Results for 'quantum'

1000+ found
Order:
  1.  38
    The creation, discovery, view: Towards a possible explanation of quantum reality.Towards A. Possible Explanation Of Quantum - 1999 - In Maria Luisa Dalla Chiara (ed.), Language, Quantum, Music. pp. 105.
    Direct download  
     
    Export citation  
     
    Bookmark  
  2. Quantum Mechanics and Experience.David Z. Albert - 1992 - Harvard Up.
    Presents a guide to the basics of quantum mechanics and measurement.
  3.  45
    Quantum Gravity.Carlo Rovelli - 2007 - Cambridge University Press.
    Quantum gravity poses the problem of merging quantum mechanics and general relativity, the two great conceptual revolutions in the physics of the twentieth century. The loop and spinfoam approach, presented in this book, is one of the leading research programs in the field. The first part of the book discusses the reformulation of the basis of classical and quantum Hamiltonian physics required by general relativity. The second part covers the basic technical research directions. Appendices include a detailed (...)
  4.  67
    Quantum Ontology: A Guide to the Metaphysics of Quantum Mechanics.Peter J. Lewis - 2016 - New York, NY: Oxford University Press USA.
    Metaphysicians should pay attention to quantum mechanics. Why? Not because it provides definitive answers to many metaphysical questions-the theory itself is remarkably silent on the nature of the physical world, and the various interpretations of the theory on offer present conflicting ontological pictures. Rather, quantum mechanics is essential to the metaphysician because it reshapes standard metaphysical debates and opens up unforeseen new metaphysical possibilities. Even if quantum mechanics provides few clear answers, there are good reasons to think (...)
  5.  64
    Quantum Field Theory in a Nutshell.A. Zee - 2010 - Princeton University Press.
    Since it was first published, Quantum Field Theory in a Nutshell has quickly established itself as the most accessible and comprehensive introduction to this profound and deeply fascinating area of theoretical physics. Now in this fully revised and expanded edition, A. Zee covers the latest advances while providing a solid conceptual foundation for students to build on, making this the most up-to-date and modern textbook on quantum field theory available. -/- This expanded edition features several additional chapters, as (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   42 citations  
  6. Interpreting Quantum Theories: The Art of the Possible.Laura Ruetsche - 2011 - Oxford, GB: Oxford University Press UK.
    Philosophers of quantum mechanics have generally addressed exceedingly simple systems. Laura Ruetsche offers a much-needed study of the interpretation of more complicated systems, and an underexplored family of physical theories, such as quantum field theory and quantum statistical mechanics, showing why they repay philosophical attention. She guides those familiar with the philosophy of ordinary QM into the philosophy of 'QM infinity', by presenting accessible introductions to relevant technical notions and the foundational questions they frame--and then develops and (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   114 citations  
  7. Quantum Entanglement, Bohmian Mechanics, and Humean Supervenience.Elizabeth Miller - 2014 - Australasian Journal of Philosophy 92 (3):567-583.
    David Lewis is a natural target for those who believe that findings in quantum physics threaten the tenability of traditional metaphysical reductionism. Such philosophers point to allegedly holistic entities they take both to be the subjects of some claims of quantum mechanics and to be incompatible with Lewisian metaphysics. According to one popular argument, the non-separability argument from quantum entanglement, any realist interpretation of quantum theory is straightforwardly inconsistent with the reductive conviction that the complete physical (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   90 citations  
  8. Quantum Mechanics in a Time-Asymmetric Universe: On the Nature of the Initial Quantum State.Eddy Keming Chen - 2021 - British Journal for the Philosophy of Science 72 (4):1155–1183.
    In a quantum universe with a strong arrow of time, we postulate a low-entropy boundary condition to account for the temporal asymmetry. In this paper, I show that the Past Hypothesis also contains enough information to simplify the quantum ontology and define a unique initial condition in such a world. First, I introduce Density Matrix Realism, the thesis that the quantum universe is described by a fundamental density matrix that represents something objective. This stands in sharp contrast (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   24 citations  
  9. Quantum particles as conceptual entities: A possible explanatory framework for quantum theory. [REVIEW]Diederik Aerts - 2009 - Foundations of Science 14 (4):361-411.
    We put forward a possible new interpretation and explanatory framework for quantum theory. The basic hypothesis underlying this new framework is that quantum particles are conceptual entities. More concretely, we propose that quantum particles interact with ordinary matter, nuclei, atoms, molecules, macroscopic material entities, measuring apparatuses, in a similar way to how human concepts interact with memory structures, human minds or artificial memories. We analyze the most characteristic aspects of quantum theory, i.e. entanglement and non-locality, interference (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   29 citations  
  10.  13
    Quantum Computation and Quantum Information.Michael A. Nielsen & Isaac L. Chuang - 2000 - Cambridge University Press.
    First-ever comprehensive introduction to the major new subject of quantum computing and quantum information.
    Direct download  
     
    Export citation  
     
    Bookmark   169 citations  
  11.  91
    Quantum Information Theory and the Foundations of Quantum Mechanics.Christopher Gordon Timpson - 2013 - Oxford, GB: Oxford University Press.
    Christopher G. Timpson provides the first full-length philosophical treatment of quantum information theory and the questions it raises for our understanding of the quantum world. He argues for an ontologically deflationary account of the nature of quantum information, which is grounded in a revisionary analysis of the concepts of information.
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   53 citations  
  12.  91
    Quantum Theory and the Schism in Physics: From the Postscript to The Logic of Scientific Discovery.Karl Raimund Popper - 1982 - Routledge.
    The basic theme of Popper's philosophy--that something can come from nothing--is related to the present situation in physical theory. Popper carries his investigation right to the center of current debate in quantum physics. He proposes an interpretation of physics--and indeed an entire cosmology--which is realist, conjectural, deductivist and objectivist, anti-positivist, and anti-instrumentalist. He stresses understanding, reminding us that our ignorance grows faster than our conjectural knowledge.
    Direct download  
     
    Export citation  
     
    Bookmark   117 citations  
  13. Quantum Information Theory & the Foundations of Quantum Mechanics.Christopher Gordon Timpson - 2004 - Oxford, GB: Oxford University Press.
    Quantum Information Theory and the Foundations of Quantum Mechanics is a conceptual analysis of one of the most prominent and exciting new areas of physics, providing the first full-length philosophical treatment of quantum information theory and the questions it raises for our understanding of the quantum world. -/- Beginning from a careful, revisionary, analysis of the concepts of information in the everyday and classical information-theory settings, Christopher G. Timpson argues for an ontologically deflationary account of the (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   42 citations  
  14.  83
    Quantum Mechanics: An Empiricist View.Bas C. Van Fraassen - 1991 - Oxford, England: Oxford University Press.
    After introducing the empiricist point of view in philosophy of science, and the concepts and methods of the semantic approach to scientific theories, van Fraassen discusses quantum theory in three stages. He first examines the question of whether and how empirical phenomena require a non-classical theory, and what sort of theory they require. He then discusses the mathematical foundations of quantum theory with special reference to developments in the modelling of interaction, composite systems, and measurement. Finally, the author (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   51 citations  
  15. Quantum holism: nonseparability as common ground.Jenann Ismael & Jonathan Schaffer - 2020 - Synthese 197 (10):4131-4160.
    Quantum mechanics seems to portray nature as nonseparable, in the sense that it allows spatiotemporally separated entities to have states that cannot be fully specified without reference to each other. This is often said to implicate some form of “holism.” We aim to clarify what this means, and why this seems plausible. Our core idea is that the best explanation for nonseparability is a “common ground” explanation, which casts nonseparable entities in a holistic light, as scattered reflections of a (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   41 citations  
  16.  3
    The Quantum Revolution in Philosophy.Richard Healey - 2017 - Oxford, GB: Oxford University Press.
    Quantum theory launched a revolution in physics. But we have yet to understand the revolution's significance for philosophy. Richard Healey opens a path to such understanding. The first part of this book offers a self-contained but opinionated introduction to quantum theory. The second part assesses the theory's philosophical significance.
    No categories
  17.  9
    The Quantum Mechanics of Minds and Worlds.Jeffrey A. Barrett - 1999 - Oxford, GB: Oxford University Press UK.
    Jeffrey Barrett presents the most comprehensive study yet of a problem that has puzzled physicists and philosophers since the 1930s. Quantum mechanics is in one sense the most successful physical theory ever, accurately predicting the behaviour of the basic constituents of matter. But it has an apparent ambiguity or inconsistency at its heart; Barrett gives a careful, clear, and challenging evaluation of attempts to deal with this problem.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   11 citations  
  18.  4
    The Quantum Mechanics of Minds and Worlds.Jeffrey A. Barrett - 1999 - Oxford, GB: Oxford University Press UK.
    Jeffrey Barrett presents the most comprehensive study yet of a problem that has puzzled physicists and philosophers since the 1930s. The standard theory of quantum mechanics is in one sense the most successful physical theory ever, predicting the behaviour of the basic constituents of all physical things; no other theory has ever made such accurate empirical predictions. However, if one tries to understand the theory as providing a complete and accurate framework for the description of the behaviour of all (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   11 citations  
  19.  55
    Quantum Theory at the Crossroads: Reconsidering the 1927 Solvay Conference.Guido Bacciagaluppi - 2007 - Cambridge University Press.
    The 1927 Solvay conference was perhaps the most important meeting in the history of quantum theory. Contrary to popular belief, the interpretation of quantum theory was not settled at this conference, and no consensus was reached. Instead, a range of sharply conflicting views were presented and extensively discussed, including de Broglie's pilot-wave theory, Born and Heisenberg's quantum mechanics, and Schrödinger's wave mechanics. Today, there is no longer an established or dominant interpretation of quantum theory, so it (...)
  20. Quantum metaphysical indeterminacy and worldly incompleteness.Alessandro Torza - 2020 - Synthese 197:4251-4264.
    An influential theory has it that metaphysical indeterminacy occurs just when reality can be made completely precise in multiple ways. That characterization is formulated by employing the modal apparatus of ersatz possible worlds. As quantum physics taught us, reality cannot be made completely precise. I meet the challenge by providing an alternative theory which preserves the use of ersatz worlds but rejects the precisificational view of metaphysical indeterminacy. The upshot of the proposed theory is that it is metaphysically indeterminate (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   19 citations  
  21.  95
    A Quantum Question Order Model Supported by Empirical Tests of an A Priori and Precise Prediction.Zheng Wang & Jerome R. Busemeyer - 2013 - Topics in Cognitive Science 5 (4):689-710.
    Question order effects are commonly observed in self-report measures of judgment and attitude. This article develops a quantum question order model (the QQ model) to account for four types of question order effects observed in literature. First, the postulates of the QQ model are presented. Second, an a priori, parameter-free, and precise prediction, called the QQ equality, is derived from these mathematical principles, and six empirical data sets are used to test the prediction. Third, a new index is derived (...)
    Direct download  
     
    Export citation  
     
    Bookmark   29 citations  
  22.  63
    Quantum Mechanics Between Ontology and Epistemology.Florian J. Boge - 2018 - Cham: Springer (European Studies in Philosophy of Science).
    This book explores the prospects of rivaling ontological and epistemic interpretations of quantum mechanics (QM). It concludes with a suggestion for how to interpret QM from an epistemological point of view and with a Kantian touch. It thus refines, extends, and combines existing approaches in a similar direction. -/- The author first looks at current, hotly debated ontological interpretations. These include hidden variables-approaches, Bohmian mechanics, collapse interpretations, and the many worlds interpretation. He demonstrates why none of these ontological interpretations (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   9 citations  
  23. Quantum mereotopology.Barry Smith & Berit O. Brogaard - 2002 - Annals of Mathematics and Artificial Intelligence 36 (1):153-175.
    Mereotopology faces problems when its methods are extended to deal with time and change. We offer a new solution to these problems, based on a theory of partitions of reality which allows us to simulate (and also to generalize) aspects of set theory within a mereotopological framework. This theory is extended to a theory of coarse- and fine-grained histories (or finite sequences of partitions evolving over time), drawing on machinery developed within the framework of the so-called ‘consistent histories’ interpretation of (...)
    Direct download  
     
    Export citation  
     
    Bookmark   23 citations  
  24.  42
    Quantum Mechanics and the Principle of Maximal Variety.Lee Smolin - 2016 - Foundations of Physics 46 (6):736-758.
    Quantum mechanics is derived from the principle that the universe contain as much variety as possible, in the sense of maximizing the distinctiveness of each subsystem. The quantum state of a microscopic system is defined to correspond to an ensemble of subsystems of the universe with identical constituents and similar preparations and environments. A new kind of interaction is posited amongst such similar subsystems which acts to increase their distinctiveness, by extremizing the variety. In the limit of large (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  25.  98
    The Quantum Self.D. Zohar & I. N. Marshall - 1990 - Morrow.
  26. Quantum holism: nonseparability as common ground.Jenann Ismael & Jonathan Schaffer - manuscript
    Quantum mechanics seems to portray nature as nonseparable, in the sense that it allows spatiotemporally separated entities to have states that cannot be fully specified without reference to each other. This is often said to implicate some form of “holism.” We aim to clarify what this means, and why this seems plausible. Our core idea is that the best explanation for nonseparability is a “common ground” explanation, which casts nonseparable entities in a holistic light, as scattered reflections of a (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   44 citations  
  27. Quantum states for primitive ontologists: A case study.Gordon Belot - 2012 - European Journal for Philosophy of Science 2 (1):67-83.
    Under so-called primitive ontology approaches, in fully describing the history of a quantum system, one thereby attributes interesting properties to regions of spacetime. Primitive ontology approaches, which include some varieties of Bohmian mechanics and spontaneous collapse theories, are interesting in part because they hold out the hope that it should not be too difficult to make a connection between models of quantum mechanics and descriptions of histories of ordinary macroscopic bodies. But such approaches are dualistic, positing a (...) state as well as ordinary material degrees of freedom. This paper lays out and compares some options that primitive ontologists have for making sense of the quantum state. (shrink)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   70 citations  
  28.  17
    Quantum Structure in Cognition: Human Language as a Boson Gas of Entangled Words.Diederik Aerts & Lester Beltran - 2020 - Foundations of Science 25 (3):755-802.
    We model a piece of text of human language telling a story by means of the quantum structure describing a Bose gas in a state close to a Bose–Einstein condensate near absolute zero temperature. For this we introduce energy levels for the words (concepts) used in the story and we also introduce the new notion of ‘cogniton’ as the quantum of human thought. Words (concepts) are then cognitons in different energy states as it is the case for photons (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   17 citations  
  29. Quantum mechanics in terms of realism.Arthur Jabs - 2017 - arXiv.Org.
    We expound an alternative to the Copenhagen interpretation of the formalism of nonrelativistic quantum mechanics. The basic difference is that the new interpretation is formulated in the language of epistemological realism. It involves a change in some basic physical concepts. The ψ function is no longer interpreted as a probability amplitude of the observed behaviour of elementary particles but as an objective physical field representing the particles themselves. The particles are thus extended objects whose extension varies in time according (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  30.  19
    Emergent quantum indeterminacy.Cristian Mariani - 2021 - Ratio 34 (3):183-192.
    Many features of quantum mechanics (QM) suggest that, at the microscopic level, objects sometimes fail to determinately instantiate their properties. In recent years, many have argued that this phenomenon indicates the existence of an ontological kind of indeterminacy, often called metaphysical indeterminacy, which is supposed to affect the ontology of QM. As insisted by Glick ('Against Quantum Indeterminacy), however, once we look at the major realist approaches to QM we learn that the indeterminacy disappears from the description of (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  31. Quantum metaphysical indeterminacy.Claudio Calosi & Jessica Wilson - 2019 - Philosophical Studies 176 (10):2599–2627.
    On many currently live interpretations, quantum mechanics violates the classical supposition of value definiteness, according to which the properties of a given particle or system have precise values at all times. Here we consider whether either metaphysical supervaluationist or determinable-based approaches to metaphysical indeterminacy can accommodate quantum metaphysical indeterminacy (QMI). We start by discussing the standard theoretical indicator of QMI, and distinguishing three seemingly different sources of QMI (S1). We then show that previous arguments for the conclusion that (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   36 citations  
  32. Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?Albert Einstein, Boris Podolsky & Nathan Rosen - 1935 - Physical Review (47):777-780.
  33. Quantum propensiton theory: A testable resolution of the wave/particle dilemma.Nicholas Maxwell - 1988 - British Journal for the Philosophy of Science 39 (1):1-50.
    In this paper I put forward a new micro realistic, fundamentally probabilistic, propensiton version of quantum theory. According to this theory, the entities of the quantum domain - electrons, photons, atoms - are neither particles nor fields, but a new kind of fundamentally probabilistic entity, the propensiton - entities which interact with one another probabilistically. This version of quantum theory leaves the Schroedinger equation unchanged, but reinterprets it to specify how propensitons evolve when no probabilistic transitions occur. (...)
    Direct download (11 more)  
     
    Export citation  
     
    Bookmark   31 citations  
  34. Everettian quantum mechanics without branching time.Alastair Wilson - 2012 - Synthese 188 (1):67-84.
    In this paper I assess the prospects for combining contemporary Everettian quantum mechanics (EQM) with branching-time semantics in the tradition of Kripke, Prior, Thomason and Belnap. I begin by outlining the salient features of ‘decoherence-based’ EQM, and of the ‘consistent histories’ formalism that is particularly apt for conceptual discussions in EQM. This formalism permits of both ‘branching worlds’ and ‘parallel worlds’ interpretations; the metaphysics of EQM is in this sense underdetermined by the physics. A prominent argument due to Lewis (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   14 citations  
  35.  76
    Quantum metametaphysics.Alessandro Torza - 2021 - Synthese 199 (3-4):1-25.
    Say that metaphysical indeterminacy occurs just when there is a fact such that neither it nor its negation obtains. The aim of this work is to shed light on the issue of whether orthodox quantum mechanics provides any evidence of metaphysical indeterminacy by discussing the logical, semantic, and broadly methodological presuppositions of the debate. I argue that the dispute amounts to a verbal disagreement between classical and quantum logicians, given Eli Hirsch’s account of substantivity; but that it need (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  36.  8
    Quantum Structure in Cognition: Human Language as a Boson Gas of Entangled Words.Diederik Aerts & Lester Beltran - 2020 - Foundations of Science 25 (3):755-802.
    We model a piece of text of human language telling a story by means of the quantum structure describing a Bose gas in a state close to a Bose–Einstein condensate near absolute zero temperature. For this we introduce energy levels for the words used in the story and we also introduce the new notion of ‘cogniton’ as the quantum of human thought. Words are then cognitons in different energy states as it is the case for photons in different (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   14 citations  
  37. Quantum Mechanics and 3 N - Dimensional Space.Bradley Monton - 2006 - Philosophy of Science 73 (5):778-789.
    I maintain that quantum mechanics is fundamentally about a system of N particles evolving in three-dimensional space, not the wave function evolving in 3N-dimensional space.
    Direct download (13 more)  
     
    Export citation  
     
    Bookmark   64 citations  
  38. Why quantum theory is possibly wrong.Holger Lyre - 2010 - Foundations of Physics 40 (9-10):1429-1438.
    Quantum theory is a tremendously successful physical theory, but nevertheless suffers from two serious problems: the measurement problem and the problem of interpretational underdetermination. The latter, however, is largely overlooked as a genuine problem of its own. Both problems concern the doctrine of realism, but pull, quite curiously, into opposite directions. The measurement problem can be captured such that due to scientific realism about quantum theory common sense anti-realism follows, while theory underdetermination usually counts as an argument against (...)
    Direct download (10 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  39. Quantum Indeterminacy and the Double-slit Experiment.Claudio Calosi & Jessica Wilson - 2021 - Philosophical Studies 178 (10):3291-3317.
    In Calosi and Wilson (Phil Studies 2019/2018), we argue that on many interpretations of quantum mechanics (QM), there is quantum mechanical indeterminacy (QMI), and that a determinable-based account of metaphysical indeterminacy (MI), as per Wilson 2013 and 2016, properly accommodates the full range of cases of QMI. Here we argue that this approach is superior to other treatments of QMI on offer, both realistic and deflationary, in providing the basis for an intelligible explanation of the interference patterns in (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  40.  47
    Quantum Enigma: Physics Encounters Consciousness.Bruce Rosenblum & Fred Kuttner - 2008 - Oxford University Press.
    The most successful theory in all of science--and the basis of one third of our economy--says the strangest things about the world and about us. Can you believe that physical reality is created by our observation of it? Physicists were forced to this conclusion, the quantum enigma, by what they observed in their laboratories. Trying to understand the atom, physicists built quantum mechanics and found, to their embarrassment, that their theory intimately connects consciousness with the physical world. (...) Enigma explores what that implies and why some founders of the theory became the foremost objectors to it. Schrodinger showed that it "absurdly" allowed a cat to be in a "superposition" simultaneously dead and alive. Einstein derided the theory's "spooky interactions." With Bell's Theorem, we now know Schrodinger's superpositions and Einstein's spooky interactions indeed exist. Authors Bruce Rosenblum and Fred Kuttner explain all of this in non-technical terms with help from some fanciful stories and bits about the theory's developers. They present the quantum mystery honestly, with an emphasis on what is and what is not speculation. Physics' encounter with consciousness is its skeleton in the closet. Because the authors open the closet and examine the skeleton, theirs is a controversial book. Quantum Enigma's description of the experimental quantum facts, and the quantum theory explaining them, is undisputed. Interpreting what it all means, however, is controversial. Every interpretation of quantum physics encounters consciousness. Rosenblum and Kuttner therefore turn to exploring consciousness itself--and encounter quantum physics. Free will and anthropic principles become crucial issues, and the connection of consciousness with the cosmos suggested by some leading quantum cosmologists is mind-blowing. Readers are brought to a boundary where the particular expertise of physicists is no longer a sure guide. They will find, instead, the facts and hints provided by quantum mechanics and the ability to speculate for themselves. (shrink)
    Direct download  
     
    Export citation  
     
    Bookmark   11 citations  
  41. Quantum gravity, timelessness, and the folk concept of time.Andrew J. Latham & Kristie Miller - 2020 - Synthese 198 (10):9453-9478.
    What it would take to vindicate folk temporal error theory? This question is significant against a backdrop of new views in quantum gravity—so-called timeless physical theories—that claim to eliminate time by eliminating a one-dimensional substructure of ordered temporal instants. Ought we to conclude that if these views are correct, nothing satisfies the folk concept of time and hence that folk temporal error theory is true? In light of evidence we gathered, we argue that physical theories that entirely eliminate an (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  42.  49
    The Quantum Handshake: Entanglement, Nonlocality and Transactions.John G. Cramer - 2016 - Cham: Imprint: Springer.
    This book shines bright light into the dim recesses of quantum theory, where the mysteries of entanglement, nonlocality, and wave collapse have motivated some to conjure up multiple universes, and others to adopt a "shut up and calculate" mentality. After an extensive and accessible introduction to quantum mechanics and its history, the author turns attention to his transactional model. Using a quantum handshake between normal and time-reversed waves, this model provides a clear visual picture explaining the baffling (...)
    Direct download  
     
    Export citation  
     
    Bookmark   15 citations  
  43. Quantum Non-Locality and Relativity: Metaphysical Intimations of Modern Physics.Tim Maudlin - 2002 - Blackwell.
    This second edition also includes a new author's preface and an additional appendix.
    Direct download  
     
    Export citation  
     
    Bookmark   99 citations  
  44. Characterizing quantum theory in terms of information-theoretic constraints.Rob Clifton, Jeffrey Bub & Hans Halvorson - 2002 - Foundations of Physics 33 (11):1561-1591.
    We show that three fundamental information-theoretic constraints -- the impossibility of superluminal information transfer between two physical systems by performing measurements on one of them, the impossibility of broadcasting the information contained in an unknown physical state, and the impossibility of unconditionally secure bit commitment -- suffice to entail that the observables and state space of a physical theory are quantum-mechanical. We demonstrate the converse derivation in part, and consider the implications of alternative answers to a remaining open question (...)
    Direct download (10 more)  
     
    Export citation  
     
    Bookmark   107 citations  
  45.  68
    Quantum Foundations of Statistical Mechanics and Thermodynamics.Orly Shenker - 2021 - In Eleanor Knox & Alastair Wilson (eds.), The Routledge Companion to Philosophy of Physics. Oxford: Routledge. pp. Ch. 29.
    Statistical mechanics is often taken to be the paradigm of a successful inter-theoretic reduction, which explains the high-level phenomena (primarily those described by thermodynamics) by using the fundamental theories of physics together with some auxiliary hypotheses. In my view, the scope of statistical mechanics is wider since it is the type-identity physicalist account of all the special sciences. But in this chapter, I focus on the more traditional and less controversial domain of this theory, namely, that of explaining the thermodynamic (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  46.  32
    Quantum Physics: Illusion or Reality?Alastair I. M. Rae - 2004 - Cambridge University Press.
    Quantum physics is believed to be the fundamental theory underlying our understanding of the physical universe. However, it is based on concepts and principles that have always been difficult to understand and controversial in their interpretation. This book aims to explain these issues using a minimum of technical language and mathematics. After a brief introduction to the ideas of quantum physics, the problems of interpretation are identified and explained. The rest of the book surveys, describes and criticises a (...)
    Direct download  
     
    Export citation  
     
    Bookmark   14 citations  
  47. A Quantum Probability Account of Order Effects in Inference.Jennifer S. Trueblood & Jerome R. Busemeyer - 2011 - Cognitive Science 35 (8):1518-1552.
    Order of information plays a crucial role in the process of updating beliefs across time. In fact, the presence of order effects makes a classical or Bayesian approach to inference difficult. As a result, the existing models of inference, such as the belief-adjustment model, merely provide an ad hoc explanation for these effects. We postulate a quantum inference model for order effects based on the axiomatic principles of quantum probability theory. The quantum inference model explains order effects (...)
    Direct download  
     
    Export citation  
     
    Bookmark   24 citations  
  48. Can quantum probability provide a new direction for cognitive modeling?Emmanuel M. Pothos & Jerome R. Busemeyer - 2013 - Behavioral and Brain Sciences 36 (3):255-274.
    Classical (Bayesian) probability (CP) theory has led to an influential research tradition for modeling cognitive processes. Cognitive scientists have been trained to work with CP principles for so long that it is hard even to imagine alternative ways to formalize probabilities. However, in physics, quantum probability (QP) theory has been the dominant probabilistic approach for nearly 100 years. Could QP theory provide us with any advantages in cognitive modeling as well? Note first that both CP and QP theory share (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   53 citations  
  49. Quantum Mechanics and Paradigm Shifts.Valia Allori - 2015 - Topoi 34 (2):313-323.
    It has been argued that the transition from classical to quantum mechanics is an example of a Kuhnian scientific revolution, in which there is a shift from the simple, intuitive, straightforward classical paradigm, to the quantum, convoluted, counterintuitive, amazing new quantum paradigm. In this paper, after having clarified what these quantum paradigms are supposed to be, I analyze whether they constitute a radical departure from the classical paradigm. Contrary to what is commonly maintained, I argue that, (...)
    Direct download (9 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  50.  28
    Knowledge of the Quantum Domain: An Overlap Strategy.James Duncan Fraser & Peter Vickers - forthcoming - British Journal for the Philosophy of Science.
1 — 50 / 1000