematics.Penelope Maddy - 1990 - New York: Oxford University Prress.
    Mathematicians tend to think of themselves as scientists investigating the features of real mathematical things, and the wildly successful application of mathematics in the physical sciences reinforces this picture of mathematics as an objective study. For philosophers, however, this realism about mathematics raises serious questions: What are mathematical things? Where are they? How do we know about them? Offering a scrupulously fair treatment of both mathematical and philosophical concerns, Penelope Maddy here delineates and defends a novel version (...)
  24. The mathematics of metamathematics.Helena Rasiowa - 1963 - Warszawa,: Państwowe Wydawn. Naukowe. Edited by Roman Sikorski.
  25. Visualization in Logic and Mathematics.Paolo Mancosu - 2005 - In Paolo Mancosu, Klaus Frovin Jørgensen & S. A. Pedersen (eds.), Visualization, Explanation and Reasoning Styles in Mathematics. Springer. pp. 13-26.
    In the last two decades there has been renewed interest in visualization in logic and mathematics. Visualization is usually understood in different ways but for the purposes of this article I will take a rather broad conception of visualization to include both visualization by means of mental images as well as visualizations by means of computer generated images or images drawn on paper, e.g. diagrams etc. These different types of visualization can differ substantially but I am interested in offering (...)
     
    Export citation  
     
    Bookmark   25 citations  
  26. Philosophical Papers: Volume 1, Mathematics, Matter and Method.Hilary Putnam (ed.) - 1979 - New York: Cambridge University Press.
    Professor Hilary Putnam has been one of the most influential and sharply original of recent American philosophers in a whole range of fields. His most important published work is collected here, together with several new and substantial studies, in two volumes. The first deals with the philosophy of mathematics and of science and the nature of philosophical and scientific enquiry; the second deals with the philosophy of language and mind. Volume one is now issued in a new edition, including (...)
    Direct download  
     
    Export citation  
     
    Bookmark   75 citations  
  27.  58
    Systems of explicit mathematics with non-constructive μ-operator. Part II.Solomon Feferman & Gerhard Jäger - 1996 - Annals of Pure and Applied Logic 79 (1):37-52.
    This paper is mainly concerned with proof-theoretic analysis of some second-order systems of explicit mathematics with a non-constructive minimum operator. By introducing axioms for variable types we extend our first-order theory BON to the elementary explicit type theory EET and add several forms of induction as well as axioms for μ. The principal results then state: EET plus set induction is proof-theoretically equivalent to Peano arithmetic PA <0).
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   28 citations  
  28. How Mathematics Can Make a Difference.Sam Baron, Mark Colyvan & David Ripley - 2017 - Philosophers' Imprint 17.
    Standard approaches to counterfactuals in the philosophy of explanation are geared toward causal explanation. We show how to extend the counterfactual theory of explanation to non-causal cases, involving extra-mathematical explanation: the explanation of physical facts by mathematical facts. Using a structural equation framework, we model impossible perturbations to mathematics and the resulting differences made to physical explananda in two important cases of extra-mathematical explanation. We address some objections to our approach.
    Direct download  
     
    Export citation  
     
    Bookmark   55 citations  
  29.  21
    Mathematics and Meaning in Tractatus.Michael Kremer - 2002 - Philosophical Investigations 25 (3):272-303.
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   11 citations  
  30.  22
    Where mathematics becomes Political. representing Humans.Karen François & Laurent de Sutter - 2004 - Philosophica 74 (2).
  31.  19
    Philosophy of Mathematics.Roman Murawski & Thomas Bedürftig (eds.) - 2018 - De Gruyter.
    The present book is an introduction to the philosophy of mathematics. It asks philosophical questions concerning fundamental concepts, constructions and methods - this is done from the standpoint of mathematical research and teaching. It looks for answers both in mathematics and in the philosophy of mathematics from their beginnings till today. The reference point of the considerations is the introducing of the reals in the 19th century that marked an epochal turn in the foundations of mathematics. (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  32.  20
    Mathematics of Modality.Robert Goldblatt - 1993 - Center for the Study of Language and Information Publications.
    Modal logic is the study of modalities - expressions that qualify assertions about the truth of statements - like the ordinary language phrases necessarily, possibly, it is known/believed/ought to be, etc., and computationally or mathematically motivated expressions like provably, at the next state, or after the computation terminates. The study of modalities dates from antiquity, but has been most actively pursued in the last three decades, since the introduction of the methods of Kripke semantics, and now impacts on a wide (...)
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark   34 citations  
  33. Physicalism in Mathematics.A. D. Irvine - 1993 - Revue Philosophique de la France Et de l'Etranger 183 (3):638-640.
     
    Export citation  
     
    Bookmark   9 citations  
  34. Philosophy of Mathematics for the Masses : Extending the scope of the philosophy of mathematics.Stefan Buijsman - 2016 - Dissertation, Stockholm University
    One of the important discussions in the philosophy of mathematics, is that centered on Benacerraf’s Dilemma. Benacerraf’s dilemma challenges theorists to provide an epistemology and semantics for mathematics, based on their favourite ontology. This challenge is the point on which all philosophies of mathematics are judged, and clarifying how we might acquire mathematical knowledge is one of the main occupations of philosophers of mathematics. In this thesis I argue that this discussion has overlooked an important part (...)
    Direct download  
     
    Export citation  
     
    Bookmark   2 citations  
  35.  45
    The Philosophy of Mathematics Education.Paul Ernest - 1991 - Falmer Press.
    Although many agree that all teaching rests on a theory of knowledge, this is an in-depth exploration of the philosophy of mathematics for education, building on the work of Lakatos and Wittgenstein.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   29 citations  
  36. (1 other version)Visual thinking in mathematics: an epistemological study.Marcus Giaquinto - 2007 - New York: Oxford University Press.
    Visual thinking -- visual imagination or perception of diagrams and symbol arrays, and mental operations on them -- is omnipresent in mathematics. Is this visual thinking merely a psychological aid, facilitating grasp of what is gathered by other means? Or does it also have epistemological functions, as a means of discovery, understanding, and even proof? By examining the many kinds of visual representation in mathematics and the diverse ways in which they are used, Marcus Giaquinto argues that visual (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   34 citations  
  37.  46
    Systems of explicit mathematics with non-constructive μ-operator. Part I.Solomon Feferman & Gerhard Jäger - 1993 - Annals of Pure and Applied Logic 65 (3):243-263.
    Feferman, S. and G. Jäger, Systems of explicit mathematics with non-constructive μ-operator. Part I, Annals of Pure and Applied Logic 65 243-263. This paper is mainly concerned with the proof-theoretic analysis of systems of explicit mathematics with a non-constructive minimum operator. We start off from a basic theory BON of operators and numbers and add some principles of set and formula induction on the natural numbers as well as axioms for μ. The principal results then state: BON plus (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   23 citations  
  38.  40
    (1 other version)Philosophy of Mathematics.Stewart Shapiro - 2003 - In Peter Clark & Katherine Hawley (eds.), Philosophy of science today. New York: Oxford University Press.
    Moving beyond both realist and anti-realist accounts of mathematics, Shapiro articulates a "structuralist" approach, arguing that the subject matter of a mathematical theory is not a fixed domain of numbers that exist independent of each other, but rather is the natural structure, the pattern common to any system of objects that has an initial object and successor relation satisfying the induction principle.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   126 citations  
  39. Structure in mathematics.Saunders Lane - 1996 - Philosophia Mathematica 4 (2):174-183.
    The article considers structuralism as a philosophy of mathematics, as based on the commonly accepted explicit mathematical concept of a structure. Such a structure consists of a set with specified functions and relations satisfying specified axioms, which describe the type of the structure. Examples of such structures such as groups and spaces, are described. The viewpoint is now dominant in organizing much of mathematics, but does not cover all mathematics, in particular most applications. It does not explain (...)
    Direct download (10 more)  
     
    Export citation  
     
    Bookmark   13 citations  
  40.  6
    How our emotions and bodies are vital for abstract thought: perfect mathematics for imperfect minds.Anna Sverdlik - 2018 - New York, NY: Routledge.
    If mathematics is the purest form of knowledge, the perfect foundation of all the hard sciences, and a uniquely precise discipline, then how can the human brain, an imperfect and imprecise organ, process mathematical ideas? Is mathematics made up of eternal, universal truths? Or, as some have claimed, could mathematics simply be a human invention, a kind of tool or metaphor? These questions are among the greatest enigmas of science and epistemology, discussed at length by mathematicians, physicians, (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  41.  15
    Classification Theory: Proceedings of the U.S.-Israel Workshop on Model Theory in Mathematical Logic Held in Chicago, Dec. 15-19, 1985.J. T. Baldwin & U. Workshop on Model Theory in Mathematical Logic - 1987 - Springer.
    Direct download  
     
    Export citation  
     
    Bookmark  
  42. Philosophy of Mathematics.Christopher Pincock - 2011 - In Steven French & Juha Saatsi (eds.), Continuum Companion to the Philosophy of Science. Continuum. pp. 314-333.
    For many philosophers of science, mathematics lies closer to logic than it does to the ordinary sciences like physics, biology and economics. While this view may account for the relative neglect of the philosophy of mathematics by philosophers of science, it ignores at least two pressing questions about mathematics that philosophers of science need to be able to answer. First, do the similarities between mathematics and science support the view that mathematics is, after all, another (...)
     
    Export citation  
     
    Bookmark   5 citations  
  43.  10
    Bayna al-falsafah wa-al-riyāḍīyāt: min Ibn Sīnā ilá Kamāl al-Dīn al-Fārisī = Between philosophy and mathematics: from Ibn Sina to Kamal al-Din al-Farisi.Ayman Shihadeh - 2016 - Bayrūt: Markaz Dirāsāt al-Waḥdah al-ʻArabīyah. Edited by Rushdī Rāshid.
    Philosophy; mathematics; Avicenna, 980-1037; Fārisī, Kamāl al-Dīn Abū al-Ḥasan, active 1300.
    Direct download  
     
    Export citation  
     
    Bookmark  
  44.  58
    (2 other versions)The Philosophy of Mathematics: An Introductory Essay.Stephan Körner - 1960 - Mineola, N.Y.: Hutchinson.
    This lucid and comprehensive essay by a distinguished philosopher surveys the views of Plato, Aristotle, Leibniz, and Kant on the nature of mathematics. It examines the propositions and theories of the schools these philosophers inspired, and it concludes by discussing the relationship between mathematical theories, empirical data, and philosophical presuppositions. 1968 edition.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   21 citations  
  45. Izvlečki• abstracts.Mathematical Structuralism is A. Kind ofPlatonism - forthcoming - Filozofski Vestnik.
     
    Export citation  
     
    Bookmark  
  46.  4
    Mathematics as a Key to Peirce’s Semiotics.Carolyn Eisele - 1981 - In Annemarie Lange-Seidl (ed.), Zeichenkonstitution. Akten des 2. Semiotischen Kolloquiums Regensburg 1978. De Gruyter. pp. 123-128.
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark  
  47.  60
    Constructive mathematics.Douglas Bridges - 2008 - Stanford Encyclopedia of Philosophy.
  48.  9
    Concerning Mathematics.D. J. Struik - 1936 - Science and Society 1 (1):81 - 101.
    Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  49. Mathematics and conceptual analysis.Antony Eagle - 2008 - Synthese 161 (1):67–88.
    Gödel argued that intuition has an important role to play in mathematical epistemology, and despite the infamy of his own position, this opinion still has much to recommend it. Intuitions and folk platitudes play a central role in philosophical enquiry too, and have recently been elevated to a central position in one project for understanding philosophical methodology: the so-called ‘Canberra Plan’. This philosophical role for intuitions suggests an analogous epistemology for some fundamental parts of mathematics, which casts a number (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   11 citations  
  50.  23
    Why is There Philosophy of Mathematics at All?Ian Hacking - 2014 - New York: Cambridge University Press.
    This truly philosophical book takes us back to fundamentals - the sheer experience of proof, and the enigmatic relation of mathematics to nature. It asks unexpected questions, such as 'what makes mathematics mathematics?', 'where did proof come from and how did it evolve?', and 'how did the distinction between pure and applied mathematics come into being?' In a wide-ranging discussion that is both immersed in the past and unusually attuned to the competing philosophical ideas of contemporary (...)
    Direct download  
     
    Export citation  
     
    Bookmark   27 citations  
1 — 50 / 862