Results for 'mechanics'

1000+ found
Order:
  1. Bohmian Mechanics Without Wave Function Ontology.Albert Solé - 2013 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 44 (4):365-378.
    In this paper, I critically assess different interpretations of Bohmian mechanics that are not committed to an ontology based on the wave function being an actual physical object that inhabits configuration space. More specifically, my aim is to explore the connection between the denial of configuration space realism and another interpretive debate that is specific to Bohmian mechanics: the quantum potential versus guidance approaches. Whereas defenders of the quantum potential approach to the theory claim that Bohmian mechanics (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   18 citations  
  2. Quantum Mechanics and Experience.David Z. Albert - 1992 - Harvard Up.
  3. Quantum Mechanics in a Time-Asymmetric Universe: On the Nature of the Initial Quantum State.Eddy Keming Chen - forthcoming - British Journal for the Philosophy of Science:axy068.
    In a quantum universe with a strong arrow of time, we postulate a low-entropy boundary condition to account for the temporal asymmetry. In this paper, I show that the Past Hypothesis also contains enough information to simplify the quantum ontology and define a unique initial condition in such a world. First, I introduce Density Matrix Realism, the thesis that the quantum universe is described by a fundamental density matrix that represents something objective. This stands in sharp contrast to Wave Function (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   13 citations  
  4. Classical Mechanics Is Lagrangian; It Is Not Hamiltonian.Erik Curiel - 2014 - British Journal for the Philosophy of Science 65 (2):269-321.
    One can (for the most part) formulate a model of a classical system in either the Lagrangian or the Hamiltonian framework. Though it is often thought that those two formulations are equivalent in all important ways, this is not true: the underlying geometrical structures one uses to formulate each theory are not isomorphic. This raises the question of whether one of the two is a more natural framework for the representation of classical systems. In the event, the answer is yes: (...)
    Direct download (12 more)  
     
    Export citation  
     
    Bookmark   33 citations  
  5. The Principles of Quantum Mechanics.P. A. M. Dirac - 1930 - Clarendon Press.
    THE PRINCIPLE OF SUPERPOSITION. The need for a quantum theory Classical mechanics has been developed continuously from the time of Newton and applied to an ...
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   217 citations  
  6. Bohmian Mechanics.Sheldon Goldstein - 2008 - Stanford Encyclopedia of Philosophy.
    Bohmian mechanics, which is also called the de Broglie-Bohm theory, the pilot-wave model, and the causal interpretation of quantum mechanics, is a version of quantum theory discovered by Louis de Broglie in 1927 and rediscovered by David Bohm in 1952. It is the simplest example of what is often called a hidden variables interpretation of quantum mechanics. In Bohmian mechanics a system of particles is described in part by its wave function, evolving, as usual, according to (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   84 citations  
  7. Bohmian Mechanics.Roderich Tumulka, Detlef Durr, Sheldon Goldstein & Nino Zanghi - 2009 - Compendium of Quantum Physics.
    Bohmian mechanics is a theory about point particles moving along trajectories. It has the property that in a world governed by Bohmian mechanics, observers see the same statistics for experimental results as predicted by quantum mechanics. Bohmian mechanics thus provides an explanation of quantum mechanics. Moreover, the Bohmian trajectories are defined in a non-conspiratorial way by a few simple laws.
    Direct download (3 more)  
    Translate
     
     
    Export citation  
     
    Bookmark   28 citations  
  8. Quantum Mechanics and Priority Monism.Claudio Calosi - 2014 - Synthese 191 (5):1-14.
    The paper address the question of whether quantum mechanics (QM) favors Priority Monism, the view according to which the Universe is the only fundamental object. It develops formal frameworks to frame rigorously the question of fundamental mereology and its answers, namely (Priority) Pluralism and Monism. It then reconstructs the quantum mechanical argument in favor of the latter and provides a detailed and thorough criticism of it that sheds furthermore new light on the relation between parthood, composition and fundamentality in (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   15 citations  
  9. Quantum Mechanics on Spacetime I: Spacetime State Realism.David Wallace & Christopher Gordon Timpson - 2010 - British Journal for the Philosophy of Science 61 (4):697-727.
    What ontology does realism about the quantum state suggest? The main extant view in contemporary philosophy of physics is wave-function realism . We elaborate the sense in which wave-function realism does provide an ontological picture, and defend it from certain objections that have been raised against it. However, there are good reasons to be dissatisfied with wave-function realism, as we go on to elaborate. This motivates the development of an opposing picture: what we call spacetime state realism , a view (...)
    Direct download (14 more)  
     
    Export citation  
     
    Bookmark   72 citations  
  10.  94
    Quantum Mechanics is About Quantum Information.Jeffrey Bub - 2005 - Foundations of Physics 35 (4):541-560.
    I argue that quantum mechanics is fundamentally a theory about the representation and manipulation of information, not a theory about the mechanics of nonclassical waves or particles. The notion of quantum information is to be understood as a new physical primitive—just as, following Einstein’s special theory of relativity, a field is no longer regarded as the physical manifestation of vibrations in a mechanical medium, but recognized as a new physical primitive in its own right.
    Direct download (9 more)  
     
    Export citation  
     
    Bookmark   29 citations  
  11. Quantum Mechanics, Orthogonality, and Counting.Peter J. Lewis - 1997 - British Journal for the Philosophy of Science 48 (3):313-328.
    In quantum mechanics it is usually assumed that mutually exclusives states of affairs must be represented by orthogonal vectors. Recent attempts to solve the measurement problem, most notably the GRW theory, require the relaxation of this assumption. It is shown that a consequence of relaxing this assumption is that arithmatic does not apply to ordinary macroscopic objects. It is argued that such a radical move is unwarranted given the current state of understanding of the foundations of quantum mechanics.
    Direct download (10 more)  
     
    Export citation  
     
    Bookmark   31 citations  
  12. Quantum Mechanics and 3N‐Dimensional Space.Bradley Monton - 2006 - Philosophy of Science 73 (5):778-789.
    I maintain that quantum mechanics is fundamentally about a system of N particles evolving in three-dimensional space, not the wave function evolving in 3N-dimensional space.
    Direct download (11 more)  
     
    Export citation  
     
    Bookmark   55 citations  
  13.  67
    Quantum Mechanics: An Empiricist View.Bas C. Van Fraassen - 1991 - Oxford University Press.
    After introducing the empiricist point of view in philosophy of science, and the concepts and methods of the semantic approach to scientific theories, van Fraassen discusses quantum theory in three stages. He first examines the question of whether and how empirical phenomena require a non-classical theory, and what sort of theory they require. He then discusses the mathematical foundations of quantum theory with special reference to developments in the modelling of interaction, composite systems, and measurement. Finally, the author broaches the (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   50 citations  
  14. Quantum Mechanics: Historical Contingency and the Copenhagen Hegemony.James T. Cushing - 1994 - University of Chicago Press.
    No categories
    Translate
     
     
    Export citation  
     
    Bookmark   91 citations  
  15.  25
    Quantum Mechanics: An Empiricist View.Paul Teller & Bas C. van Fraassen - 1995 - Philosophical Review 104 (3):457.
  16.  42
    Quantum Mechanics Between Ontology and Epistemology.Florian J. Boge - 2018 - Springer (European Studies in Philosophy of Science).
    This book explores the prospects of rivaling ontological and epistemic interpretations of quantum mechanics (QM). It concludes with a suggestion for how to interpret QM from an epistemological point of view and with a Kantian touch. It thus refines, extends, and combines existing approaches in a similar direction. -/- The author first looks at current, hotly debated ontological interpretations. These include hidden variables-approaches, Bohmian mechanics, collapse interpretations, and the many worlds interpretation. He demonstrates why none of these ontological (...)
    Direct download  
     
    Export citation  
     
    Bookmark   2 citations  
  17.  52
    Quantum Mechanics as Classical Physics.Charles T. Sebens - 2015 - Philosophy of Science 82 (2):266-291.
    Here I explore a novel no-collapse interpretation of quantum mechanics that combines aspects of two familiar and well-developed alternatives, Bohmian mechanics and the many-worlds interpretation. Despite reproducing the empirical predictions of quantum mechanics, the theory looks surprisingly classical. All there is at the fundamental level are particles interacting via Newtonian forces. There is no wave function. However, there are many worlds.
    Direct download (10 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  18.  51
    Quantum Mechanics: Myths and Facts. [REVIEW]Hrvoje Nikolić - 2007 - Foundations of Physics 37 (11):1563-1611.
    A common understanding of quantum mechanics (QM) among students and practical users is often plagued by a number of “myths”, that is, widely accepted claims on which there is not really a general consensus among experts in foundations of QM. These myths include wave-particle duality, time-energy uncertainty relation, fundamental randomness, the absence of measurement-independent reality, locality of QM, nonlocality of QM, the existence of well-defined relativistic QM, the claims that quantum field theory (QFT) solves the problems of relativistic QM (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   12 citations  
  19. Mind, Matter, and Quantum Mechanics.Henry P. Stapp - 1993 - Springer Verlag.
    In this book, which contains several of his key papers as well as new material, he focuses on the problem of consciousness and explains how quantum mechanics...
    Direct download (10 more)  
     
    Export citation  
     
    Bookmark   54 citations  
  20.  49
    Quantum Mechanics Over Sets: A Pedagogical Model with Non-Commutative Finite Probability Theory as its Quantum Probability Calculus.David Ellerman - 2017 - Synthese (12):4863-4896.
    This paper shows how the classical finite probability theory (with equiprobable outcomes) can be reinterpreted and recast as the quantum probability calculus of a pedagogical or toy model of quantum mechanics over sets (QM/sets). There have been several previous attempts to develop a quantum-like model with the base field of ℂ replaced by ℤ₂. Since there are no inner products on vector spaces over finite fields, the problem is to define the Dirac brackets and the probability calculus. The previous (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  21.  35
    Foundation of Statistical Mechanics: Mechanics by Itself.Orly Shenker - 2017 - Philosophy Compass 12 (12):e12465.
    Statistical mechanics is a strange theory. Its aims are debated, its methods are contested, its main claims have never been fully proven, and their very truth is challenged, yet at the same time, it enjoys huge empirical success and gives us the feeling that we understand important phenomena. What is this weird theory, exactly? Statistical mechanics is the name of the ongoing attempt to apply mechanics, together with some auxiliary hypotheses, to explain and predict certain phenomena, above (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  22.  74
    Quantum Mechanics Over Sets.David Ellerman - forthcoming - Synthese.
    This paper shows how the classical finite probability theory (with equiprobable outcomes) can be reinterpreted and recast as the quantum probability calculus of a pedagogical or toy model of quantum mechanics over sets (QM/sets). There have been several previous attempts to develop a quantum-like model with the base field of ℂ replaced by ℤ₂. Since there are no inner products on vector spaces over finite fields, the problem is to define the Dirac brackets and the probability calculus. The previous (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  23.  8
    Mad-Dog Everettianism: Quantum Mechanics at Its Most Minimal.Sean M. Carroll & Ashmeet Singh - 2019 - In Anthony Aguirre, Brendan Foster & Zeeya Merali (eds.), What is Fundamental? Springer Verlag. pp. 95-104.
    To the best of our current understanding, quantum mechanics is part of the most fundamental picture of the universe. It is natural to ask how pure and minimal this fundamental quantum description can be. The simplest quantum ontology is that of the Everett or Many-Worlds interpretation, based on a vector in Hilbert space and a Hamiltonian. Typically one also relies on some classical structure, such as space and local configuration variables within it, which then gets promoted to an algebra (...)
    Direct download  
     
    Export citation  
     
    Bookmark   6 citations  
  24.  98
    Quantum Mechanics and the Philosophy of Alfred North Whitehead.Michael Epperson - 2004 - Fordham University Press.
    In Process and Reality and other works, Alfred North Whitehead struggled to come to terms with the impact the new science of quantum mechanics would have on metaphysics.This ambitious book is the first extended analysis of the intricate relationships between relativity theory, quantum mechanics, and Whitehead's cosmology. Michael Epperson illuminates the intersection of science and philosophy in Whitehead's work-and details Whitehead's attempts to fashion an ontology coherent with quantum anomalies.Including a nonspecialist introduction to quantum mechanics, Epperson adds (...)
    Direct download  
     
    Export citation  
     
    Bookmark   11 citations  
  25. Quantum Mechanics as a Theory of Probability.Itamar Pitowsky - unknown
    We develop and defend the thesis that the Hilbert space formalism of quantum mechanics is a new theory of probability. The theory, like its classical counterpart, consists of an algebra of events, and the probability measures defined on it. The construction proceeds in the following steps: (a) Axioms for the algebra of events are introduced following Birkhoff and von Neumann. All axioms, except the one that expresses the uncertainty principle, are shared with the classical event space. The only models (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   30 citations  
  26.  24
    Foundation of Statistical Mechanics: The Auxiliary Hypotheses.Orly Shenker - 2017 - Philosophy Compass 12 (12):e12464.
    Statistical mechanics is the name of the ongoing attempt to explain and predict certain phenomena, above all those described by thermodynamics on the basis of the fundamental theories of physics, in particular mechanics, together with certain auxiliary assumptions. In another paper in this journal, Foundations of statistical mechanics: Mechanics by itself, I have shown that some of the thermodynamic regularities, including the probabilistic ones, can be described in terms of mechanics by itself. But in order (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  27. Statistical Mechanics and Thermodynamics: A Maxwellian View.Wayne C. Myrvold - 2011 - Studies in History and Philosophy of Science Part A 42 (4):237-243.
    One finds, in Maxwell's writings on thermodynamics and statistical physics, a conception of the nature of these subjects that differs in interesting ways from the way that they are usually conceived. In particular, though—in agreement with the currently accepted view—Maxwell maintains that the second law of thermodynamics, as originally conceived, cannot be strictly true, the replacement he proposes is different from the version accepted by most physicists today. The modification of the second law accepted by most physicists is a probabilistic (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   10 citations  
  28. The Ontology of Bohmian Mechanics.M. Esfeld, D. Lazarovici, Mario Hubert & D. Durr - 2014 - British Journal for the Philosophy of Science 65 (4):773-796.
    The paper points out that the modern formulation of Bohm’s quantum theory known as Bohmian mechanics is committed only to particles’ positions and a law of motion. We explain how this view can avoid the open questions that the traditional view faces according to which Bohm’s theory is committed to a wave-function that is a physical entity over and above the particles, although it is defined on configuration space instead of three-dimensional space. We then enquire into the status of (...)
    Direct download (12 more)  
     
    Export citation  
     
    Bookmark   56 citations  
  29. Quantum Mechanics, Strong Emergence and Ontological Non-Reducibility.Rodolfo Gambini, Lucía Lewowicz & Jorge Pullin - 2015 - Foundations of Chemistry 17 (2):117-127.
    We show that a new interpretation of quantum mechanics, in which the notion of event is defined without reference to measurement or observers, allows to construct a quantum general ontology based on systems, states and events. Unlike the Copenhagen interpretation, it does not resort to elements of a classical ontology. The quantum ontology in turn allows us to recognize that a typical behavior of quantum systems exhibits strong emergence and ontological non-reducibility. Such phenomena are not exceptional but natural, and (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  30. Statistical Mechanics and the Asymmetry of Counterfactual Dependence.Adam Elga - 2001 - Philosophy of Science 68 (3):313-324.
    In "Counterfactual Dependence and Time's Arrow", David Lewis defends an analysis of counterfactuals intended to yield the asymmetry of counterfactual dependence: that later affairs depend counterfactually on earlier ones, and not the other way around. I argue that careful attention to the dynamical properties of thermodynamically irreversible processes shows that in many ordinary cases, Lewis's analysis fails to yield this asymmetry. Furthermore, the analysis fails in an instructive way: it teaches us something about the connection between the asymmetry of overdetermination (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   52 citations  
  31.  65
    Philosophic Foundations of Quantum Mechanics.Hans Reichenbach - 1944 - Dover Publications.
    Written by an internationally renowned philosopher, this volume offers a three-part philosophical interpretation of quantum physics. The first part reviews the basics of quantum mechanics, outlining their philosophical interpretation and summarizing their results; the second outlines the mathematical methods of quantum mechanics; and the third section blends the philosophical ideas of the first part and the mathematical formulations of the second part to develop a variety of interpretations of quantum mechanics. 1944 edition.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   82 citations  
  32. Probabilities in Statistical Mechanics.Wayne C. Myrvold - 2016 - In Christopher Hitchcock & Alan H’Ajek (eds.), The Oxford Handbook of Probability and Philosophy. Oxford: Oxford University Press. pp. 573-600.
    This chapter will review selected aspects of the terrain of discussions about probabilities in statistical mechanics (with no pretensions to exhaustiveness, though the major issues will be touched upon), and will argue for a number of claims. None of the claims to be defended is entirely original, but all deserve emphasis. The first, and least controversial, is that probabilistic notions are needed to make sense of statistical mechanics. The reason for this is the same reason that convinced Maxwell, (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   16 citations  
  33. Quantum Mechanics in Terms of Realism.Arthur Jabs - 2017 - arXiv.Org.
    We expound an alternative to the Copenhagen interpretation of the formalism of nonrelativistic quantum mechanics. The basic difference is that the new interpretation is formulated in the language of epistemological realism. It involves a change in some basic physical concepts. The ψ function is no longer interpreted as a probability amplitude of the observed behaviour of elementary particles but as an objective physical field representing the particles themselves. The particles are thus extended objects whose extension varies in time according (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  34.  21
    Quantum Mechanics and Perspectivalism.Dennis Dieks - unknown
    Experimental evidence of the last decades has made the status of ``collapses of the wave function'' even more shaky than it already was on conceptual grounds: interference effects turn out to be detectable even when collapses are typically expected to occur. Non-collapse interpretations should consequently be taken seriously. In this paper we argue that such interpretations suggest a perspectivalism according to which quantum objects are not characterized by monadic properties, but by relations to other systems. Accordingly, physical systems may possess (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  35.  42
    Quantum Mechanics as an Emergent Property of Ergodic Systems Embedded in the Zero-Point Radiation Field.L. de la Peña, A. Valdés-Hernández & A. M. Cetto - 2009 - Foundations of Physics 39 (11):1240-1272.
    The present paper reveals (non-relativistic) quantum mechanics as an emergent property of otherwise classical ergodic systems embedded in a stochastic vacuum or zero-point radiation field (zpf). This result provides a theoretical basis for understanding recent numerical experiments in which a statistical analysis of an atomic electron interacting with the zpf furnishes the quantum distribution for the ground state of the H atom. The action of the zpf on matter is essential within the present approach, but it is the ergodic (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  36. Quantum Mechanics and Paradigm Shifts.Valia Allori - 2015 - Topoi 34 (2):313-323.
    It has been argued that the transition from classical to quantum mechanics is an example of a Kuhnian scientific revolution, in which there is a shift from the simple, intuitive, straightforward classical paradigm, to the quantum, convoluted, counterintuitive, amazing new quantum paradigm. In this paper, after having clarified what these quantum paradigms are supposed to be, I analyze whether they constitute a radical departure from the classical paradigm. Contrary to what is commonly maintained, I argue that, in addition to (...)
    Direct download (10 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  37.  8
    Mechanics of Verbal Ability.Earl Hunt - 1978 - Psychological Review 85 (2):109-130.
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   114 citations  
  38. Quantum Mechanics and Haecceities.Paul Teller - 1998 - In Elena Castellani (ed.), Interpreting Bodies. Princeton University Press. pp. 114--141.
  39.  31
    Quantum Mechanics and the Principle of Maximal Variety.Lee Smolin - 2016 - Foundations of Physics 46 (6):736-758.
    Quantum mechanics is derived from the principle that the universe contain as much variety as possible, in the sense of maximizing the distinctiveness of each subsystem. The quantum state of a microscopic system is defined to correspond to an ensemble of subsystems of the universe with identical constituents and similar preparations and environments. A new kind of interaction is posited amongst such similar subsystems which acts to increase their distinctiveness, by extremizing the variety. In the limit of large numbers (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  40.  67
    Quantum Mechanics: Modal Interpretation and Galilean Transformations. [REVIEW]Juan Sebastian Ardenghi, Mario Castagnino & Olimpia Lombardi - 2009 - Foundations of Physics 39 (9):1023-1045.
    The aim of this paper is to consider in what sense the modal-Hamiltonian interpretation of quantum mechanics satisfies the physical constraints imposed by the Galilean group. In particular, we show that the only apparent conflict, which follows from boost-transformations, can be overcome when the definition of quantum systems and subsystems is taken into account. On this basis, we apply the interpretation to different well-known models, in order to obtain concrete examples of the previous conceptual conclusions. Finally, we consider the (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   15 citations  
  41.  42
    Quantum Mechanics and Experience.Lawrence Sklar - 1996 - Philosophy and Phenomenological Research 56 (4):973-975.
  42. Quantum Mechanics and Metaphysical Indeterminacy.George Darby - 2010 - Australasian Journal of Philosophy 88 (2):227-245.
    There has been recent interest in formulating theories of non-representational indeterminacy. The aim of this paper is to clarify the relevance of quantum mechanics to this project. Quantum-mechanical examples of vague objects have been offered by various authors, displaying indeterminate identity, in the face of the famous Evans argument that such an idea is incoherent. It has also been suggested that the quantum-mechanical treatment of state-dependent properties exhibits metaphysical indeterminacy. In both cases it is important to consider the details (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   11 citations  
  43.  33
    Quantum Mechanics Without Probability Amplitudes.William K. Wootters - 1986 - Foundations of Physics 16 (4):391-405.
    First steps are taken toward a formulation of quantum mechanics which avoids the use of probability amplitudes and is expressed entirely in terms of observable probabilities. Quantum states are represented not by state vectors or density matrices but by “probability tables,” which contain only the probabilities of the outcomes of certain special measurements. The rule for computing transition probabilities, normally given by the squared modulus of the inner product of two state vectors, is re-expressed in terms of probability tables. (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   12 citations  
  44.  22
    Quantum Mechanics Without the Projection Postulate and its Realistic Interpretation.D. Dieks - 1989 - Foundations of Physics 19 (11):1397-1423.
    It is widely held that quantum mechanics is the first scientific theory to present scientifically internal, fundamental difficulties for a realistic interpretation (in the philosophical sense). The standard (Copenhagen) interpretation of the quantum theory is often described as the inevitable instrumentalistic response. It is the purpose of the present article to argue that quantum theory doesnot present fundamental new problems to a realistic interpretation. The formalism of quantum theory has the same states—it will be argued—as the formalisms of older (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   30 citations  
  45.  66
    Physics and Chance: Philosophical Issues in the Foundations of Statistical Mechanics.Lawrence Sklar - 1993 - Cambridge University Press.
    Statistical mechanics is one of the crucial fundamental theories of physics, and in his new book Lawrence Sklar, one of the pre-eminent philosophers of physics, offers a comprehensive, non-technical introduction to that theory and to attempts to understand its foundational elements. Among the topics treated in detail are: probability and statistical explanation, the basic issues in both equilibrium and non-equilibrium statistical mechanics, the role of cosmology, the reduction of thermodynamics to statistical mechanics, and the alleged foundation of (...)
    Direct download  
     
    Export citation  
     
    Bookmark   112 citations  
  46. Quantum Entanglement, Bohmian Mechanics, and Humean Supervenience.Elizabeth Miller - 2014 - Australasian Journal of Philosophy 92 (3):567-583.
    David Lewis is a natural target for those who believe that findings in quantum physics threaten the tenability of traditional metaphysical reductionism. Such philosophers point to allegedly holistic entities they take both to be the subjects of some claims of quantum mechanics and to be incompatible with Lewisian metaphysics. According to one popular argument, the non-separability argument from quantum entanglement, any realist interpretation of quantum theory is straightforwardly inconsistent with the reductive conviction that the complete physical state of the (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   67 citations  
  47.  79
    Quantum Mechanics, Chance and Modality.Dennis Dieks - 2010 - Philosophica 83 (1):117-137.
  48. Quantum Mechanics as a Consistency Condition on Initial and Final Boundary Conditions.David John Miller - 2008 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 39 (4):767-781.
    If the block universe view is correct, the future and the past have similar status and one would expect physical theories to involve final as well as initial boundary conditions. A plausible consistency condition between the initial and final boundary conditions in non-relativistic quantum mechanics leads to the idea that the properties of macroscopic quantum systems, relevantly measuring instruments, are uniquely determined by the boundary conditions. An important element in reaching that conclusion is that preparations and measurements belong in (...)
    Direct download (9 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  49.  97
    Quantum Mechanics.Jenann Ismael - 2008 - Stanford Encyclopedia of Philosophy.
    Quantum mechanics is, at least at first glance and at least in part, a mathematical machine for predicting the behaviors of microscopic particles — or, at least, of the measuring instruments we use to explore those behaviors — and in that capacity, it is spectacularly successful: in terms of power and precision, head and shoulders above any theory we have ever had. Mathematically, the theory is well understood; we know what its parts are, how they are put together, and (...)
    Direct download  
     
    Export citation  
     
    Bookmark   8 citations  
  50. Time, Quantum Mechanics, and Probability.Simon Saunders - 1998 - Synthese 114 (3):373-404.
    A variety of ideas arising in decoherence theory, and in the ongoing debate over Everett's relative-state theory, can be linked to issues in relativity theory and the philosophy of time, specifically the relational theory of tense and of identity over time. These have been systematically presented in companion papers (Saunders 1995; 1996a); in what follows we shall consider the same circle of ideas, but specifically in relation to the interpretation of probability, and its identification with relations in the Hilbert Space (...)
    Direct download (10 more)  
     
    Export citation  
     
    Bookmark   76 citations  
1 — 50 / 1000