Linked bibliography for the SEP article "Causal Models" by Christopher Hitchcock
This is an automatically generated and experimental page
If everything goes well, this page should display the bibliography of the aforementioned article as it appears in the Stanford Encyclopedia of Philosophy, but with links added to PhilPapers records and Google Scholar for your convenience. Some bibliographies are not going to be represented correctly or fully up to date. In general, bibliographies of recent works are going to be much better linked than bibliographies of primary literature and older works. Entries with PhilPapers records have links on their titles. A green link indicates that the item is available online at least partially.
This experiment has been authorized by the editors of the Stanford Encyclopedia of Philosophy. The original article and bibliography can be found here.
- Balke, Alexander and Judea Pearl, 1994a, “Probabilistic
Evaluation of Counterfactual Queries”, in Barbara Hayes-Roth and
Richard E Korf (eds.), Proceedings of the Twelfth National
Conference on Artificial Intelligence, Volume I, Menlo Park CA:
AAAI Press, pp. 230–237.
[Balke & Pearl 1994a available online] (Scholar)
- –––, 1994b, “Counterfactual Probabilities:
Computational Methods, Bounds, and Applications”, in Ramon Lopez
de Mantaras and David Poole (eds.), Proceedings of the Tenth
Conference on Uncertainty in Artificial Intelligence, San
Francisco: Morgan Kaufmann, pp. 46–54.
[Balke & Pearl 1994b available online] (Scholar)
- Bareinboim, Elias, and Judea Pearl, 2013, “A General
Algorithm for Deciding Transportability of Experimental
Results”, Journal of Causal Inference, 1(1):
107–134. doi:10.1515/jci-2012-0004 (Scholar)
- –––, 2014, “Transportability from Multiple
Environments with Limited Experiments: Completeness Results”, in
Zoubin Ghahramani, Max Welling, Corinna Cortes, and Neil Lawrence and
Kilian Weinberger (eds.), Advances of Neural Information
Processing 27 (NIPS Proceedings), 280–288.
[Bareinboim & Pearl 2014 available online] (Scholar)
- –––, 2015, “Causal Inference and the
Data-Fusion Problem”, Proceedings of the National Academy of
Sciences, 113(27): 7345–7352.
doi:10.1073/pnas.1510507113 (Scholar)
- Beckers, Sander and Joost Vennekens, 2018, “A Principled Approach to Defining Actual Causation”, Synthese, 195(2): 835–862. doi:10.1007/s11229-016-1247-1 (Scholar)
- Beebee, Helen, Christopher Hitchcock, and Peter Menzies (eds.), 2009, The Oxford Handbook of Causation, Oxford: Oxford University Press. (Scholar)
- Blanchard, Thomas, and Jonathan Schaffer, 2017,“Cause without Default”, in Helen Beebee, Christopher Hitchcock, and Huw Price (eds.). Making a Difference, Oxford: Oxford University Press, pp. 175–214. (Scholar)
- Briggs, Rachael, 2012, “Interventionist Counterfactuals”, Philosophical Studies160(1): 139–166. doi:10.1007/s11098-012-9908-5 (Scholar)
- Cartwright, Nancy, 1993, “Marks and Probabilities: Two Ways to Find Causal Structure”, in Fritz Stadler (ed.), Scientific Philosophy: Origins and Development, Dordrecht: Kluwer, 113–119. doi:10.1007/978-94-017-2964-2_7 (Scholar)
- –––, 2007, Hunting Causes and Using Them, Cambridge: Cambridge University Press. doi:10.1017/cbo9780511618758 (Scholar)
- Chalupka, Krzysztof, Frederick Eberhardt, and Pietro Perona, 2017,
“Causal Feature Learning: an Overview”,
Behaviormetrika, 44(1): 137–167.
doi:10.1007/s41237-016-0008-2 (Scholar)
- Cheng, Patricia, 1997, “From Covariation to Causation: A Causal Power Theory”, Psychological Review, 104(2): 367– 405. doi:10.1037/0033-295x.104.2.367 (Scholar)
- Claassen, Tom and Tom Heskes, 2012, “A Bayesian Approach to
Constraint Based Causal Inference”, in Nando de Freitas and
Kevin Murphy (eds.) Proceedings of the Twenty-Eighth Conference on
Uncertainty in Artificial Intelligence, Corvallis, OR: AUAI
Press, pp. 207–216.
[Claassen & Heskes 2012 available online] (Scholar)
- Cooper, G. F. and Herskovits, E. 1992, “A Bayesian Method
for the Induction of Probabilistic Networks from Data”,
Machine Learning, 9(4): 309–347.
doi:10.1007/bf00994110 (Scholar)
- Danks, David, and Sergey Plis, 2014, “Learning Causal Structure from Undersampled Time Series”, JMLR Workshop and Conference Proceedings (NIPS Workshop on Causality). [Danks & Plis 2014 available online] (Scholar)
- Dash, Denver and Marek Druzdzel, 2001, “Caveats For Causal
Reasoning With Equilibrium Models”, in Salem Benferhat and
Philippe Besnard (eds.) Symbolic and Quantitative Approaches to
Reasoning with Uncertainty, 6th European Conference,
Proceedings. Lecture Notes in Computer Science 2143, Berlin and
Heidelberg: Springer,
pp. 92–103. doi:10.1007/3-540-44652-4\_18 (Scholar)
- Dechter, Rina and Thomas Richardson (eds.), 2006, Proceedings of the Twenty-Second Conference on Uncertainty in Artificial Intelligence, Corvallis, OR: AUAI Press. (Scholar)
- Dowe, Phil, 2000, Physical Causation, Cambridge: University of Cambridge Press. doi:10.1017/cbo9780511570650 (Scholar)
- Eberhardt, Frederick, 2009, “Introduction to the Epistemology of Causation”, Philosophy Compass, 4(6): 913–925. doi:10.1111/j.1747-9991.2009.00243.x (Scholar)
- –––, 2017, “Introduction to the
Foundations of Causal Discovery”, International Journal of
Data Science and Analytics, 3(2): 81–91.
doi:10.1007/s41060-016-0038-6 (Scholar)
- Eberhardt, Frederick and Richard Scheines, 2007, “Interventions and Causal Inference”, Philosophy of Science, 74(5): 981–995. doi:10.1086/525638 (Scholar)
- Eells, Ellery, 1991, Probabilistic Causality, Cambridge: Cambridge University Press. doi:10.1017/cbo9780511570667 (Scholar)
- Eichler, Michael, 2012, “Causal Inference in Time Series
Analysis”, in Carlo Berzuini, Philip Dawid, and Luisa
Bernardinelli (eds.), Causality: Statistical Perspectives and
Applications, Chichester, UK: Wiley, pp. 327–354.
doi:10.1002/9781119945710.ch22 (Scholar)
- Fine, Kit, 2012, “Counterfactuals without Possible Worlds”, Journal of Philosophy, 109(3): 221–246. doi:10.5840/jphil201210938 (Scholar)
- Galles, David, and Judea Pearl, 1998, “An Axiomatic Characterization of Causal Counterfactuals”, Foundations of Science, 3(1): 151–182. doi:10.1023/a:1009602825894 (Scholar)
- Geiger, Dan and David Heckerman, 1994, “Learning Gaussian
Networks”, Technical Report MSR-TR-94-10, Microsoft
Research. (Scholar)
- Geiger, Dan and Judea Pearl, 1988, “On the Logic of Causal
Models”, in Ross Shachter, Tod Levitt, Laveen Kanal, and John
Lemmer (eds.), Proceedings of the Fourth Conference on Uncertainty
in Artificial Intelligence, Corvallis, OR: AUAI Press, pp.
136–147. (Scholar)
- Gibbard, Alan, and William Harper, 1978, “Counterfactuals and Two Kinds of Expected Utility”, in Clifford Hooker, James Leach, and Edward McClennen (eds.), Foundations and Applications of Decision Theory, Dordrecht: Reidel, pp. 125–62. (Scholar)
- Glennan, Stuart, 2017, The New Mechanical Philosophy, Oxford: Oxford University Press. (Scholar)
- Glymour, Clark, 2009, “Causality and Statistics”, in
Beebee, Hitchcock, and Menzies 2009: 498–522. (Scholar)
- Glymour, Clark and Gregory Cooper, 1999, Computation,
Causation, and Discovery, Cambridge, MA: MIT Press. (Scholar)
- Glymour, Clark, David Danks, Bruce Glymour, Frederick Eberhardt, Joseph Ramsey, Richard Scheines, Peter Spirtes, Choh Man Teng, and Jiji Zhang, 2010, “Actual Causation: a Stone Soup Essay”, Synthese, 175(2): 169–192. doi:10.1007/s11229-009-9497-9 (Scholar)
- Glymour, Clark and Frank Wimberly, 2007, “Actual Causes and Thought Experiments”, in Joseph Campbell, Michael O’Rourke, and Harry Silverstein (eds.), Causation and Explanation, Cambridge, MA: MIT Press, pp. 43–68. (Scholar)
- Gong, Mingming, Kun Zhang, Bernhard Schölkopf, Dacheng Tao,
and Philipp Geiger, 2015, “Discovering Temporal Causal Relations
from Subsampled Data”, in Francis Bach and David Blei (eds.),
Proceeding of the 32nd International Conference on
Machine Learning, 37: 1898–1906.
[Gong et al. 2015 available online] (Scholar)
- Gong, Mingming, Kun Zhang, Bernhard Schölkopf, Clark Glymour,
and Dacheng Tao, 2017, “Causal Discovery from Temporally
Aggregated Time Series”, in Gal Elidan and Kristian Kersting
(eds.), Proceedings of the Thirty-Third Conference on Uncertainty
in Artificial Intelligence, Corvallis, OR: AUAI Press.
[Gong et al. 2017 available online] (Scholar)
- Greenland, Sander, and James Robins, 1988, “Conceptual
Problems in the Definition and Interpretation of Attributable
Fractions”, American Journal of Epidemiology, 128(6):
1185–1197. doi:10.1093/oxfordjournals.aje.a115073 (Scholar)
- Hall, Ned, 2007, “Structural Equations and Causation”, Philosophical Studies, 132(1): 109–136. doi:10.1007/s11098-006-9057-9 (Scholar)
- Halpern, Joseph Y., 2000, “Axiomatizing Causal
Reasoning”, Journal of Artificial Intelligence
Research, 12: 317–337.
[Halpern 2000 available online] (Scholar)
- –––, 2008, “Defaults and Normality in
Causal Structures”, in Gerhard Brewka and Jérôme
Lang (eds.), Principles of Knowledge Representation and Reasoning:
Proceedings of the Eleventh International Conference, Menlo Park,
CA: AAAI Press, pp. 198–208. (Scholar)
- –––, 2016, Actual Causality, Cambridge, MA: MIT Press. (Scholar)
- Halpern, Joseph Y. and Christopher Hitchcock, 2015, “Graded Causation and Defaults”, British Journal for Philosophy of Science, 66(2): 413–57. doi:10.1093/bjps/axt050 (Scholar)
- Halpern, Joseph and Judea Pearl, 2001, “Causes and
Explanations: A Structural-Model Approach. Part I: Causes”, in
John Breese and Daphne Koller (eds.), Proceedings of the
Seventeenth Conference on Uncertainty in Artificial Intelligence,
San Francisco: Morgan Kaufmann, pp. 194–202 (Scholar)
- –––, 2005, “Causes and Explanations: A Structural-Model Approach. Part I: Causes”, British Journal for the Philosophy of Science, 56(4): 843–887. doi:10.1093/bjps/axi147 (Scholar)
- Hausman, Daniel M., 1999, “The Mathematical Theory of Causation”, British Journal for the Philosophy of Science, 50(1): 151–162. doi:10.1093/bjps/50.1.151 (Scholar)
- Hausman, Daniel M. and James Woodward, 1999, “Independence, Invariance, and the Causal Markov Condition”, British Journal for the Philosophy of Science, 50(4): 521–583. doi:10.1093/bjps/50.4.521 (Scholar)
- –––, 2004, “Modularity and the Causal Markov Condition: a Restatement”, British Journal for the Philosophy of Science, 55(1): 147–161. doi:10.1093/bjps/55.1.147 (Scholar)
- Hitchcock, Christopher, 2001, “The Intransitivity of Causation Revealed in Equations and Graphs”, Journal of Philosophy, 98(6): 273–299. doi:10.2307/2678432 (Scholar)
- –––, 2007, “Prevention, Preemption, and the Principle of Sufficient Reason”, Philosophical Review, 116(4): 495–532. doi:10.1215/00318108-2007-012 (Scholar)
- –––, 2009, “Causal Models”, in
Beebee, Hitchcock, and Menzies 2009: 299–314. (Scholar)
- –––, 2016, “Conditioning, Intervening, and Decision”, Synthese, 193(4): 1157–1176. doi:10.1007/s11229-015-0710-8 (Scholar)
- Hoyer, Patrik O., Dominik Janzing, Joris Mooij, Jonas Peters, and
Bernhard Schölkopf, 2009, “Nonlinear Causal Discovery with
Additive Noise Models”, Advances in Neural Information
Processing Systems, 21: 689–696.
[Hoyer et al. 2009 available online] (Scholar)
- Huang, Yimin and Marco Valtorta, 2006, “Pearl’s
Calculus of Intervention Is Complete”, in Dechter and Richardson
2006: 217–224.
[Huang & Valtorta 2006 available online] (Scholar)
- Hyttinen, Antti, Frederick Eberhardt, and Patrik O. Hoyer, 2013a,
“Experiment Selection for Causal Discovery”, Journal
of Machine Learning Research, 14: 3041–3071.
[Hyttinen, Eberhardt, & Hoyer 2013a available online] (Scholar)
- Hyttinen, Antti, Frederick Eberhardt, and Matti Järvisalo,
2014, “Constraint-based Causal Discovery: Conflict Resolution
with Answer Set Programming”, in Nevin Zhang and Jin Tian
(eds.), Proceedings of the Thirtieth Conference on Uncertainty in
Artificial Intelligence, Corvallis, OR: AUAI Press, pp.
340–349. (Scholar)
- –––, 2015, “Do-calculus When the True
Graph is Unknown”, in Marina Meila and Tom Heskes (eds.),
Uncertainty in Artificial Intelligence: Proceedings of the
Thirty-First Conference, Corvallis, OR: AUAI Press, pp.
395–404. (Scholar)
- Hyttinen, Antti, Patrik O. Hoyer, Frederick Eberhardt, and Matti
Järvisalo, 2013b, “Discovering Cyclic Causal Models with
Latent Variables: A General SAT-Based Procedure”, in Nichols and
Smyth 2013: 301–310. (Scholar)
- Hyttinen, Antti, Sergey Plis, Matti Järvisalo, Frederick
Eberhardt, and David Danks, 2016, “Causal Discovery from
Subsampled Time Series Data by Constraint Optimization”, in
Alessandro Antonucci, Giorgio Corani, Cassio Polpo Campos (eds.)
Proceedings of the Eighth International Conference on
Probabilistic Graphical Models, pp. 216–227. (Scholar)
- Jeffrey, Richard, 1983, The Logic of Decision, Second Edition, Chicago: University of Chicago Press. (Scholar)
- Joyce, James M., 1999, The Foundations of Causal Decision
Theory, Cambridge: Cambridge University Press.
doi:10.1017/cbo9780511498497 (Scholar)
- Lewis, David, 1973a, “Causation”, Journal of Philosophy, 70(17): 556–567. doi:10.2307/2025310 (Scholar)
- –––, 1973b, Counterfactuals, Oxford: Blackwell. (Scholar)
- –––, 1979, “Counterfactual Dependence and Time’s Arrow”, Noûs, 13(4): 455–476. doi:10.2307/2215339 (Scholar)
- –––, 1981, “Causal Decision Theory”, Australasian Journal of Philosophy, 59(1): 5–30. doi:10.1080/00048408112340011 (Scholar)
- Machamer, Peter, Lindley Darden, and Carl Craver, 2000, “Thinking about Mechanisms”, Philosophy of Science, 67(1): 1–25. doi:10.1086/392759 (Scholar)
- Maier, Marc, Katerina Marazopoulou, David Arbour, and David
Jensen, 2013, “A Sound and Complete Algorithm for Learning
Causal Models from Relational Data”, in Nichols and Smyth 2013:
371–380.
[Maier et al. 2013 available online] (Scholar)
- Maier, Marc, Brian Taylor, Hüseyin Oktay, and David Jensen,
2010, “Learning Causal Models of Relational Domains”, in
Maria Fox and David Poole (eds.), Proceedings of the Twenty-Fourth
AAAI Conference on Artificial Intelligence, (Menlo Park CA: AAAI
Press), pp. 531–538.
[Maier et al. 2010 available online] (Scholar)
- Meek, Christopher, 1995, “Strong Completeness and Faithfulness in Bayesian Networks”, in Philippe Besnard and Steve Hanks (eds.) Proceedings of the Eleventh Conference Conference on Uncertainty in Artificial Intelligence, San Francisco: Morgan Kaufmann, pp. 411–418. (Scholar)
- Meek, Christopher and Clark Glymour, 1994, “Conditioning and Intervening”, British Journal for Philosophy of Science,, 45(4): 1001–1024. doi:10.1093/bjps/45.4.1001 (Scholar)
- Menzies, Peter, 2004, “Causal Models, Token Causation, and Processes”, Philosophy of Science, 71(5): 820–832. doi:10.1086/425057 (Scholar)
- Mooij, Joris, Dominik Janzing, and Bernhard Schölkopf, 2013,
“From Ordinary Differential Equations to Structural Causal
Models: the Deterministic Case”, in Nichols and Smyth 2013:
440–448. (Scholar)
- Neal, Radford M., 2000, “On Deducing Conditional
Independence from d-separation in Causal Graphs with Feedback”,
Journal of Artificial Intelligence Research, 12: 87–91.
[Neal 2000 available online] (Scholar)
- Neapolitan, Richard, 2004, Learning Bayesian Networks,
Upper Saddle River, NJ: Prentice Hall. (Scholar)
- Neapolitan, Richard and Xia Jiang, 2016, “The Bayesian
Network Story”, in Alan Hájek and Christopher Hitchcock
(eds.), The Oxford Handbook of Probability and Philosophy,
Oxford: Oxford University Press, pp. 183–99. (Scholar)
- Neyman, Jerzy, 1923 [1990], “Sur les Applications de la
Théorie des Probabilités aux Experiences Agricoles:
Essai des Principes”) Roczniki Nauk Rolniczych, Tom, X:
1–51. Excerpts translated into English by D. M. Dabrowska and
Terrence Speed, 1990, “On the Application of Probability Theory
to Agricultural Experiments. Essay on Principles”,
Statistical Science, 5(4): 465–80.
doi:10.1214/ss/1177012031 (Scholar)
- Ann Nichols and Padhraic Smyth (eds), 2013, Proceedings of the
Twenty-Ninth Conference on Uncertainty in Artificial
Intelligence, Corvallis, OR: AUAI Press. (Scholar)
- Nozick, Robert, 1969, “Newcomb’s Problem and Two
Principles of Choice”, in Nicholas Rescher (ed.), Essays in
Honor of Carl G. Hempel, Dordrecht: Reidel, pp. 114–146.
doi:10.1007/978-94-017-1466-2_7 (Scholar)
- Pearl, Judea, 1988, Probabilistic Reasoning in Intelligent Systems, San Francisco: Morgan Kaufmann. (Scholar)
- –––, 1995, “Causal Diagrams for Empirical
Research”, Biometrika, 82(4): 669–688.
doi:10.1093/biomet/82.4.669 (Scholar)
- –––, 2009, Causality: Models, Reasoning, and
Inference, Second Edition, Cambridge: Cambridge University
Press. (Scholar)
- –––, 2010, “An Introduction to Causal
Inference”, The International Journal of Biostatistics,
6(2): article 7, pp. 1–59. doi:10.2202/1557-4679.1203 (Scholar)
- Pearl, Judea and Rina Dechter, 1996, “Identifying
Independencies in Causal Graphs with Feedback”, in Eric Horvitz
and Finn Jensen (eds.) Proceedings of the Twelfth Conference on
Uncertainty in Artificial Intelligence, San Francisco: Morgan
Kaufmann, pages 420–426. (Scholar)
- Pearl, Judea, Madelyn Glymour, and Nicholas P. Jewell, 2016,
Causal Inference in Statistics: A Primer, Chichester, UK:
Wiley. (Scholar)
- Pearl, Judea and Mackenzie, Dana, 2018, The Book of Why: The New Science of Cause and Effect., New York: Basic Books. (Scholar)
- Pearl, Judea and Verma, Thomas, 1991, “A Theory of Inferred
Causation”, in James Allen, Richard Fiskes, and Erik Sandewall
(eds.), Principles of Knowledge Representation and Reasoning:
Proceedings of the Second International Conference, San Mateo,
CA: Morgan Kaufmann, pp. 441–52. (Scholar)
- Peters, Jonas, Dominik Janzing, and Bernhard Schölkopf, 2017,
Elements of Causal Inference: Foundations and Learning
Algorithms., Cambridge, MA: MIT Press. (Scholar)
- Price, Huw, 1986, “Against Causal Decision Theory”, Synthese, 67(2): 195–212. doi:10.1007/bf00540068 (Scholar)
- Ramsey, Joseph, Peter Spirtes, and Jiji Zhang, 2006, “Adjacency Faithfulness and Conservative Causal Inference”, in Dechter and Richardson 2006: 401–408. [Ramsey, Spirtes, & Zhang 2006 available online] (Scholar)
- Reichenbach, Hans, 1956, The Direction of Time, Berkeley and Los Angeles: University of California Press. (Scholar)
- Richardson, Thomas, and James Robins, 2016, Single World
Intervention Graphs (SWIGs): A Unification of the Counterfactual and
Graphical Approaches to Causality, Hanover, MA: Now
Publishers. (Scholar)
- Robins, James, 1986, “A New Approach to Causal Inference in
Mortality Studies with a Sustained Exposure Period: Applications to
Control of the Healthy Workers Survivor Effect”,
Mathematical Modeling, 7(9–12): 1393–1512.
doi:10.1016/0270-0255(86)90088-6 (Scholar)
- Rubin, Donald, 1974, “Estimating Causal Effects of
Treatments in Randomized and Nonrandomized Studies”, Journal
of Educational Psychology, 66(5): 688–701.
doi:10.1037/h0037350 (Scholar)
- Salmon, Wesley, 1984, Scientific Explanation and the Causal Structure of the World, Princeton: Princeton University Press. (Scholar)
- Scheines, Richard, 1997, “An Introduction to Causal Inference” in V. McKim and S. Turner (eds.), Causality in Crisis?, Notre Dame: University of Notre Dame Press, pp. 185–199. (Scholar)
- Schulte, Oliver and Hassan Khosravi, 2012, “Learning
Graphical Models for Relational Data via Lattice Search”,
Machine Learning, 88(3): 331–368.
doi:10.1007/s10994-012-5289-4 (Scholar)
- Schulte, Oliver, Wei Luo, and Russell Greiner, 2010, “Mind
Change Optimal Learning of Bayes Net Structure from Dependency and
Independency Data”, Information and Computation,
208(1): 63–82. doi:10.1016/j.ic.2009.03.009 (Scholar)
- Shalizi, Cosma Rohilla, and Andrew C. Thomas, 2011,
“Homophily and Contagion are Generically Confounded in
Observational Social Studies”, Sociological Methods and
Research, 40(2): 211–239. doi:10.1177/0049124111404820 (Scholar)
- Sheps, Mindel C., 1958, “Shall We Count the Living or the
Dead?” New England Journal of Medicine, 259(12):
210–4. doi:10.1056/NEJM195812182592505 (Scholar)
- Shimizu, Shohei, Patrik O. Hoyer, Aapo Hyvärinen, and Antti
Kermine, 2006, “A Linear Non-Gaussian Acyclic Model for Causal
Discovery”, Journal of Machine Learning Research, 7:
2003–2030.
[Shimizu et al. 2006 available online] (Scholar)
- Shpitser, Ilya and Judea Pearl, 2006, “Identification of
Conditional Interventional Distributions”, in Dechter and
Richardson 2006: 437–444.
[Shpister & Pearl 2006 available online] (Scholar)
- Skyrms, Brian, 1980, Causal Necessity, New Haven and London: Yale University Press. (Scholar)
- Spirtes, Peter, 1995, “Directed Cyclic Graphical
Representation of Feedback Models”, in Philippe Besnard and
Steve Hanks (eds.), Proceedings of the Eleventh Conference on
Uncertainty in Artificial Intelligence, San Francisco: Morgan
Kaufmann, pp. 491–498. (Scholar)
- Spirtes, Peter, Clark Glymour, and Richard Scheines, [SGS] 2000,
Causation, Prediction and Search, Second Edition, Cambridge,
MA: MIT Press. (Scholar)
- Spirtes, Peter and Jiji Zhang, 2014, “A Uniformly Consistent Estimator of Causal Effects under the k-Triangle-Faithfulness Assumption”, Statistical Science, 29(4): 662–678. doi:10.1214/13-sts429 (Scholar)
- Spirtes, Peter and Kun Zhang, 2016, “Causal Discovery and
Inference: Concepts and Recent Methodological Advances”,
Applied Informatics, 3: 3. doi:10.1186/s40535-016-0018-x (Scholar)
- Stalnaker, Robert, 1968, “A Theory of Conditionals”, in Nicholas Rescher (ed.) Studies in Logical Theory, Blackwell: Oxford, pp. 98–112. (Scholar)
- Steel, Daniel, 2006, “Homogeneity, Selection, and the Faithfulness Condition”. Minds and Machines, 16(3): 303–317. doi:10.1007/s11023-006-9032-4 (Scholar)
- Stern, Reuben, 2017, “Interventionist Decision Theory”, Synthese, 194(10): 4133–4153. doi:10.1007/s11229-016-1133-x (Scholar)
- Suppes, Patrick, 1970, A Probabilistic Theory of Causality, Amsterdam: North-Holland Publishing Company. (Scholar)
- Tillman, Robert E., and Frederick Eberhardt, 2014, “Learning
Causal Structure from Multiple Datasets with Similar Variable
Sets”, Behaviormetrika, 41(1): 41–64.
doi:10.2333/bhmk.41.41 (Scholar)
- Triantafillou, Sofia, and Ioannis Tsamardinos, 2015,
“Constraint-based Causal Discovery from Multiple Interventions
over Overlapping Variable Sets”, Journal of Machine Learning
Research, 16: 2147–2205.
[Triantafillou & Tsamardinos 2015 available online] (Scholar)
- Weslake, Brad, forthcoming, “A Partial Theory of Actual Causation”, British Journal for the Philosophy of Science. (Scholar)
- Woodward, James, 2003, Making Things Happen: A Theory of
Causal Explanation, Oxford: Oxford University Press.
doi:10.1093/0195155270.001.0001 (Scholar)
- Wright, Sewall, 1921, “Correlation and Causation”,
Journal of Agricultural Research, 20: 557–85. (Scholar)
- Zhalama, Jiji Zhang, and Wolfgang Mayer, 2016, “Weakening
Faithfulness: Some Heuristic Causal Discovery Algorithms”,
International Journal of Data Science and Analytics, 3(2):
93–104. doi:10.1007/s41060-016-0033-y (Scholar)
- Zhang, Jiji, 2008, “Causal Reasoning with Ancestral
Graphs”, Journal of Machine Learning Research, 9:
1437–1474.
[Zhang 2008 available online] (Scholar)
- –––, 2013a, “A Lewisian Logic of Counterfactuals”, Minds and Machines, 23(1): 77–93. doi:10.1007/s11023-011-9261-z (Scholar)
- –––, 2013b, “A Comparison of Three Occam’s Razors for Markovian Causal Models”, British Journal for Philosophy of Science, 64(2): 423–448. doi:10.1093/bjps/axs005 (Scholar)
- Zhang, Jiji and Peter Spirtes 2008, “Detection of Unfaithfulness and Robust Causal Inference”, Minds and Machines, 18(2): 239–271. doi:10.1007/s11023-008-9096-4 (Scholar)
- –––, 2016, “The Three Faces of Faithfulness”, Synthese, 193(4): 1011–1027. doi:10.1007/s11229-015-0673-9 (Scholar)
- Zhang, Kun, and Aapo Hyvärinen, 2009, “On the
Identifiability of the Post-nonlinear Causal Model”, in Jeff
Bilmes and Andrew Ng (eds.), Proceeding of the Twenty-Fifth
Conference on Uncertainty in Artificial Intelligence, (Corvallis,
OR: AUAI Press), pp. 647–655. (Scholar)