Results for 'quantum Dirac equation'

988 found
Order:
  1.  25
    The Stationary Dirac Equation as a Generalized Pauli Equation for Two Quasiparticles.Nikolay L. Chuprikov - 2015 - Foundations of Physics 45 (6):644-656.
    By analyzing the Dirac equation with static electric and magnetic fields it is shown that Dirac’s theory is nothing but a generalized one-particle quantum theory compatible with the special theory of relativity. This equation describes a quantum dynamics of a single relativistic fermion, and its solution is reduced to solution of the generalized Pauli equation for two quasiparticles which move in the Euclidean space with their effective masses holding information about the Lorentzian symmetry (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  2.  5
    Schrödinger and Dirac equations for the hydrogen atom, and Laguerre polynomials.André Ronveaux & Jean Mawhin - 2010 - Archive for History of Exact Sciences 64 (4):429-460.
    It is usually claimed that the Laguerre polynomials were popularized by Schrödinger when creating wave mechanics; however, we show that he did not immediately identify them in studying the hydrogen atom. In the case of relativistic Dirac equations for an electron in a Coulomb field, Dirac gave only approximations, Gordon and Darwin gave exact solutions, and Pidduck first explicitly and elegantly introduced the Laguerre polynomials, an approach neglected by most modern treatises and articles. That Laguerre polynomials were not (...)
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  3.  66
    Derivation of the Dirac Equation by Conformal Differential Geometry.Enrico Santamato & Francesco De Martini - 2013 - Foundations of Physics 43 (5):631-641.
    A rigorous ab initio derivation of the (square of) Dirac’s equation for a particle with spin is presented. The Lagrangian of the classical relativistic spherical top is modified so to render it invariant with respect conformal changes of the metric of the top configuration space. The conformal invariance is achieved by replacing the particle mass in the Lagrangian with the conformal Weyl scalar curvature. The Hamilton-Jacobi equation for the particle is found to be linearized, exactly and in (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  4.  21
    Charge Conservation, Klein’s Paradox and the Concept of Paulions in the Dirac Electron Theory: New Results for the Dirac Equation in External Fields.Y. V. Kononets - 2010 - Foundations of Physics 40 (5):545-572.
    An algebraic block-diagonalization of the Dirac Hamiltonian in a time-independent external field reveals a charge-index conservation law which forbids the physical phenomena of the Klein paradox type and guarantees a single-particle nature of the Dirac equation in strong external fields. Simultaneously, the method defines simpler quantum-mechanical objects—paulions and antipaulions, whose 2-component wave functions determine the Dirac electron states through exact operator relations. Based on algebraic symmetry, the presented theory leads to a new understanding of the (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  5.  5
    On the Equivalence of Causal Propagators of the Dirac Equation in Vacuum-Destabilising External Fields.Jonathan J. Beesley - 2022 - Foundations of Physics 52 (1):1-30.
    In QED, an external electromagnetic field can be accounted for non-perturbatively by replacing the causal propagators used in Feynman diagram calculations with Green’s functions for the Dirac equation under the external field. If the external field destabilises the vacuum, then it is a difficult problem to determine which Green’s function is appropriate, and multiple approaches have been developed in the literature whose equivalence, in many cases, is not clear. In this paper, we demonstrate for a broad class of (...)
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  6. The principles of quantum mechanics.Paul Adrien Maurice Dirac - 1930 - Oxford,: Clarendon Press.
    THE PRINCIPLE OF SUPERPOSITION. The need for a quantum theory Classical mechanics has been developed continuously from the time of Newton and applied to an ...
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   261 citations  
  7.  91
    Clifford Algebras and the Dirac-Bohm Quantum Hamilton-Jacobi Equation.B. J. Hiley & R. E. Callaghan - 2012 - Foundations of Physics 42 (1):192-208.
    In this paper we show how the dynamics of the Schrödinger, Pauli and Dirac particles can be described in a hierarchy of Clifford algebras, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathcal{C}}_{1,3}, {\mathcal{C}}_{3,0}$\end{document}, and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathcal{C}}_{0,1}$\end{document}. Information normally carried by the wave function is encoded in elements of a minimal left ideal, so that all the physical information appears within the algebra itself. The state of the quantum process (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  8.  51
    Cartan–Weyl Dirac and Laplacian Operators, Brownian Motions: The Quantum Potential and Scalar Curvature, Maxwell’s and Dirac-Hestenes Equations, and Supersymmetric Systems. [REVIEW]Diego L. Rapoport - 2005 - Foundations of Physics 35 (8):1383-1431.
    We present the Dirac and Laplacian operators on Clifford bundles over space–time, associated to metric compatible linear connections of Cartan–Weyl, with trace-torsion, Q. In the case of nondegenerate metrics, we obtain a theory of generalized Brownian motions whose drift is the metric conjugate of Q. We give the constitutive equations for Q. We find that it contains Maxwell’s equations, characterized by two potentials, an harmonic one which has a zero field (Bohm-Aharonov potential) and a coexact term that generalizes the (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  9. Dirac-Type Equations in a Gravitational Field, with Vector Wave Function.Mayeul Arminjon - 2008 - Foundations of Physics 38 (11):1020-1045.
    An analysis of the classical-quantum correspondence shows that it needs to identify a preferred class of coordinate systems, which defines a torsionless connection. One such class is that of the locally-geodesic systems, corresponding to the Levi-Civita connection. Another class, thus another connection, emerges if a preferred reference frame is available. From the classical Hamiltonian that rules geodesic motion, the correspondence yields two distinct Klein-Gordon equations and two distinct Dirac-type equations in a general metric, depending on the connection used. (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  10.  52
    A Matter of Principle: The Principles of Quantum Theory, Dirac’s Equation, and Quantum Information.Arkady Plotnitsky - 2015 - Foundations of Physics 45 (10):1222-1268.
    This article is concerned with the role of fundamental principles in theoretical physics, especially quantum theory. The fundamental principles of relativity will be addressed as well, in view of their role in quantum electrodynamics and quantum field theory, specifically Dirac’s work, which, in particular Dirac’s derivation of his relativistic equation of the electron from the principles of relativity and quantum theory, is the main focus of this article. I shall also consider Heisenberg’s earlier (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  11. On an intrinsic quantum theoretical structure inside Einstein's gravity field equations.Han Geurdes - manuscript
    As is well known, Einstein was dissatisfied with the foundation of quantum theory and sought to find a basis for it that would have satisfied his need for a causal explanation. In this paper this abandoned idea is investigated. It is found that it is mathematically not dead at all. More in particular: a quantum mechanical U(1) gauge invariant Dirac equation can be derived from Einstein's gravity field equations. We ask ourselves what it means for physics, (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  12. The mathematical foundation of quantum theory.P. A. M. Dirac - 1978 - In A. R. Marlow (ed.), Mathematical foundations of quantum theory. New York: Academic Press. pp. 1--8.
     
    Export citation  
     
    Bookmark  
  13.  22
    Weyl, Dirac and Maxwell Quantum Cellular Automata: Analitical Solutions and Phenomenological Predictions of the Quantum Cellular Automata Theory of Free Fields.Alessandro Bisio, Giacomo Mauro D’Ariano, Paolo Perinotti & Alessandro Tosini - 2015 - Foundations of Physics 45 (10):1203-1221.
    Recent advances on quantum foundations achieved the derivation of free quantum field theory from general principles, without referring to mechanical notions and relativistic invariance. From the aforementioned principles a quantum cellular automata theory follows, whose relativistic limit of small wave-vector provides the free dynamics of quantum field theory. The QCA theory can be regarded as an extended quantum field theory that describes in a unified way all scales ranging from an hypothetical discrete Planck scale up (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  14. Dirac's quantum jump.David Atkinson - manuscript
    This minicourse on quantum mechanics is intended for students who have already been rather well exposed to the subject at an elementary level. It is assumed that they have surmounted the first conceptual hurdles and also have struggled with the Schrödinger equation in one dimension.
     
    Export citation  
     
    Bookmark  
  15.  15
    Novel Principles and the Charge-Symmetric Design of Dirac’s Quantum Mechanics: I. Enhanced Eriksen’s Theorem and the Universal Charge-Index Formalism for Dirac’s Equation in External Static Fields.Yu V. Kononets - 2016 - Foundations of Physics 46 (12):1598-1633.
    The presented enhanced version of Eriksen’s theorem defines an universal transform of the Foldy–Wouthuysen type and in any external static electromagnetic field reveals a discrete symmetry of Dirac’s equation, responsible for existence of a highly influential conserved quantum number—the charge index distinguishing two branches of DE spectrum. It launches the charge-index formalism obeying the charge-index conservation law. Via its unique ability to manipulate each spectrum branch independently, the CIF creates a perfect charge-symmetric architecture of Dirac’s (...) mechanics, which resolves all the riddles of the standard DE theory. Besides the abstract CIF algebra, the paper discusses: the novel accurate charge-symmetric definition of the electric-current density; DE in the true-particle representation, where electrons and positrons coexist on equal footing; flawless “natural” scheme of second quantization; and new physical grounds for the Fermi–Dirac statistics. As a fundamental quantum law, the CICL originates from the kinetic-energy sign conservation and leads to a novel single-particle physics in strong-field situations. Prohibiting Klein’s tunneling in Klein’s zone via the CICL, the precise CIF algebra defines a new class of weakly singular DE solutions, strictly confined in the coordinate space and experiencing the total reflection from the potential barrier. (shrink)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  16.  43
    Maxwell Equations—The One-Photon Quantum Equation.Alexander Gersten - 2001 - Foundations of Physics 31 (8):1211-1231.
    The Maxwell equations are shown to be the one-photon spin-one quantum equations. All Maxwell equations (without sources) are derived simultaneously from first principles, similar to those which have been used to derive the Dirac relativistic electron equation. The wavefunction is a linear combination of the electric and magnetic fields. The procedure is not unique, there are ambiguities of adding a scalar field. A quaternionic representation of the Maxwell equations (with sources) is constructed, a covariant reformulation of which (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  17.  27
    A first-order equation for spin in a manifestly relativistically covariant quantum theory.A. Arensburg & L. P. Horwitz - 1992 - Foundations of Physics 22 (8):1025-1039.
    Relativistic quantum mechanics has been formulated as a theory of the evolution ofevents in spacetime; the wave functions are square-integrable functions on the four-dimensional spacetime, parametrized by a universal invariant world time τ. The representation of states with spin is induced with a little group that is the subgroup of O(3, 1) leaving invariant a timelike vector nμ; a positive definite invariant scalar product, for which matrix elements of tensor operators are covariant, emerges from this construction. In a previous (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  18.  9
    Quaternion Algebra on 4D Superfluid Quantum Space-Time. Dirac’s Ghost Fermion Fields.Valeriy I. Sbitnev - 2022 - Foundations of Physics 52 (1):1-21.
    Ghost Dirac’s fermions are a manifestation of virtual particles. One fermion is the particle whose companion is the antiparticle. An ensemble of these fermions coupled in pairs represents the Bose-Einstein condensate. This condensate forms the superfluid ether. Due to the Meissner effect inherent in a superfluid medium, the paired fermions are inaccessible for instrument observation. For that reason, the ghost particles can pose the dark matter that, together with the dark energy, can be the fundamental basis of physical reality. (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  19.  15
    Classical variational derivation and physical interpretation of Dirac's equation.B. H. Lavenda - 1987 - Foundations of Physics 17 (3):221-237.
    A simple random walk model has been shown by Gaveauet al. to give rise to the Klein-Gordon equation under analytic continuation. This absolutely most probable path implies that the components of the Dirac wave function have a common phase; the influence of spin on the motion is neglected. There is a nonclassical path of relative maximum likelihood which satisfies the constraint that the probability density coincide with the quantum mechanical definition. In three space dimensions, and in the (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  20.  7
    Neo-classical Relativistic Mechanics Theory for Electrons that Exhibits Spin, Zitterbewegung, Dipole Moments, Wavefunctions and Dirac’s Wave Equation.James L. Beck - 2023 - Foundations of Physics 53 (3):1-39.
    In this work, a neo-classical relativistic mechanics theory is presented where the spin of an electron is an inherent part of its world space-time path as a point particle. The fourth-order equation of motion corresponds to the same covariant Lagrangian function in proper time as in special relativity except for an additional spin energy term. The theory provides a hidden-variable model of the electron where the dynamic variables give a complete description of its motion, giving a classical mechanics explanation (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  21.  35
    Electromagnetism as Quantum Physics.Charles T. Sebens - 2019 - Foundations of Physics 49 (4):365-389.
    One can interpret the Dirac equation either as giving the dynamics for a classical field or a quantum wave function. Here I examine whether Maxwell’s equations, which are standardly interpreted as giving the dynamics for the classical electromagnetic field, can alternatively be interpreted as giving the dynamics for the photon’s quantum wave function. I explain why this quantum interpretation would only be viable if the electromagnetic field were sufficiently weak, then motivate a particular approach to (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  22.  7
    Stochastic equations of motion with damping.John E. Krizan - 1979 - Foundations of Physics 9 (9-10):695-705.
    A nonlocal equation of motion with damping is derived by means of a Mori-Zwanzig renormalization process. The treatment is analogous to that of Mori in deriving the Langevin equation. For the case of electrodynamics, a local approximation yields the Lorentz equation; a relativistic generalization gives the Lorentz-Dirac equation. No self-acceleration or self-mass difficulties occur in the classical treatment, although runaway solutions are not eliminated. The nonrelativistic quantum case does not exhibit runaways, however, provided one (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  23.  27
    Quantum Mechanics and the Principle of Least Radix Economy.Vladimir Garcia-Morales - 2015 - Foundations of Physics 45 (3):295-332.
    A new variational method, the principle of least radix economy, is formulated. The mathematical and physical relevance of the radix economy, also called digit capacity, is established, showing how physical laws can be derived from this concept in a unified way. The principle reinterprets and generalizes the principle of least action yielding two classes of physical solutions: least action paths and quantum wavefunctions. A new physical foundation of the Hilbert space of quantum mechanics is then accomplished and it (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  24.  29
    Spin-Statistics Connection for Relativistic Quantum Mechanics.A. F. Bennett - 2015 - Foundations of Physics 45 (4):370-381.
    The spin-statistics connection has been proved for nonrelativistic quantum mechanics . The proof is extended here to the relativistic regime using the parametrized Dirac equation. A causality condition is not required.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  25.  4
    Quantum Mechanics in a Nutshell.Gerald D. Mahan - 2008 - Princeton University Press.
    Covering the fundamentals as well as many special topics of current interest, this is the most concise, up-to-date, and accessible graduate-level textbook on quantum mechanics available. Written by Gerald Mahan, a distinguished research physicist and author of an acclaimed textbook on many-particle physics, Quantum Mechanics in a Nutshell is the distillation of many years' teaching experience. Emphasizing the use of quantum mechanics to describe actual quantum systems such as atoms and solids, and rich with interesting applications, (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  26.  83
    Quantum Mechanics and the Metrics of General Relativity.Paul O’Hara - 2005 - Foundations of Physics 35 (9):1563-1584.
    A one-to-one correspondence is established between linearized space-time metrics of general relativity and the wave equations of quantum mechanics. Also, the key role of boundary conditions in distinguishing quantum mechanics from classical mechanics, will emerge naturally from the procedure. Finally, we will find that the methodology will enable us to introduce not only test charges but also test masses by means of gauges.
    Direct download (9 more)  
     
    Export citation  
     
    Bookmark  
  27.  20
    Theory of Stochastic Schrödinger Equation in Complex Vector Space.Kundeti Muralidhar - 2017 - Foundations of Physics 47 (4):532-552.
    A generalized Schrödinger equation containing correction terms to classical kinetic energy, has been derived in the complex vector space by considering an extended particle structure in stochastic electrodynamics with spin. The correction terms are obtained by considering the internal complex structure of the particle which is a consequence of stochastic average of particle oscillations in the zeropoint field. Hence, the generalised Schrödinger equation may be called stochastic Schrödinger equation. It is found that the second order correction terms (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  28.  42
    An alternative formulation for the analysis and interpretation of the Dirac hydrogen atom.J. Josephson - 1980 - Foundations of Physics 10 (3-4):243-266.
    The second-order radial differential equations for the relativistic Dirac hydrogen atom are derived from the Dirac equation treated as a system of partial differential equations. The quantum operators which arise in the development are defined and interpreted as they appear. The splitting in the energy levels is computed by applying the theory of singularities for second-order differential equations to the Klein-Gordon and Dirac relativistic equations. In the Dirac radial equation additional terms appear containing (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  29.  23
    On generalized electromagnetism and Dirac algebra.David Fryberger - 1989 - Foundations of Physics 19 (2):125-159.
    Using a framework of Dirac algebra, the Clifford algebra appropriate for Minkowski space-time, the formulation of classical electromagnetism including both electric and magnetic charge is explored. Employing the two-potential approach of Cabibbo and Ferrari, a Lagrangian is obtained that is dyality invariant and from which it is possible to derive by Hamilton's principle both the symmetrized Maxwell's equations and the equations of motion for both electrically and magnetically charged particles. This latter result is achieved by defining the variation of (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  30.  5
    Evolution of Superoscillations in the Dirac Field.Fabrizio Colombo & Giovanni Valente - 2020 - Foundations of Physics 50 (11):1356-1375.
    Superoscillating functions are band-limited functions that can oscillate faster than their fastest Fourier component. The study of the evolution of superoscillations as initial datum of field equations requires the notion of supershift, which generalizes the concept of superoscillations. The present paper has a dual purpose. The first one is to give an updated and self-contained explanation of the strategy to study the evolution of superoscillations by referring to the quantum-mechanical Schrödinger equation and its variations. The second purpose is (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  31. Zitterbewegung in Quantum Mechanics.David Hestenes - 2009 - Foundations of Physics 40 (1):1-54.
    The possibility that zitterbewegung opens a window to particle substructure in quantum mechanics is explored by constructing a particle model with structural features inherent in the Dirac equation. This paper develops a self-contained dynamical model of the electron as a lightlike particle with helical zitterbewegung and electromagnetic interactions. The model admits periodic solutions with quantized energy, and the correct magnetic moment is generated by charge circulation. It attributes to the electron an electric dipole moment rotating with ultrahigh (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   10 citations  
  32.  32
    Quantum Tunneling Time: Relativistic Extensions. [REVIEW]Dai-Yu Xu, Towe Wang & Xun Xue - 2013 - Foundations of Physics 43 (11):1257-1274.
    Several years ago, in quantum mechanics, Davies proposed a method to calculate particle’s traveling time with the phase difference of wave function. The method is convenient for calculating the sojourn time inside a potential step and the tunneling time through a potential hill. We extend Davies’ non-relativistic calculation to relativistic quantum mechanics, with and without particle-antiparticle creation, using Klein–Gordon equation and Dirac Equation, for different forms of energy-momentum relation. The extension is successful only when the (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  33.  93
    Canonical Proper-Time Dirac Theory.Tepper L. Gill - 1998 - Foundations of Physics 28 (10):1561-1575.
    In this paper, we report on a new approach to relativistic quantum theory. The classical theory is derived from a new implementation of the first two postulates of Einstein, which fixes the proper-time of the physical system of interest for all observers. This approach leads to a new group that we call the proper-time group. We then construct a canonical contact transformation on extended phase space to identify the canonical Hamiltonian associated with the proper-time variable. On quantization we get (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  34.  97
    Classical Behavior of the Dirac Bispinor.Sarah B. M. Bell, John P. Cullerne & Bernard M. Diaz - 2000 - Foundations of Physics 30 (1):35-57.
    It is usually supposed that the Dirac and radiation equations predict that the phase of a fermion will rotate through half the angle through which the fermion is rotated, which means, via the measured dynamical and geometrical phase factors, that the fermion must have a half-integral spin. We demonstrate that this is not the case and that the identical relativistic quantum mechanics can also be derived with the phase of the fermion rotating through the same angle as does (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  35.  11
    Quantum Electrostatics, Gauss’s Law, and a Product Picture for Quantum Electrodynamics; or, the Temporal Gauge Revised.Bernard S. Kay - 2021 - Foundations of Physics 52 (1):1-61.
    We provide a suitable theoretical foundation for the notion of the quantum coherent state which describes the electrostatic field due to a static external macroscopic charge distribution introduced by the author in 1998 and use it to rederive the formulae obtained in 1998 for the inner product of a pair of such states. (We also correct an incorrect factor of 4π\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$4\pi$$\end{document} in some of those formulae.) Contrary to what one might (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  36. Quantum Processes beyond the Aharonov-Bohm Effect.Jürgen Audretsch & Vladimir D. Skarzhinsky - 1998 - Foundations of Physics 28 (5):777-788.
    We consider QED processes in the presence of an infinitely thin and infinitely long straight string with a magnetic flux inside it. The bremsstrahlung from an electron passing by the magnetic string and the electron-positron pair production by a single photon are reviewed. Based on the exact electron and positron solutions of the Dirac equation in the external Aharonov-Bohm potential we present matrix elements for these processes. The dependence of the resulting cross sections on energies, directions, and polarizations (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  37.  2
    Twenty-First Century Quantum Mechanics: Hilbert Space to Quantum Computers: Mathematical Methods and Conceptual Foundations.Guido Fano - 2017 - Cham: Imprint: Springer. Edited by S. M. Blinder.
    This book is designed to make accessible to nonspecialists the still evolving concepts of quantum mechanics and the terminology in which these are expressed. The opening chapters summarize elementary concepts of twentieth century quantum mechanics and describe the mathematical methods employed in the field, with clear explanation of, for example, Hilbert space, complex variables, complex vector spaces and Dirac notation, and the Heisenberg uncertainty principle. After detailed discussion of the Schrödinger equation, subsequent chapters focus on isotropic (...)
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark  
  38.  52
    Tensorial Relativistic Quantum Mechanics in (1+1) Dimensions and Boundary Conditions.Vidal Alonso, Salvatore De Vincenzo & Luigi Mondino - 1999 - Foundations of Physics 29 (2):231-250.
    The tensorial relativistic quantum mechanics in (1+1) dimensions is considered. Its kinematical and dynamical features are reviewed as well as the problem of finding the Dirac spinor for given finite multivectors. For stationary states, the dynamical tensorial equations, equivalent to the Dirac equation, are solved for a free particle, for a particle inside a box, and for a particle in a step potential.
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  39.  10
    Dual Relativistic Quantum Mechanics I.Tepper L. Gill, Gonzalo Ares de Parga, Trey Morris & Mamadou Wade - 2022 - Foundations of Physics 52 (4):1-21.
    It was shown in Dirac A117, 610; A118, 351, 1928) that the ultra-violet divergence in quantum electrodynamics is caused by a violation of the time-energy uncertainly relationship, due to the implicit assumption of infinitesimal time information. In Wheeler et al. it was shown that Einstein’s special theory of relativity and Maxwell’s field theory have mathematically equivalent dual versions. The dual versions arise from an identity relating observer time to proper time as a contact transformation on configuration space, which (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  40.  15
    Second quantized quaternion quantum theory.James D. Edmonds - 1975 - Foundations of Physics 5 (4):643-648.
    The basic structure of a second quantized relativistic quantum theory is outlined. The vector space is over the ring of complex quaternions instead of the usual field of complex numbers. This is motivated by the simple quaternion structure of the Dirac equation.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  41. Classical and Quantum Theories of Spin.Fabián H. Gaioli & Edgardo T. Garcia Alvarez - 1998 - Foundations of Physics 28 (10):1539-1550.
    A great effort has been devoted to formulating a classical relativistic theory of spin compatible with quantum relativistic wave equations. The main difficulty in connecting classical and quantum theories rests in finding a parameter that plays the role of proper time at a purely quantum level. We present a partial review of several proposals of classical and quantum spin theories from the pioneering works of Thomas and Frenkel, revisited in the classical BMT work, to the semiclassical (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  42.  55
    The Arrow of Time in the Equations of Motion.Fritz Rohrlich - 1998 - Foundations of Physics 28 (7):1045-1056.
    It is argued that time's arrow is present in all equations of motion. But it is absent in the point particle approximations commonly made. In particular, the Lorentz-Abraham-Dirac equation is time-reversal invariant only because it approximates the charged particle by a point. But since classical electrodynamics is valid only for finite size particles, the equations of motion for particles of finite size must be considered. Those equations are indeed found to lack time-reversal invariance, thus ensuring an arrow of (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  43.  57
    Dirac Equation with Coupling to 1/r Singular Vector Potentials for all Angular Momenta.A. D. Alhaidari - 2010 - Foundations of Physics 40 (8):1088-1095.
    We consider the Dirac equation in 3+1 dimensions with spherical symmetry and coupling to 1/r singular vector potential. An approximate analytic solution for all angular momenta is obtained. The approximation is made for the 1/r orbital term in the Dirac equation itself not for the traditional and more singular 1/r 2 term in the resulting second order differential equation. Consequently, the validity of the solution is for a wider energy spectrum. As examples, we consider the (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  44.  55
    Nonperturbative quantum electrodynamics: The Lamb shift. [REVIEW]A. O. Barut & J. Kraus - 1983 - Foundations of Physics 13 (2):189-194.
    The nonlinear integro-differential equation, obtained from the coupled Maxwell-Dirac equations by eliminating the potential Aμ, is solved by iteration rather than perturbation. The energy shift is complex, the imaginary part giving the spontaneous emission. Both self-energy and vacuum polarization terms are obtained. All results, including renormalization terms, are finite.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  45.  14
    What can be tested in quantum electrodynamics?K. Ringhofer & H. Salecker - 1980 - Foundations of Physics 10 (3-4):185-196.
    In this paper we examine the theoretical foundations underlying the testing of quantum electrodynamics. We show that for the photon propagator (together with the contiguous vertices) it is not necessary to introduce ad hoc modifications in sufficiently accurate scattering experiments. Energy, momentum transfer, and accuracy determine the tested length in a model-independent way. The situation is quite different with the electron propagator. If gauge invariance is taken for granted, the electron propagator cannot be tested with processes where diagrams with (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  46.  35
    Black Holes: Interfacing the Classical and the Quantum.B. P. Kosyakov - 2008 - Foundations of Physics 38 (7):678-694.
    The central idea of this paper is that forming the black hole horizon is attended with the transition from the classical regime of evolution to the quantum one. We offer and justify the following criterion for discriminating between the classical and the quantum: creations and annihilations of particle-antiparticle pairs are impossible in the classical reality but possible in the quantum reality. In flat spacetime, we can switch from the classical picture of field propagation to the quantum (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark  
  47.  74
    On classical and quantum relativistic dynamics.F. Reuse - 1979 - Foundations of Physics 9 (11-12):865-882.
    A canonical formalism for the relativistic classical mechanics of many particles is proposed. The evolution equations for a charged particle in an electromagnetic field are obtained and the relativistic two-body problem with an invariant interaction is treated. Along the same line a quantum formalism for the spinless relativistic particle is obtained by means of imprimitivity systems according to Mackey theory. A quantum formalism for the spin-1/2 particle is constructed and a new definition of spin1/2 in relativity is proposed. (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  48. From Electromagnetism to Relativistic Quantum Mechanics.W. A. Rodrigues Jr & J. Vaz Jr - 1998 - Foundations of Physics 28 (5):789-814.
    We study the relationship between Maxwell and Dirac equations for a class of solutions of Maxwell equations that can represent purely electromagnetic particles.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  49.  43
    Two Mathematically Equivalent Versions of Maxwell’s Equations.Tepper L. Gill & Woodford W. Zachary - 2011 - Foundations of Physics 41 (1):99-128.
    This paper is a review of the canonical proper-time approach to relativistic mechanics and classical electrodynamics. The purpose is to provide a physically complete classical background for a new approach to relativistic quantum theory. Here, we first show that there are two versions of Maxwell’s equations. The new version fixes the clock of the field source for all inertial observers. However now, the (natural definition of the effective) speed of light is no longer an invariant for all observers, but (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  50.  25
    The Foundations of Quantum Mechanics and the Evolution of the Cartan-Kähler Calculus.Jose G. Vargas - 2008 - Foundations of Physics 38 (7):610-647.
    In 1960–1962, E. Kähler enriched É. Cartan’s exterior calculus, making it suitable for quantum mechanics (QM) and not only classical physics. His “Kähler-Dirac” (KD) equation reproduces the fine structure of the hydrogen atom. Its positron solutions correspond to the same sign of the energy as electrons.The Cartan-Kähler view of some basic concepts of differential geometry is presented, as it explains why the components of Kähler’s tensor-valued differential forms have three series of indices. We demonstrate the power of (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
1 — 50 / 988