Results for 'protein function regulation'

1000+ found
Order:
  1.  5
    A natural heme deficiency exists in biology that allows nitric oxide to control heme protein functions by regulating cellular heme distribution.Dennis J. Stuehr, Pranjal Biswas, Yue Dai, Arnab Ghosh, Sidra Islam & Dhanya Thamaraparambil Jayaram - 2023 - Bioessays 45 (8):2300055.
    A natural heme deficiency that exists in cells outside of the circulation broadly compromises the heme contents and functions of heme proteins in cells and tissues. Recently, we found that the signaling molecule, nitric oxide (NO), can trigger or repress the deployment of intracellular heme in a concentration‐dependent hormetic manner. This uncovers a new role for NO and sets the stage for it to shape numerous biological processes by controlling heme deployment and consequent heme protein functions in biology.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  2.  19
    Rnd proteins: Multifunctional regulators of the cytoskeleton and cell cycle progression.Philippe Riou, Priam Villalonga & Anne J. Ridley - 2010 - Bioessays 32 (11):986-992.
    Rnd3/RhoE has two distinct functions, regulating the actin cytoskeleton and cell proliferation. This might explain why its expression is often altered in cancer and by multiple stimuli during development and disease. Rnd3 together with its relatives Rnd1 and Rnd2 are atypical members of the Rho GTPase family in that they do not hydrolyse GTP. Rnd3 and Rnd1 both antagonise RhoA/ROCK‐mediated actomyosin contractility, thereby regulating cell migration, smooth muscle contractility and neurite extension. In addition, Rnd3 has been shown to have a (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  3.  13
    Protein disulfide isomerase is regulated in multiple ways: Consequences for conformation, activities, and pathophysiological functions.Lei Wang, Jiaojiao Yu & Chih-Chen Wang - 2021 - Bioessays 43 (3):2000147.
    Protein disulfide isomerase (PDI) is one of the most abundant and critical protein folding catalysts in the endoplasmic reticulum of eukaryotic cells. PDI consists of four thioredoxin domains and interacts with a wide range of substrate and partner proteins due to its intrinsic conformational flexibility. PDI plays multifunctional roles in a variety of pathophysiological events, both as an oxidoreductase and a molecular chaperone. Recent studies have revealed that the conformation and activity of PDI can be regulated in multiple (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  4.  6
    Revisiting poly(A)‐binding proteins: Multifaceted regulators during gametogenesis and early embryogenesis.Long-Wen Zhao & Heng-Yu Fan - 2021 - Bioessays 43 (6):2000335.
    Post‐transcriptional regulation faces a distinctive challenge in gametes. Transcription is limited when the germ cells enter the division phase due to condensed chromatin, while gene expression during gamete maturation, fertilization, and early cleavage depends on existing mRNA post‐transcriptional coordination. The dynamics of the 3ʹ‐poly(A) tail play crucial roles in defining mRNA fate. The 3ʹ‐poly(A) tail is covered with poly(A)‐binding proteins (PABPs) that help to mediate mRNA metabolism and recent work has shed light on the number and function of (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  5.  10
    Regulation of functional diversity within the Nedd4 family by accessory and adaptor proteins.Linda Shearwin-Whyatt, Hazel E. Dalton, Natalie Foot & Sharad Kumar - 2006 - Bioessays 28 (6):617-628.
    Ubiquitination is essential in mediating diverse cellular functions including protein degradation and trafficking. Ubiquitin‐protein (E3) ligases determine the substrate specificity of the ubiquitination process. The Nedd4 family of E3 ligases is an evolutionarily conserved family of proteins required for the ubiquitination of a large number of cellular targets. As a result, this family regulates a wide variety of cellular processes including transcription, stability and trafficking of plasma membrane proteins, and the degradation of misfolded proteins. The modular architecture of (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  6.  22
    Regulator‐driven functional diversification of protein phosphatase‐1 in eukaryotic evolution.Hugo Ceulemans, Willy Stalmans & Mathieu Bollen - 2002 - Bioessays 24 (4):371-381.
  7.  5
    Structural basis of the conformational and functional regulation of human SERCA2b, the ubiquitous endoplasmic reticulum calcium pump.Yuxia Zhang & Kenji Inaba - 2022 - Bioessays 44 (7):2200052.
    Sarco/endoplasmic reticulum Ca2+ ATPase 2b (SERCA2b), a member of the SERCA family, is expressed ubiquitously and transports Ca2+ into the sarco/endoplasmic reticulum using the energy provided by ATP binding and hydrolysis. The crystal structure of SERCA2b in its Ca2+‐ and ATP‐bound (E1∙2Ca2+‐ATP) state and cryo‐electron microscopy (cryo‐EM) structures of the protein in its E1∙2Ca2+‐ATP and Ca2+‐unbound phosphorylated (E2P) states have provided essential insights into how the overall conformation and ATPase activity of SERCA2b is regulated by the transmembrane helix 11 (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  8.  6
    Regulation of meiosis: From DNA binding protein to protein kinase.Maureen McLeod - 1989 - Bioessays 11 (1):9-14.
    The transition from mitotic cell division to meiosis in yeast is governed by both the mating‐type genes and signals from the environment. Analysis of mutants that are unable to regulate entry into meiosis has identified many genes that function in this process and in some cases, the biochemical activity of their protein products has been described. At least two of the the mating‐type genes of Saccharomyces cerevisiae encode DNA binding proteins that regulate transcription of unlinked genes required for (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  9.  7
    GTP‐binding proteins of the Rho/Rac family: regulation, effectors and functions in vivo.Xosé R. Bustelo, Vincent Sauzeau & Inmaculada M. Berenjeno - 2007 - Bioessays 29 (4):356-370.
    Rho/Rac proteins constitute a subgroup of the Ras superfamily of GTP hydrolases. Although originally implicated in the control of cytoskeletal events, it is currently known that these GTPases coordinate diverse cellular functions, including cell polarity, vesicular trafficking, the cell cycle and transcriptomal dynamics. In this review, we will provide an overview on the recent advances in this field regarding the mechanism of regulation and signaling, and the roles in vivo of this important GTPase family. BioEssays 29:356–370, 2007. © 2007 (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  10.  29
    Protein partners of KCTD proteins provide insights about their functional roles in cell differentiation and vertebrate development.Mikhail Skoblov, Andrey Marakhonov, Ekaterina Marakasova, Anna Guskova, Vikas Chandhoke, Aybike Birerdinc & Ancha Baranova - 2013 - Bioessays 35 (7):586-596.
    The KCTD family includes tetramerization (T1) domain containing proteins with diverse biological effects. We identified a novel member of the KCTD family, BTBD10. A comprehensive analysis of proteinprotein interactions (PPIs) allowed us to put forth a number of testable hypotheses concerning the biological functions for individual KCTD proteins. In particular, we predict that KCTD20 participates in the AKT‐mTOR‐p70 S6k signaling cascade, KCTD5 plays a role in cytokinesis in a NEK6 and ch‐TOG‐dependent manner, KCTD10 regulates the RhoA/RhoB pathway. Developmental (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  11.  12
    Coronin proteins as multifunctional regulators of the cytoskeleton and membrane trafficking.Vasily Rybakin & Christoph S. Clemen - 2005 - Bioessays 27 (6):625-632.
    Coronins constitute an evolutionarily conserved family of WD‐repeat actin‐binding proteins, which can be clearly classified into two distinct groups based on their structural features. All coronins possess a conserved basic N‐terminal motif and three to ten WD repeats clustered in one or two core domains. Dictyostelium and mammalian coronins are important regulators of the actin cytoskeleton, while the fly Dpod1 and the yeast coronin proteins crosslink both actin and microtubules. Apart from that, several coronins have been shown to be involved (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  12.  11
    Mitochondrial uncoupling proteins regulate angiotensin‐converting enzyme expression: crosstalk between cellular and endocrine metabolic regulators suggested by RNA interference and genetic studies.Sukhbir S. Dhamrait, Cecilia Maubaret, Ulrik Pedersen-Bjergaard, David J. Brull, Peter Gohlke, John R. Payne, Michael World, Birger Thorsteinsson, Steve E. Humphries & Hugh E. Montgomery - 2016 - Bioessays 38 (S1):107-118.
    Uncoupling proteins (UCPs) regulate mitochondrial function, and thus cellular metabolism. Angiotensin‐converting enzyme (ACE) is the central component of endocrine and local tissue renin–angiotensin systems (RAS), which also regulate diverse aspects of whole‐body metabolism and mitochondrial function (partly through altering mitochondrial UCP expression). We show that ACE expression also appears to be regulated by mitochondrial UCPs. In genetic analysis of two unrelated populations (healthy young UK men and Scandinavian diabetic patients) serum ACE (sACE) activity was significantly higher amongst UCP3‐55C (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  13.  34
    Metabolites as global regulators: A new view of protein regulation.Xiyan Li & Michael Snyder - 2011 - Bioessays 33 (7):485-489.
  14.  18
    Hox functional diversity: Novel insights from flexible motif folding and plastic protein interaction.Miguel Ortiz-Lombardia, Nicolas Foos, Corinne Maurel-Zaffran, Andrew J. Saurin & Yacine Graba - 2017 - Bioessays 39 (4):1600246.
    How the formidable diversity of forms emerges from developmental and evolutionary processes is one of the most fascinating questions in biology. The homeodomain‐containing Hox proteins were recognized early on as major actors in diversifying animal body plans. The molecular mechanisms underlying how this transcription factor family controls a large array of context‐ and cell‐specific biological functions is, however, still poorly understood. Clues to functional diversity have emerged from studies exploring how Hox protein activity is controlled through interactions with PBC (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  15.  17
    Functional evolution of Hox proteins in arthropods.Michel Vervoort - 2002 - Bioessays 24 (9):775-779.
    It is presumed that the evolution of morphological diversity in animals and plants is driven by changes in the developmental processes that govern morphology, hence basically by changes in the function and/or expression of a defined set of genes that control these processes. A large body of evidence has suggested that changes in developmental gene regulation are the predominant mechanisms that sustain morphological evolution, being much more important than the evolution of the primary sequences and functions of proteins. (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  16.  4
    Noncanonical functions of the serine‐arginine‐rich splicing factor (SR) family of proteins in development and disease.Rebecca E. Wagner & Michaela Frye - 2021 - Bioessays 43 (4):2000242.
    Members of the serine/arginine (SR)‐rich protein family of splicing factors play versatile roles in RNA processing steps and are often essential for normal development. Dynamic changes in RNA processing and turnover allow fast cellular adaptions to a changing microenvironment and thereby closely cooperate with transcription factor networks that establish cell identity within tissues. SR proteins play fundamental roles in the processing of pre‐mRNAs by regulating constitutive and alternative splicing. More recently, SR proteins have also been implicated in other aspects (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  17.  6
    The seesaw between normal function and protein aggregation: How functional interactions may increase protein solubility.Piero Andrea Temussi, Gian Gaetano Tartaglia & Annalisa Pastore - 2021 - Bioessays 43 (6):2100031.
    Protein aggregation has been studied for at least 3 decades, and many of the principles that regulate this event are relatively well understood. Here, however, we present a different perspective to explain why proteins aggregate: we argue that aggregation may occur as a side‐effect of the lack of one or more natural partners that, under physiologic conditions, would act as chaperones. This would explain why the same surfaces that have evolved for functional purposes are also those that favour aggregation. (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  18.  10
    Structure‐function relationships in Src family and related protein tyrosine kinases.Giulio Superti-Furga & Sara A. Courtneidge - 1995 - Bioessays 17 (4):321-330.
    There is increasing evidence to suggest that cytoplasmic tyrosine kinases of the Src family have a pivotal role in the regulation of a number of cellular processes. Members of this family have been implicated in cellular responses to a variety of extracellular signals, such as those arising from growth factors and cell‐cell interactions, as well as in differentiative and developmental processes in both vertebrates and invertebrates. A better understanding of the regulation and of the structure‐function relationships of (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  19.  27
    The functional consequences of intron retention: Alternative splicing coupled to NMD as a regulator of gene expression.Ying Ge & Bo T. Porse - 2014 - Bioessays 36 (3):236-243.
    The explosion in sequencing technologies has provided us with an instrument to describe mammalian transcriptomes at unprecedented depths. This has revealed that alternative splicing is used extensively not only to generate protein diversity, but also as a means to regulate gene expression post‐transcriptionally. Intron retention (IR) is overwhelmingly perceived as an aberrant splicing event with little or no functional consequence. However, recent work has now shown that IR is used to regulate a specific differentiation event within the haematopoietic system (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  20.  2
    The logic of protein post‐translational modifications (PTMs): Chemistry, mechanisms and evolution of protein regulation through covalent attachments.Marcin J. Suskiewicz - 2024 - Bioessays 46 (3):2300178.
    Protein post‐translational modifications (PTMs) play a crucial role in all cellular functions by regulating protein activity, interactions and half‐life. Despite the enormous diversity of modifications, various PTM systems show parallels in their chemical and catalytic underpinnings. Here, focussing on modifications that involve the addition of new elements to amino‐acid sidechains, I describe historical milestones and fundamental concepts that support the current understanding of PTMs. The historical survey covers selected key research programmes, including the study of protein phosphorylation (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  21.  2
    Activation of the motor protein upon attachment: Anchors weigh in on cytoplasmic dynein regulation.Vaishnavi Ananthanarayanan - 2016 - Bioessays 38 (6):514-525.
    Cytoplasmic dynein is the major minus‐end‐directed motor protein in eukaryotes, and has functions ranging from organelle and vesicle transport to spindle positioning and orientation. The mode of regulation of dynein in the cell remains elusive, but a tantalising possibility is that dynein is maintained in an inhibited, non‐motile state until bound to cargo. In vivo, stable attachment of dynein to the cell membrane via anchor proteins enables dynein to produce force by pulling on microtubules and serves to organise (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  22.  1
    Regulation and function of poised mRNAs in lymphocytes.Martin Turner - 2023 - Bioessays 45 (5):2200236.
    Pre‐existing but untranslated or ‘poised’ mRNA exists as a means to rapidly induce the production of specific proteins in response to stimuli and as a safeguard to limit the actions of these proteins. The translation of poised mRNA enables immune cells to express quickly genes that enhance immune responses. The molecular mechanisms that repress the translation of poised mRNA and, upon stimulation, enable translation have yet to be elucidated. They likely reflect intrinsic properties of the mRNAs and their interactions with (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  23.  4
    Gelsolin: Calcium‐ and polyphosphoinositide‐regulated actin‐ modulating protein.H. L. Yin - 1987 - Bioessays 7 (4):176-179.
    Receptor‐mediated stimulation induces massive actin polymerization and cyto‐skeletal reorganization. The activity of a potent actin‐modulating protein, gelsolin, is regulated both by Ca2+ and polyphos‐phoinositides, and it may have a pivotal role in restructuring the actin cytoskeleton in response to agonist stimulation. Structure‐function analysis of gelsolin has (1) indicated that its NH2‐terminal half is primarily responsible for modulating actin filament length and polymerization; and (2) elucidated mechanisms by which Ca2+ and phospholipids may regulate such functions. Gelsolin is functionally and (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  24.  6
    The RNA‐binding protein HuD: a regulator of neuronal differentiation, maintenance and plasticity.Julie Deschênes-Furry, Nora Perrone-Bizzozero & Bernard J. Jasmin - 2006 - Bioessays 28 (8):822-833.
    AbstractmRNA stability is increasingly recognized as being essential for controlling the expression of a wide variety of transcripts during neuronal development and synaptic plasticity. In this context, the role of AU‐rich elements (ARE) contained within the 3′ untranslated region (UTR) of transcripts has now emerged as key because of their high incidence in a large number of cellular mRNAs. This important regulatory element is known to significantly modulate the longevity of mRNAs by interacting with available stabilizing or destabilizing RNA‐binding proteins (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  25.  16
    Transcription factors and the regulation of haemopoiesis: Lessons from GATA and SCL proteins.E. -O. Bockamp, F. McLaughlin, A. Murrell & A. R. Green - 1994 - Bioessays 16 (7):481-488.
    One of the central issue of developmental biology concerns the molecular mechanisms whereby a multipotent cell gives rise to distinct differentiated progeny. Differences between specialised cell types reflect variations in their patterns of gene expression. The regulation of transcription initiation is an important control point for gene expression and it is, therefore, not surprising that transcription factors play a pivotal role in mammalian development and differentiation.Haemopoiesis offers a uniquely tractable system for the study of lineage commitment and differentiation. The (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  26.  12
    A twisted hand: bHLH protein phosphorylation and dimerization regulate limb development.Juanliang Cai & Ethylin Wang Jabs - 2005 - Bioessays 27 (11):1102-1106.
    Saethre‐Chotzen syndrome (SCS), a human autosomal dominant condition with limb defects and craniosynostosis, is caused by haploinsufficiency of TWIST1, a basic helix–loop–helix (bHLH) transcription factor. Until recently, the molecular pathogenesis of the limb defects in SCS has not been well understood. Now, Firulli et al.1 show in mouse and chick that ectopic expression of a related bHLH protein, Hand2, results in phenocopies of the limb defects caused by Twist1 loss‐of‐function mutations. These two proteins interact in a dosage‐dependent antagonistic (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  27.  10
    Conformational control through translocational regulation: a new view of secretory and membrane protein folding.Vishwanath R. Lingappa, D. Thomas Rutkowski, Ramanujan S. Hegde & Olaf S. Andersen - 2002 - Bioessays 24 (8):741-748.
    We suggest a new view of secretory and membrane protein folding that emphasizes the role of pathways of biogenesis in generating functional and conformational heterogeneity. In this view, heterogeneity results from action of accessory factors either directly binding specific sequences of the nascent chain, or indirectly, changing the environment in which a particular domain is synthesized. Entrained by signaling pathways, these variables create a combinatorial set of necessary‐but‐not‐sufficient conditions that enhance synthesis and folding of particular alternate, functional, conformational forms. (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  28. Model for DNA and Protein Interactions and the Function of the Operator.Alfred Gierer - 1966 - Nature 212:1480-1481.
    The short paper introduces the concept of possible branches of double-stranded DNA (later sometimes called palindromes): Certain sequences of nucleotides may be followed, after a short unpaired stretch, by a complementary sequence in reversed order, such that each DNA strand can fold back on itself, and the DNA assumes a cruciform or tree-like structure. This is postulated to interact with regulatory proteins. -/- .
    Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  29.  7
    Structural and functional diversity of adaptor proteins involved in tyrosine kinase signalling.Ágnes Csiszár - 2006 - Bioessays 28 (5):465-479.
    Adaptors are proteins of multi‐modular structure without enzymatic activity. Their capacity to organise large, temporary protein complexes by linking proteins together in a regulated and selective fashion makes them of outstanding importance in the establishment and maintenance of specificity and efficiency in all known signal transduction pathways. This review focuses on the structural and functional characterisation of adaptors involved in tyrosine kinase (TK) signalling. TK‐linked adaptors can be distinguished by their domain composition and binding specificities. However, such structural classifications (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  30.  33
    The pleiotropic functions of the Y‐box‐binding protein, YB‐1.Kimitoshi Kohno, Hiroto Izumi, Takeshi Uchiumi, Megumi Ashizuka & Michihiko Kuwano - 2003 - Bioessays 25 (7):691-698.
    The Y‐box‐binding protein (YB‐1) represents the most evolutionary conserved nucleic‐acid‐binding protein currently known. YB‐1 is a member of the cold‐shock domain (CSD) protein superfamily. It performs a wide variety of cellular functions, including transcriptional regulation, translational regulation, DNA repair, drug resistance and stress responses to extracellular signals. As a result, YB‐1 expression is closely associated with cell proliferation. In this review, we will begin by briefly describing the characteristics of YB‐1 and will then summarize the (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  31.  15
    Cell Fate and Developmental Regulation Dynamics by Polycomb Proteins and 3D Genome Architecture.Vincent Loubiere, Anne-Marie Martinez & Giacomo Cavalli - 2019 - Bioessays 41 (3):1800222.
    Targeted transitions in chromatin states at thousands of genes are essential drivers of eukaryotic development. Therefore, understanding the in vivo dynamics of epigenetic regulators is crucial for deciphering the mechanisms underpinning cell fate decisions. This review illustrates how, in addition to its cell memory function, the Polycomb group of transcriptional regulators orchestrates temporal, cell and tissue‐specific expression of master genes during development. These highly sophisticated developmental transitions are dependent on the context‐ and tissue‐specific assembly of the different types of (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  32.  1
    AUXIN RESPONSE FACTOR protein accumulation and function.Hongwei Jing & Lucia C. Strader - 2023 - Bioessays 45 (11):2300018.
    Auxin is a key regulator of plant developmental processes. Its effects on transcription are mediated by the AUXIN RESPONSE FACTOR (ARF) family of transcription factors. ARFs tightly control specific auxin responses necessary for proper plant growth and development. Recent research has revealed that regulated ARF protein accumulation and ARF nucleo‐cytoplasmic partitioning can determine auxin transcriptional outputs. In this review, we explore these recent findings and consider the potential for regulated ARF accumulation in driving auxin responses in plants.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  33.  6
    Conformational flexibility of β‐arrestins – How these scaffolding proteins guide and transform the functionality of GPCRs.Raphael S. Haider, Mona Reichel, Edda S. F. Matthees & Carsten Hoffmann - 2023 - Bioessays 45 (8).
    G protein‐coupled receptors (GPCRs) constitute the largest family of transmembrane proteins and play a crucial role in regulating diverse cellular functions. They transmit their signaling via binding to intracellular signal transducers and effectors, such as G proteins, GPCR kinases, and β‐arrestins. To influence specific GPCR signaling behaviors, β‐arrestins recruit effectors to form larger signaling complexes. Intriguingly, they facilitate divergent functions for the binding to different receptors. Recent studies relying on advanced structural approaches, novel biosensors and interactome analyses bring us (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  34.  25
    Phosphatidylinositol 3‐phosphate, a lipid that regulates membrane dynamics, protein sorting and cell signalling.Kay O. Schink, Camilla Raiborg & Harald Stenmark - 2013 - Bioessays 35 (10):900-912.
    Phosphatidylinositol 3‐phosphate (PtdIns3P) is generated on the cytosolic leaflet of cellular membranes, primarily by phosphorylation of phosphatidylinositol by class II and class III phosphatidylinositol 3‐kinases. The bulk of this lipid is found on the limiting and intraluminal membranes of endosomes, but it can also be detected in domains of phagosomes, autophagosome precursors, cytokinetic bridges, the plasma membrane and the nucleus. PtdIns3P controls cellular functions through recruitment of specific protein effectors, many of which contain FYVE or PX domains. Cellular processes (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  35.  21
    Constitutive cycling: A general mechanism to regulate cell surface proteins.Stephen J. Royle & Ruth D. Murrell-Lagnado - 2003 - Bioessays 25 (1):39-46.
    Cells can change their function by rapidly modulating the levels of certain proteins at the plasma membrane. This rapid modulation is achieved by using a specialised trafficking process called constitutive cycling. The constitutive cycling of a variety of transmembrane proteins such as receptors, channels and transporters has recently been directly demonstrated in a wide range of cell types. This regulation is thought to underlie important biological phenomena such as learning and memory, gastric acid secretion and water and blood (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  36.  5
    The CAR group of Ig cell adhesion proteins–Regulators of gap junctions?Fritz G. Rathjen - 2020 - Bioessays 42 (12):2000031.
    Members of the CAR group of Ig‐like type I transmembrane proteins mediate homotypic cell adhesion, share a common overall extracellular domain structure and are closely related at the amino acid sequence level. CAR proteins are often found at tight junctions and interact with intracellular scaffolding proteins, suggesting that they might modulate tight junction assembly or function. However, impairment of tight junction integrity has not been reported in mouse knockout models or zebrafish mutants of CAR members. In contrast, in the (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  37.  11
    Are non‐protein coding RNAs junk or treasure?Nils G. Walter - 2024 - Bioessays 46 (4):2300201.
    The human genome project's lasting legacies are the emerging insights into human physiology and disease, and the ascendance of biology as the dominant science of the 21st century. Sequencing revealed that >90% of the human genome is not coding for proteins, as originally thought, but rather is overwhelmingly transcribed into non‐protein coding, or non‐coding, RNAs (ncRNAs). This discovery initially led to the hypothesis that most genomic DNA is “junk”, a term still championed by some geneticists and evolutionary biologists. In (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  38.  4
    Mitochondrial protein import machinery conveys stress signals to the cytosol and beyond.Eirini Lionaki, Ilias Gkikas & Nektarios Tavernarakis - 2023 - Bioessays 45 (3):2200160.
    Mitochondria hold diverse and pivotal roles in fundamental processes that govern cell survival, differentiation, and death, in addition to organismal growth, maintenance, and aging. The mitochondrial protein import system is a major contributor to mitochondrial biogenesis and lies at the crossroads between mitochondrial and cellular homeostasis. Recent findings highlight the mitochondrial protein import system as a signaling hub, receiving inputs from other cellular compartments and adjusting its function accordingly. Impairment of protein import, in a physiological, or (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  39.  8
    Disabled‐2: A modular scaffold protein with multifaceted functions in signaling.Carla V. Finkielstein & Daniel G. S. Capelluto - 2016 - Bioessays 38 (S1):45-55.
    Disabled‐2 (Dab2) is a multimodular scaffold protein with signaling roles in the domains of cell growth, trafficking, differentiation, and homeostasis. Emerging evidences place Dab2 as a novel modulator of cell–cell interaction; however, its mode of action has remained largely elusive. In this review, we highlight the relevance of Dab2 function in cell signaling and development and provide the most recent and comprehensive analysis of Dab2's action as a mediator of homotypical and heterotypical interactions. Accordingly, Dab‐2 controls the extent (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  40.  3
    Ribosomal protein uS3 in cell biology and human disease: Latest insights and prospects.Dmitri Graifer & Galina Karpova - 2020 - Bioessays 42 (12):2000124.
    The conserved ribosomal protein uS3 in eukaryotes has long been known as one of the essential components of the small (40S) ribosomal subunit, which is involved in the structure of the 40S mRNA entry pore, ensuring the functioning of the 40S subunit during translation initiation. Besides, uS3, being outside the ribosome, is engaged in various cellular processes related to DNA repair, NF‐kB signaling pathway and regulation of apoptosis. This review is devoted to recent data opening new horizons in (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  41.  12
    Can't get no SMADisfaction: Smad proteins as positive and negative regulators of TGF‐β family signals.Jan L. Christian & Takuya Nakayama - 1999 - Bioessays 21 (5):382-390.
    The identification of Smad proteins as molecular components of the transforming growth factor-β (TGF-β) signaling cascade has enhanced our understanding of how ligand-mediated activation of TGF-β receptors leads to modulation of target gene transcription. Recent studies have identified a distinct, structurally related class of Smads which inhibits, rather than transduces, TGF-β family signals. The molecular mechanism of action and the exact signaling pathways that are targeted by antagonistic Smads are not completely understood. These proteins appear to participate in autoregulatory negative (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  42.  4
    NIPSNAP protein family emerges as a sensor of mitochondrial health.Esmat Fathi, Jay M. Yarbro & Ramin Homayouni - 2021 - Bioessays 43 (6):2100014.
    Since their discovery over two decades ago, the molecular and cellular functions of the NIPSNAP family of proteins (NIPSNAPs) have remained elusive until recently. NIPSNAPs interact with a variety of mitochondrial and cytoplasmic proteins. They have been implicated in multiple cellular processes and associated with different physiologic and pathologic conditions, including pain transmission, Parkinson's disease, and cancer. Recent evidence demonstrated a direct role for NIPSNAP1 and NIPSNAP2 proteins in regulation of mitophagy, a process that is critical for cellular health (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  43.  5
    Co‐translational folding of nascent polypeptides: Multi‐layered mechanisms for the efficient biogenesis of functional proteins.Kevin Maciuba, Nandakumar Rajasekaran, Xiuqi Chen & Christian M. Kaiser - 2021 - Bioessays 43 (7):2100042.
    The coupling of protein synthesis and folding is a crucial yet poorly understood aspect of cellular protein folding. Over the past few years, it has become possible to experimentally follow and define protein folding on the ribosome, revealing principles that shape co‐translational folding and distinguish it from refolding in solution. Here, we highlight some of these recent findings from biochemical and biophysical studies and their potential significance for cellular protein biogenesis. In particular, we focus on nascent (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  44.  18
    From the structure to the function of villin, an actin‐binding protein of the brush border.Evelync Friederich, Eric Pringault, Monique Arpin & Daniel Louvard - 1990 - Bioessays 12 (9):403-408.
    Villin, a calcium‐regulated actin‐binding protein, modulates the structure and assembly of actin filaments in vitro. It is organized into three domains, the first two of which are homologous. Villin is mainly produced in epithelial cells that develop a brush border and which are responsible for nutrient uptake. Expression of the villin structural gene is precisely regulated during mouse embryogenesis and is restricted in adults, to certain epithelia of the gastrointestinal and urogenital tracts. The function of villin has been (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  45.  11
    Paradox of Bcl‐2 (and p53): why may apoptosis‐regulating proteins be irrelevant to cell death?Mikhail V. Blagosklonny - 2001 - Bioessays 23 (10):947-953.
    Although the Bcl‐2 family members and p53 are involved in the regulation of apoptosis, the status of apoptotic machinery (eg caspases) plays a major role in determining the mode and timing of cell death. If the apoptotic machinery is lost, inhibited, or intrinsically inactivated, the “death stars”, Bcl‐2 and p53, may become irrelevant to cell death. In this light, high levels of Bcl‐2 may indicate that downstream apoptotic pathways are still functional. This explains why Bcl‐2 overexpression can be a (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  46.  15
    The role of calcium‐binding proteins in the control of transcription: structure to function.Mitsuhiko Ikura, Masanori Osawa & James B. Ames - 2002 - Bioessays 24 (7):625-636.
    Transcriptional regulation is coupled with numerous intracellular signaling processes often mediated by second messengers. Now, growing evidence points to the importance of Ca2+, one of the most versatile second messengers, in activating or inhibiting gene transcription through actions frequently mediated by members of the EF‐hand superfamily of Ca2+‐binding proteins. Calmodulin and calcineurin, representative members of this EF‐hand superfamily, indirectly regulate transcription through phosphorylation/dephosphorylation of transcription factors in response to a Ca2+ increase in the cell. Recently, a novel EF‐hand Ca2+‐binding (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  47.  23
    Bloom syndrome helicase in meiosis: Pro-crossover functions of an anti-crossover protein.Talia Hatkevich & Jeff Sekelsky - 2017 - Bioessays 39 (9):1700073.
    The functions of the Bloom syndrome helicase and its orthologs are well characterized in mitotic DNA damage repair, but their roles within the context of meiotic recombination are less clear. In meiotic recombination, multiple repair pathways are used to repair meiotic DSBs, and current studies suggest that BLM may regulate the use of these pathways. Based on literature from Saccharomyces cerevisiae, Arabidopsis thaliana, Mus musculus, Drosophila melanogaster, and Caenorhabditis elegans, we present a unified model for a critical meiotic role of (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  48.  49
    G protein‐coupled receptors engage the mammalian Hippo pathway through F‐actin.Laura Regué, Fan Mou & Joseph Avruch - 2013 - Bioessays 35 (5):430-435.
    The Hippo pathway, a cascade of protein kinases that inhibits the oncogenic transcriptional coactivators YAP and TAZ, was discovered in Drosophila as a major determinant of organ size in development. Known modes of regulation involve surface proteins that mediate cell‐cell contact or determine epithelial cell polarity which, in a tissue‐specific manner, use intracellular complexes containing FERM domain and actin‐binding proteins to modulate the kinase activities or directly sequester YAP. Unexpectedly, recent work demonstrates that GPCRs, especially those signaling through (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  49.  12
    Guanine nucleotide exchange factors: Activators of the Ras superfamily of proteins.Lawrence A. Quilliam, Roya Khosravi-Far, Shayne Y. Huff & Channing J. Der - 1995 - Bioessays 17 (5):395-404.
    Ras proteins function as critical relay switches that regulate diverse signaling pathways between cell surface receptors and the nucleus. Over the past 2‐3 years researchers have identified many components of these pathways that mediate Ras activation and effector function. Among these proteins are several guanine nucleotide exchange factors (GEFs), which are responsible for directly interacting with and activating Ras in response to extracellular stimuli. Analogous GEFs regulate Ras‐related proteins that serve other diverse cellular functions. In particular, a growing (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  50.  17
    Analyzing proteinprotein interactions in cell membranes.Anja Nohe & Nils O. Petersen - 2004 - Bioessays 26 (2):196-203.
    Interactions among membrane proteins regulate numerous cellular processes, including cell growth, cell differentiation and apoptosis. We need to understand which proteins interact, where they interact and to which extent they interact. This article describes a set of novel approaches to measure, on the surface of living cells, the number of clusters of proteins, the number of proteins per cluster, the number of clusters or membrane domains that contain pairs of interacting proteins and the fraction of one protein species that (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
1 — 50 / 1000