Paraconsistent logics are logical systems that reject the classical principle, usually dubbed Explosion, that a contradiction implies everything. However, the received view about paraconsistency focuses only the inferential version of Explosion, which is concerned with formulae, thereby overlooking other possible accounts. In this paper, we propose to focus, additionally, on a meta-inferential version of Explosion, i.e. which is concerned with inferences or sequents. In doing so, we will offer a new characterization of paraconsistency by means of which a (...) class='Hi'>logic is paraconsistent if it invalidates either the inferential or the meta-inferential notion of Explosion. We show the non-triviality of this criterion by discussing a number of logics. On the one hand, logics which validate and invalidate both versions of Explosion, such as classical logic and Asenjo–Priest’s 3-valued logic LP. On the other hand, logics which validate one version of Explosion but not the other, such as the substructural logics TS and ST, introduced by Malinowski and Cobreros, Egré, Ripley and van Rooij, which are obtained via Malinowski’s and Frankowski’s q- and p-matrices, respectively. (shrink)
In a forthcoming paper, Walter Carnielli and Abilio Rodrigues propose a Basic Logic of Evidence whose natural deduction rules are thought of as preserving evidence instead of truth. BLE turns out to be equivalent to Nelson’s paraconsistentlogic N4, resulting from adding strong negation to Intuitionistic logic without Intuitionistic negation. The Carnielli/Rodrigues understanding of evidence is informal. Here we provide a formal alternative, using justification logic. First we introduce a modal logic, KX4, in which (...) \ can be read as asserting there is implicit evidence for X, where we understand evidence to permit contradictions. We show BLE embeds into KX4 in the same way that Intuitionistic logic embeds into S4. Then we formulate a new justification logic, JX4, in which the implicit evidence motivating KX4 is made explicit. KX4 embeds into JX4 via a realization theorem. Thus BLE has both implicit and explicit possibly contradictory evidence interpretations in a formal sense. (shrink)
Physical superpositions exist both in classical and in quantum physics. However, what is exactly meant by ‘superposition’ in each case is extremely different. In this paper we discuss some of the multiple interpretations which exist in the literature regarding superpositions in quantum mechanics. We argue that all these interpretations have something in common: they all attempt to avoid ‘contradiction’. We argue in this paper, in favor of the importance of developing a new interpretation of superpositions which takes into account contradiction, (...) as a key element of the formal structure of the theory, “right from the start”. In order to show the feasibility of our interpretational project we present an outline of a paraconsistent approach to quantum superpositions which attempts to account for the contradictory properties present in general within quantum superpositions. This approach must not be understood as a closed formal and conceptual scheme but rather as a first step towards a different type of understanding regarding quantum superpositions. (shrink)
In some logics, anything whatsoever follows from a contradiction; call these logics explosive. Paraconsistent logics are logics that are not explosive. Paraconsistent logics have a long and fruitful history, and no doubt a long and fruitful future. To give some sense of the situation, I’ll spend Section 1 exploring exactly what it takes for a logic to be paraconsistent. It will emerge that there is considerable open texture to the idea. In Section 2, I’ll give some (...) examples of techniques for developing paraconsistent logics. In Section 3, I’ll discuss what seem to me to be some promising applications of certain paraconsistent logics. In fact, however, I don’t think there’s all that much to the concept ‘paraconsistent’ itself; the collection of paraconsistent logics is far too heterogenous to be very productively dealt with under a single label. Perhaps that will emerge as we go. (shrink)
Max Cresswell and Hilary Putnam seem to hold the view, often shared by classical logicians, that paraconsistentlogic has not been made sense of, despite its well-developed mathematics. In this paper, I examine the nature of logic in order to understand what it means to make sense of logic. I then show that, just as one can make sense of non-normal modal logics (as Cresswell demonstrates), we can make `sense' of paraconsistentlogic. Finally, I (...) turn the tables on classical logicians and ask what sense can be made of explosive reasoning. While I acknowledge a bias on this issue, it is not clear that even classical logicians can answer this question. (shrink)
We present a paraconsistentlogic, called Z, based on an intuitive possible worlds semantics, in which the replacement theorem holds. We show how to axiomatize this logic and prove the completeness theorem.
This paper begins an analysis of the real line using an inconsistency-tolerant (paraconsistent) logic. We show that basic field and compactness properties hold, by way of novel proofs that make no use of consistency-reliant inferences; some techniques from constructive analysis are used instead. While no inconsistencies are found in the algebraic operations on the real number field, prospects for other non-trivializing contradictions are left open.
The aim of this paper is to show that Graham Priest's dialetheic account of semantic paradoxes and the paraconsistent logics employed cannot achieve semantic universality. Dialetheism therefore fails as a solution to semantic paradoxes for the same reason that consistent approaches did. It will be demonstrated that if dialetheism can express its own semantic principles, a strengthened liar paradox will result, which renders dialetheism trivial. In particular, the argument is not invalidated by relational valuations, which were brought into (...) class='Hi'>paraconsistentlogic in order to avoid strengthened liar paradoxes. (shrink)
The present book discusses all aspects of paraconsistentlogic, including the latest findings, and its various systems. It includes papers by leading international researchers, which address the subject in many different ways: development of abstract paraconsistent systems and new theorems about them; studies of the connections between these systems and other non-classical logics, such as non-monotonic, many-valued, relevant, paracomplete and fuzzy logics; philosophical interpretations of these constructions; and applications to other sciences, in particular quantum physics and mathematics. (...) Reasoning with contradictions is the challenge of paraconsistentlogic. The book will be of interest to graduate students and researchers working in mathematical logic, computer science, philosophical logic, linguistics and physics. (shrink)
The object of this paper is to show how one is able to construct a paraconsistent theory of models that reflects much of the classical one. In other words the aim is to demonstrate that there is a very smooth and natural transition from the model theory of classical logic to that of certain categories of paraconsistentlogic. To this end we take an extension of da Costa''sC 1 = (obtained by adding the axiom A A) (...) and prove for it results which correspond to many major classical model theories, taken from Shoenfield [5]. In particular we prove counterparts of the theorems of o-Tarski and Chang-o-Suszko, Craig-Robinson and the Beth definability theorem. (shrink)
Paraconsistent logics are characterized by rejection of ex falso quodlibet, the principle of explosion, which states that from a contradiction, anything can be derived. Strikingly these logics have found a wide range of application, despite the misgivings of philosophers as prominent as Lewis and Putnam. Such applications, I will argue, are of significant philosophical interest. They suggest ways to employ these logics in philosophical and scientific theories. To this end I will sketch out a ‘naturalized semantic dialetheism’ following Priest’s (...) early suggestion that the principles governing human natural language may well be inconsistent. There will be a significant deviation from Priest’s work, namely, the assumption of a broadly Chomskyan picture of semantics. This allows us to explain natural language inconsistency tolerance without commitment to contentious views in formal logic. (shrink)
"The best known approaches to "reasoning with inconsistent data" require a logical framework which is decidedly non-classical. An alternative is presented here, beginning with some motivation which has been surprised in the work of C.I. Lewis, which does not require ripping great swatches from the fabric of classical logic. In effect, the position taken in this essay is representative of an approach in which one assumes the correctness of classical methods excepting only the cases in which the premise set (...) is inconsistent. (shrink)
I am honoured with and touched by the invitation of delivering the opening address of this Congress. Firstly, to see paraconsistentlogic flourishing and growing, as we can readily see by simply glacing over the programme of this conference, is among one of my greatest joys. Secondly, and equally important, because this congress takes place in the University of Toruń.I am honoured for having lectured here, a most congenial and stimulating place, and could not think of a better (...) place for a conference dedicated to the memory of Stanisław Jaśkowski. In particular, I am delighted for having had a correspondence with him, and although I was deprived of the pleasure of meeting him personally, I was fortunate enough for having collaborated with some of his disciples, such as L. Dubikajtis and T. Kotas. All and all, Toruń in particular and Poland in general are for me a second home, for all the kindness and care everyone has shown to me over several years, since my very first visit to this country. (shrink)
. A paraconsistentlogic is a logical system that attempts to deal with contradictions in a discriminating way. In an earlier paper [Notre Dame J. Form. Log. 49, 401–424], we developed the systems of weakening of intuitionistic negation logic, called and, in the spirit of da Costa's approach by preserving, differently from da Costa, the fundamental properties of negation: antitonicity, inversion and additivity for distributive lattices. Taking into account these results, we make some observations on the modified (...) systems of and, and their paraconsistent properties. (shrink)
Paraconsistentlogic is the study of logics in which there are some theories embodying contradictions but which are not trivial, in particular in a paraconsistentlogic, the ex contradictione sequitur quod libet, which can be formalized as Cn(T, a,¬a)=F is not valid. Since nearly half a century various systems of paraconsistentlogic have been proposed and studied. This field of research is classified under a special section (B53) in the Mathematical Reviews and watching this (...) section, it is possible to see that the number of papers devoted to paraconsistentlogic is each time greater and has recently increased due in particular to its applications to computer sciences (see e.g. Blair and Subrahmanian. (shrink)
In a recent work, Walter Carnielli and Abilio Rodrigues present an epistemically motivated interpretation of paraconsistentlogic. In their view, when there is conflicting evidence with regard to a proposition A (i.e. when there is both evidence in favor of A and evidence in favor of ¬A) both A and ¬A should be accepted without thereby accepting any proposition B whatsoever. Hence, reasoning within their system intends to mirror, and thus, should be constrained by, the way in which (...) we reason about evidence. In this article we will thoroughly discuss their position and suggest some ways in which this project can be further developed. The aim of the paper is twofold. On the one hand, we will present some philosophical critiques to the specific epistemic interpretation of paraconsistentlogic proposed by Carnielli & Rodrigues. First, we will contend that Carnielli & Rodrigues’s interpretation implies a thesis about what evidence rationally justifies to accept or believe, called Extreme Permissivism, which is controversial among epistemologists. Second, we will argue that what agents should do, from an epistemic point of view, when faced with conflicting evidence, is to suspend judgment. On the other hand, despite these criticisms we do not believe that the epistemological motivation put forward by Carnielli & Rodrigues is entirely wrong. In the last section, we offer an alternative way in which one might account for the epistemic rationality of accepting contradictions and, thus, for an epistemic understanding of paraconsistency, which leads us to discuss the notion of diachronic epistemic rationality. (shrink)
particular alternative logic could be relevant to another one? The most important part of a response to this question is to remind the reader of the fact that independence friendly (IF) logic is not an alternative or “nonclassical” logic. (See here especially Hintikka, “There is only one logic”, forthcoming.) It is not calculated to capture some particular kind of reasoning that cannot be handled in the “classical” logic that should rather be called the received or (...) conventional logic. No particular epithet should be applied to it. IF logic is not an alternative to our generally used basic logic, the received first-order logic, aka quantification theory or predicate calculus. It replaces this basic logic in that it is identical with this “classical” first-order logic except that certain important flaws of the received first-order logic have been corrected. But what are those flaws and how can they be corrected? To answer these questions is to explain the basic ideas of IF logic. Since this logic is not as well known as it should be, such explanation is needed in any case. I will provide three different but not unrelated motivations for IF logic. (shrink)
The aim of this commentary is to show that a new development in formal logic, namely paraconsistentlogic, should be connected with the laws of form. This note also includes some personal history to serve as background.
For several years I have been developing a general theory of logics that I have called Universal Logic. In this article I will try to describe how I was led to this theory and how I have progressively conceived it, starting my researches about ten years ago in Paris in paraconsistentlogic and the broadening my horizons, pursuing my researches in Brazil, Poland and the USA.
We answer Slater's argument according to which paraconsistentlogic is a result of a verbal confusion between «contradictories» and «subcontraries». We show that if such notions are understood within classical logic, the argument is invalid, due to the fact that most paraconsistent logics cannot be translated into classical logic. However we prove that if such notions are understood from the point of view of a particular logic, a contradictory forming function in this logic (...) is necessarily a classical negation. In view of this result, Slater's argument sounds rather tautological. (shrink)
The article is devoted to the systematic study of the lattice εN4⊥ consisting of logics extending N4⊥. The logic N4⊥ is obtained from paraconsistent Nelson logic N4 by adding the new constant ⊥ and axioms ⊥ → p, p → ∼ ⊥. We study interrelations between εN4⊥ and the lattice of superintuitionistic logics. Distinguish in εN4⊥ basic subclasses of explosive logics, normal logics, logics of general form and study how they are relate.
Priest and others have presented their “most telling” argument for paraconsistentlogic: that only paraconsistent logics allow non-trivial inconsistent theories. This is a very prevalent argument; occurring as it does in the work of many relevant and more generally paraconsistent logicians. However this argument can be shown to be unsuccessful. There is a crucial ambiguity in the notion of non-triviality. Disambiguated the most telling reason for paraconsistent logics is either question-begging or mistaken. This highlights an (...) important confusion about the role of logic in our development of our theories of the world. Does logic chart good reasoning or our commitments? We also consider another abductive argument for paraconsistent logics which also is shown to fail. (shrink)
This paper aims to empirically explore the state of practical applications of paraconsistent logics. To this end, we performed an exploratory literature review, analysing papers published between the years 2015 and 2018. Paraconsistent formalisms based on annotated logics are practically the sole type of approach we found to be applied in engineering applications. The engineering problems solved by paraconsistent approaches were mainly in the fields of signal and image processing and decision support. The results of our exploratory (...) review indicate that recent developments in the theory of paraconsistency have not yet been adopted for applications. (shrink)
Normally, we would accuse anyone who holds inconsistent beliefs of irrationality. However, Keenan apologists may claim that in some circumstances it does seem perfectly rational to hold inconsistent beliefs. And we are not alone in this assertion. A small band of philosophers, led most notably by Graham Priest, have also championed this cause, the cause of paraconsistency.
Normally, we would accuse anyone who holds inconsistent beliefs of irrationality. However, Keenan apologists may claim that in some circumstances it does seem perfectly rational to hold inconsistent beliefs. And we are not alone in this assertion. A small band of philosophers, led most notably by Graham Priest, have also championed this cause, the cause of paraconsistency.
The aim of this paper is to study the paraconsistent deductive systemP 1 within the context of Algebraic Logic. It is well known due to Lewin, Mikenberg and Schwarse thatP 1 is algebraizable in the sense of Blok and Pigozzi, the quasivariety generated by Sette's three-element algebraS being the unique quasivariety semantics forP 1. In the present paper we prove that the mentioned quasivariety is not a variety by showing that the variety generated byS is not equivalent to (...) any algebraizable deductive system. We also show thatP 1 has no algebraic semantics in the sense of Czelakowski. Among other results, we study the variety generated by the algebraS. This enables us to prove in a purely algebraic way that the only proper non-trivial axiomatic extension ofP 1 is the classical deductive systemPC. Throughout the paper we also study those abstract logics which are in a way similar toP 1, and are called hereabstract Sette logics. We obtain for them results similar to those obtained for distributive abstract logics by Font, Verdú and the author. (shrink)
This paper is an attempt to show that the subvaluation theory isnot a good theory of vagueness. It begins with a short review of supervaluation and subvaluation theories and procedes to evaluate the subvaluation theory. Subvaluationism shares all the main short-comings of supervaluationism.Moreover, the solution to the sorites paradox proposed by subvaluationists isnot satisfactory. There is another solution which subvaluationists could availthemselves of, but it destroys the whole motivation for using a paraconsistentlogic and is not different from the one offered (...) by supervaluationism. (shrink)