Linked bibliography for the SEP article "Chaos" by Robert Bishop
This is an automatically generated and experimental page
If everything goes well, this page should display the bibliography of the aforementioned article as it appears in the Stanford Encyclopedia of Philosophy, but with links added to PhilPapers records and Google Scholar for your convenience. Some bibliographies are not going to be represented correctly or fully up to date. In general, bibliographies of recent works are going to be much better linked than bibliographies of primary literature and older works. Entries with PhilPapers records have links on their titles. A green link indicates that the item is available online at least partially.
This experiment has been authorized by the editors of the Stanford Encyclopedia of Philosophy. The original article and bibliography can be found here.
- Adlam, E. (2022), “Laws of Nature as Constraints,” Foundations of Physics, 52: 27–41. doi:10.1007/s10701-022-00546-0 (Scholar)
- Altland, A., Gnutzmann, S., Haake, F., and Micklitz, T. (2015),
“A Review of Sigma Models for Quantum Chaotic Dynamics,”
Reports on Progress in Physics, 78: 086001.
doi:10.1088/0034-4885/78/8/086001 (Scholar)
- Anderson, M. L. (2010), “Neural Re-use as a Fundamental Organizational Principle of the Brain,” Behavioral Brain Science, 33: 45–313. doi:10.1017/s0140525x10000853 (Scholar)
- Andreev, A. V., Simons, B. D., Agam, O., and Altshuler, B. L.
(1996), “Semiclassical Field Theory Approach to Quantum
Chaos,” Nuclear Physics B, 482(3):536–566.
doi:10.1016/s0550-3213(96)00473-7 (Scholar)
- Aristotle (1985) [OTH], On the Heavens, in. J. Barnes
(ed.), The Complete Works of Aristotle: The Revised Oxford
Translation, Vol. 1. Princeton, NJ: Princeton University
Press. (Scholar)
- Arnold, V. I. and Avez, A. (1968), Ergodic Problems of
Classical Mechanics. Reading, MA: W. A. Benjamin.
doi:10.1002/zamm.19700500721 (Scholar)
- Atmanspacher, H. and Scheingraber, H. (1987), “A Fundamental Link between System Theory and Statistical Mechanics,” Foundations of Physics, 17: 939–963. doi:10.1007/bf00734321 (Scholar)
- Avnir, D., Biham, O., Lidar, D., and Malcai, O. (1998), “Is
the Geometry of Nature Fractal?”, Science, 279:
39–40. doi:10.1126/science.279.5347.39 (Scholar)
- Bedau, M. and Humphreys, P., eds. (2008), Emergence:
Contemporary Readings in Philosophy and Science. Cambridge, MA:
MIT Press. doi:10.7551/mitpress/9780262026215.001.0001 (Scholar)
- Banks, J., Brooks, J. Cairns, G. Davis, G. and Stacey, P. (1992),
“On Devaney’s Definition of Chaos,” American
Mathematical Monthly, 99: 332–334.
doi:10.1080/00029890.1992.11995856 (Scholar)
- Barone, S. R., Kunhardt, E. E., Bentson, J., and Syljuasen (1993),
“Newtonian Chaos + Heisenberg Uncertainty = Macroscopic
Indeterminacy,” American Journal of Physics, 61:
423–7. doi:10.1119/1.17235 (Scholar)
- Bayart, F. and Grivaux, S. (2005), “Hypercyclicity and
Unimodular Point Spectrum,” Journal of Functional
Analysis, 226(2): 281–300.
doi:10.1016/j.jfa.2005.06.001 (Scholar)
- Bayfield, J. E. and Koch, P. M. (1974), “Multiphoton
Ionization of Highly Excited Hydrogen Atoms,” Physical
Review Letters, 33: 258–261. (Scholar)
- Batterman, R. W. (1993), “Defining Chaos,” Philosophy of Science, 60: 43–66. doi:10.1086/289717 (Scholar)
- Beck, F. and Eccles, J. (1992), “Quantum Aspects of Brain Activity and the Role of Consciousness,” in Proceedings of the National Academy of Science, 89: 11357–11361. doi:10.1073/pnas.89.23.1135 (Scholar)
- Belot, G., and Earman, J. (1997), “Chaos Out of Order: Quantum Mechanics, the Correspondence Principle and Chaos,” Studies in the History and Philosophy of Modern Physics, 28: 147–18. doi:10.1016/s1355-2198(96)00025-1 (Scholar)
- Berry, M. V. (1977), “Regular and Irregular Semiclassical
Wavefunctions,” Journal of Physics A, 10: 2083.
doi:10.1088/0305-4470/10/12/016 (Scholar)
- Berry, M. V. (1987), “Quantum Chaology,”
Proceedings of the Royal Society A, 413: 183–198.
doi:10.1098/rspa.1987.0109 (Scholar)
- Berry, M. V. (1989), “Quantum Chaology, Not Quantum
Chaos,” Physica Scripta, 40: 335–336.
doi:10.1088/0031-8949/40/3/013 (Scholar)
- Berry, M. V. (2001), “Chaos and the Semiclassical Limit of
Quantum Mechanics (Is the Moon There When Somebody Looks?),” in
R. J. Russell, P. Clayton, K. Wegter-McNelly, and J. Polkinghorne
(eds.), Quantum Mechanics: Scientific Perspectives on Divine
Action, Vatican Observatory: CTNS Publications, pp.
41–54. (Scholar)
- Berry, M. V., Balazs, N. L., Tabor, M. and Voros, A. (1979),
“Quantum Maps,” Annals of Physics, 122:
26–63. doi:10.1016/0003-4916(79)90296-3 (Scholar)
- Berry, M. V. and Tabor, M. (1977), “Level Clustering in the
Regular Spectrum,” Proceedings of the Royal Society A,
356: 375–94. doi:10.1098/rspa.1977.0140 (Scholar)
- Berkovitz, J, Frigg, R. and Kronz, F. (2006), “The Ergodic Hierarchy, Randomness and Chaos,” Studies in History and Philosophy of Modern Physics, 37: 661–691. doi:10.1016/j.shpsb.2006.02.003 (Scholar)
- Birkhoff, G. D. (1922), “Surface Transformations and Their
Dynamical Applications,” Acta Mathematica, 43:
1–119. doi:10.1007/BF02401754 (Scholar)
- Birkhoff, G. (1927), “On the Periodic Motions of Dynamical
Systems,” Acta Mathematica 50: 359–379.
doi:10.1007/bf02421325 (Scholar)
- Bishop, R. C. (2008), “What Could Be Worse than the Butterfly Effect?”, Canadian Journal of Philosophy 38: 519–548. doi:10.1353/cjp.0.0028 (Scholar)
- Bishop, R. C. (2023), Chaos Theory: A Quick Immersion. New York, NY: Tibidabo Publishing. (Scholar)
- Bishop, R. C. (2024), The Physics of Emergence, 2nd
edition, Bristol: Institute of Physics Press.
doi:10.1088/978-0-7503-6367-9 (Scholar)
- Bishop, R. C., Silberstein, M., and Pexton, M. (2022), Emergence in Context: A Treatise in Twenty-First Century Natural Philosophy. Oxford, UK: Oxford University Press. doi:10.1093/oso/9780192849786.001.0001 (Scholar)
- Blümel, R. and Esser, B. (1994), “Quantum Chaos in the
Born-Oppenheimer Approximation,” Physical Review
Letters, 72: 3658. doi:10.1103/physrevlett.72.3658 (Scholar)
- Bohigas, O., Giannoni, M. J., and Schmit, C. (1984),
“Characterization of Chaotic Quantum Spectra and Universality of
Level Fluctuation Laws,” Physical Review Letters, 52:
1–4. doi:10.1103/physrevlett.52.1 (Scholar)
- Bohm, D. (1951), Quantum Mechanics. Englewood Cliffs, NJ:
Prentice-Hall. (Scholar)
- Bohm, D. (1952), “A Suggested Interpretation of Quantum
Theory in Terms of ‘Hidden’ Variables, I and II,”
Physical Review, 85: 166–193.
doi:10.1103/physrev.85.166, 10.1103/PhysRev.85.180 (Scholar)
- Bohm, D. and Hiley, B. J. (1993), The Undivided Universe. New York, NY: Routledge. (Scholar)
- Bokulich, A. (2008), Reexamining the Quantum-Classical Relation: Beyond Reductionism and Pluralism. Cambridge, MA: Cambridge University Press. (Scholar)
- Born, M. and Oppenheimer, R. (1927) “Zur Quantentheorie der
Molekeln,” Annalen der Physik, 389: 457–484.
doi:10.1002/andp.19273892002 (Scholar)
- Bricmont , J. (1995), “Science of Chaos or Chaos in
Science?”, Physicalia Magazine 17: 159–208. (Scholar)
- Broad, C. D. (1925), The Mind and Its Place in Nature. International Library of Philosophy. London: Kegan Paul, Trench, Trübner & Co. (Scholar)
- Brudno, A. A. (1978), “The Complexity of the Trajectory of a
Dynamical System,” Russian Mathematical Surveys 33:
197–198. (Scholar)
- Casati, G., Chirikov, B. V., Izrailev, F. M., and Ford, J. (1979),
“Stochastic Behavior of a Quantum Pendulum Under a Periodic
perturbation,” in G. Casati and J. Ford (eds.) Stochastic
Behavior in Classical and Quantum Hamiltonian Systems. Lecture
Notes in Physics, Vol. 93. Berlin: Springer, pp. 334–352.
doi:10.1007/bfb0021732 (Scholar)
- Casati, G., Chirikov, B. V., and Shepelyanski, D. (1984),
“Quantum Limitations for Chaotic Excitation of the Hydrogen Atom
in a Monochromatic Field,” Physical Review Letters, 53:
2525–2528. doi:10.1103/physrevlett.53.2525 (Scholar)
- Casati, G. and Prosen, T. (2005), “Quantum chaos and the
double-slit experiment,” Physical Review A, 72: 032111.
doi:10.1103/physreva.72.032111 (Scholar)
- Casati, G. And Prosen, T. (2009), “Quantum Chaos,” in
R. Meyers (ed.) Encyclopedia of Complexity and Systems
Science. New York, NY: Springer, pp. 7164–7174
doi:10.1007/978-0-387-30440-3_425">10.1007/978-0-387-30440-3_425 (Scholar)
- Casati, G., Valz-Gris, F. and Guarneri, I. (1980), “On the
Connection Between Quantization of Nonintegrable Systems and
Statistical Theory of Spectra,” Lettere Al Nuovo Cimento
Series 2, 28: 279–282. (Scholar)
- Chan, A., De Luca, A., and Chalker, J. T. (2021), “Spectral
Lyapunov Exponents in Chaotic and Localized Many-body Quantum
Systems,” Physical Review Research, 3: 023118. DOI:
10.1103/physrevresearch.3.023118 (Scholar)
- Chan, A., Shivam, S., Huse, D. A., and De Luca, A. (2022),
“Many-body Quantum Chaos and Space-time Translational
Invariance,” Nature Communications, 13:7484.
doi:10.1038/s41467-022-34318-1 (Scholar)
- Chemero A. and Silberstein M. (2008), “After the Philosophy of Mind: Replacing Scholasticism with Science,” Philosophy of Science, 75: 1–27. doi:10.1086/587820 (Scholar)
- Chirikov, B. V. (1992), “The Problem of Quantum
Chaos,” in W. D. Heiss (ed.), Chaos and Quantum Chaos:
Proceedings of the Eighth Chris Engelbrecht Summer School on
Theoretical Physics, Held at Blydepoort, Eastern Transvaal, South
Africa, 13–24 January 1992, Lecture Notes in Physics Vol. 411,
Berlin, DE: Springer-Verlag, pp, 1–56.
doi:10.1007/3-540-56253-2 (Scholar)
- Chirikov, B. V., Izrailev, F. M. and Shepelyanski, D. (1988),
“Quantum Chaos: Localization vs. Ergodicity,” Physica
D, 33: 77–88. doi:10.1016/s0167-2789(98)90011-2 (Scholar)
- Compton, A.(1935), The Freedom of Man. New Haven, CT: Yale University Press. (Scholar)
- Contopoulos, G. and Tzemos, A. C. (2020), “Chaos in Bohmian
Quantum Mechanics: A Short Review,” Regular and Chaotic
Dynamics, 25(5): 476–495.
doi:10.1134/s1560354720050056 (Scholar)
- Crisanti, A., Falcioni, M., Mantica, G., and Vulpiani, A. (1994),
“Applying Algorithmic Complexity to Define Chaos in the Motion
of Complex Systems,” Physical Review E, 50:
1959–1967. doi:10.1103/physreve.50.1959 (Scholar)
- Cushing, J. T. (2000), “Bohmian Insights into Quantum Chaos,” Philosophy of Science, 67 (Proceedings): S430–S445. doi:10.1086/392836 (Scholar)
- Dağ, C.B., Mistakidis, S. I., Chan, A., and Sadeghpour, R.
(2023), “Many-body Quantum Chaos in Stroboscopically-driven Cold
Atoms,” Nature Communications Physics, 6: 136
doi:10.1038/s42005-023-01258-1 (Scholar)
- Dahan, D., Arwas, G., and Grosfeld, E. (2023), “Classical
and Quantum Chaos in Chirally-driven, Dissipative Bose-Hubbard
Systems,” Nature Partner Journals Quantum Information,
8: 14. doi:10.1038/s41534-022-00518-2 (Scholar)
- Davies, E. B. (1976), Quantum Theory of Open Systems.
Waltham, MA: Academic Press. (Scholar)
- de Alcantara Bonfim, O. F., Florencio, J., and Sá Barreto,
F. C. (1998), “Chaotic Dynamics in Billiards Using Bohm’s
Quantum Mechanics,” Physical Review E, 58(3):
R2693-R2696. (Scholar)
- Devaney, R. (1989), “Dynamics of Simple Maps,”
Proceedings of Symposia in Applied Mathematics, 39:
1–24. doi:10.1090/psapm/039 (Scholar)
- Devaney, R. (2021), An Introduction to Chaotic Dynamical
Systems. Third Edition. New York, NY: Chapman and Hall/CRC.
doi:10.1201/9780429280801 (Scholar)
- Dingle, R. (1973), Asymptotic Expansions: Their Derivation and
Interpretation. New Yor, NY: Academic Press. (Scholar)
- Dowe, P. (2000), Physical Causation. Cambridge Studies in Probability, Induction and Decision Theory. Cambridge, UK: Cambridge University Press. doi:10.1017/cbo9780511570650 (Scholar)
- Duhem, P. (1982), The Aim and Structure of Physical
Theory. Princeton: Princeton University Press. (Scholar)
- Dürr, D., Goldstein, S., and Zanghi, N. (1992),
“Quantum Chaos, Classical Randomness, and Bohmian
Mechanics,” Journal of Statistical Physics, 68(1/2):
259–270. doi:10.1007/bf01048845 (Scholar)
- Dyson, F. (1962a), “Statistical Theory of the Energy Levels
of Complex Systems. I,” Journal of Mathematical
Physics, 3: 140–156. doi:10.1063/1.1703773 (Scholar)
- Dyson, F. (1962b), “Statistical Theory of the Energy Levels
of Complex Systems. II,” Journal of Mathematical
Physics, 3: 157–165. doi:10.1063/1.1703774 (Scholar)
- Dyson, F. (1962c), “Statistical Theory of the Energy Levels
of Complex Systems. III,” Journal of Mathematical
Physics, 3: 166–175. doi:10.1063/1.1703775 (Scholar)
- Dyson, F. (1963a), “Statistical Theory of the Energy Levels
of Complex Systems. IV,” Journal of Mathematical
Physics, 4: 701–712. doi:10.1063/1.1704008 (Scholar)
- Dyson, F. (1963b), “Statistical Theory of the Energy Levels
of Complex Systems. V,” Journal of Mathematical
Physics, 4: 713–719. doi:10.1063/1.1704009 (Scholar)
- Earman, J. (1986), A Primer on Determinism. Dordrecht, NL: Reidel. (Scholar)
- Eccles, J. (1970), Facing Reality. New York, NY: Springer. doi:10.1007/978-1-4757-3997-8 (Scholar)
- Eckhardt, B., Ford, J., and Vivaldi, F. (1984),
“Analytically Solvable Dynamical Systems Which Are not
Integrable,” Physica D, 13: 339–356.
doi:10.1016/0167-2789(84)90135-0 (Scholar)
- Emary, C. and Brandes, T. (2003), “Chaos and the Quantum
Phase Transition in the Dicke Model,” Physical Review
E, 67:066203. DOI: 10.1103/physreve.67.066203 (Scholar)
- Engel, A., Roelfsema, P., König, P. and Singer, W. (1997),
“Neurophysiological Relevance of Time,” in H. Atmanspacher
and E. Ruhnau (eds.), Time, Temporality, Now: Experiencing Time
and Concepts of Time in an Interdisciplinary Perspective. Berlin:
Springer, pp. 133–157. doi:10.1007/978-3-642-60707-3 (Scholar)
- Faisal, F. H. M. and Schwengelbeck, U. (1995), “Unified
Theory of Lyapunov Exponents and a Positive Example of Deterministic
Quantum Chaos,” Physics Letters A, 207: 31–36.
doi:10.1016/0375-9601(95)00645-j (Scholar)
- Feigenbaum, M. J. (1978), “Quantitative Universality for a
Class of Nonlinear Transformations,” Journal of Statistical
Physics, 19(1): 25–52. doi:10.1007/bf01020332 (Scholar)
- Filikhin, I., Matinyan, S. and Vlahovic, B. (2011),
“Disappearance of Quantum Chaos in Coupled Chaotic Quantum
Dots,” Physical Letters A, 375: 620–623.
doi:10.1016/j.physleta.2010.11.068 (Scholar)
- Fisher, M. P. A., Weichman, P. B., Grinstein, G., and Fisher, D.
S. (1989), “Boson Localization and the Superfluid-insulator
Transition,” Physical Review B, 40: 546.
doi:10.1103/physrevb.40.546 (Scholar)
- Fishman, S., Grempel, D. R. and Prange, R. E. (1982),
“Chaos, Quantum Recurrences, and Anderson Localization,”
Physical Review Letters, 49: 509–512.
doi:10.1103/physrevlett.49.509 (Scholar)
- Ford, J. (1986), “Chaos: Solving the Unsolvable, Predicting
the Unpredictable!”, in M. F. Barnsley and S. G. Demko (eds.),
Chaotic Dynamics and Fractals. Orlando, FL: Academic Press,
pp. 1–52. (Scholar)
- Ford, J. and Mantica, G. (1992), “Does Quantum Mechanics
Obey the Correspondence Principle? Is It Complete?”,
American Journal of Physics, 60: 1086–1097.
doi:10.1119/1.16954 (Scholar)
- Fox, R. F. (1990), “Chaos, Molecular Fluctuations, and the
Correspondence Limit,” Physical Review A, 41:
2969–2976. doi:10.1103/physreva.41.2969 (Scholar)
- Friedrichs, K. (1955), “Asymptotic Phenomena in Mathematical
Physics,” Bulletin of the American Mathematics Society,
61: 485–504. (Scholar)
- Furstenberg, H. (1973), “The Unique Ergodigity of the
Horocycle Flow,” in A. Beck (ed.), Recent Advances in
Topological Dynamics, Lecture Notes in Mathematics, Vol. 318.
Berlin, Heidelberg, DE: Springer-Verlag, pp 95–115.
doi:10.1007/bfb0061726 (Scholar)
- Furuya, K., Nemes, M. C., and Pellegrino, G. Q. (1998),
“Quantum Dynamical Manifestation of Chaotic Behavior in the
Process of Entanglement,” Physical Review Letters,
80(25): 5524–5527. doi:10.1103/physrevlett.80.5524 (Scholar)
- Fyodorov, Y, (2011), “Random Matrix Theory,”
Scholarpedia, 6(3):9886,
available online,
accessed on 22 August 2023. doi:10.4249/scholarpedia.9886 (Scholar)
- García de Polavieja, G. (1996), “Exponential
Divergence of Neighboring Quantal Trajectories,” Physical
Review A, 53(4): 2059–2061.
doi:10.1103/physreva.53.2059 (Scholar)
- Gibb, S., Hendry, R. F., and Lancaster, T., eds. (2019), Routledge Handbook of Emergence. Abingdon, UK: Routledge. (Scholar)
- Gilmore, C. (2020), “Linear Dynamical Systems,”
Irish Mathematica Society Bulletin, 86 (Winter): 47–77.
doi:10.33232/bims.0086.47.7 (Scholar)
- Grivaux, S. (2005), “Hypercyclic Operators, Mixing
Operators, and the Bounded Steps Problem,” Journal of
Operator Theory, 54(1): 147–168. (Scholar)
- Grosse-Erdmann, K.-G. and Manguillot, A. P. (2011), Linear
Chaos. Universitext. London, UK: Springer.
doi:10.1007/978-1-4471-2170-1 (Scholar)
- Guhr, T., Müller-Groeling, A., and Weidenmüller, H. A.
(1998), “Random-matrix Theories in Quantum Physics: Common
Concepts,” Physics Reports, 299: 189–425.
doi:10.1016/s0370-1573(97)00088-4 (Scholar)
- Gutzwiller, M. C. (1971), “Periodic Orbits and Classical
Quantization Conditions,” Journal of Mathematical
Physics, 91: 343–358. doi:10.1063/1.1665596 (Scholar)
- Gutzwiller, M. C. (1992), “Quantum Chaos,”
Scientific American, 266 (January): 78–84. (Scholar)
- Hallam, A., Morley, J.G., and Green, A.G. (2019), “The
Lyapunov Spectra of Quantum Thermalisation,” Nature
Communications, 10: 2708. doi:10.1038/s41467-019-10336-4 (Scholar)
- Harris, J., Yan, B., and Sinitsyn, N. A. (2022),
“Benchmarking Information Scrambling,” Physical Review
Letters, 129: 050602. doi:10.1103/physrevlett.129.050602 (Scholar)
- Hendry, R. F. (2019), “Emergence in Chemistry: Substance and
Structure,” in S. Gibb, R. F. Hendry, and T. Lancaster (eds.),
Routledge Handbook of Emergence. Abingdon, UK: Routledge, pp.
339–351. (Scholar)
- Hines, A. P., McKenzie, R. H., and Milburn, G. J. (2005),
“Quantum Entanglement and Fixed-point Bifurcations,”
Physical Review A, 71: 042303.
doi:10.1103/physreva.71.042303 (Scholar)
- Hobbs, J. (1991), “Chaos and Indeterminism,” Canadian Journal of Philosophy, 21: 141–164. doi:10.1080/00455091.1991.10717241 (Scholar)
- Holland, P. R. (1993), The Quantum Theory of Motion.
Cambridge, UK: Cambridge University Press.
doi:10.1017/cbo9780511622687 (Scholar)
- Horvat, M. and Prosen, T. (2003), “Wigner Function
Statistics in Classically Chaotic Systems,” Journal of
Physics A, 36(14): 4015 doi:10.1088/0305-4470/36/14/307 (Scholar)
- Hummel, Q., Geiger, B., Urbina, J. D., and Richter, K. (2019),
“Reversible Quantum Information Spreading in Many-Body Systems
Near Criticality,” Physical Review Letters, 123:
160401. doi:10.1103/physrevlett.123.160401 (Scholar)
- Humphreys, P. (2016), Emergence: A Philosophical Account. Oxford, UK: Oxford University Press. doi:10.1093/acprof:oso/9780190620325.001.0001 (Scholar)
- Hunt, B. R. and Yorke, J. A. (1993), “Maxwell on
Chaos,” Nonlinear Science Today, 3(1): 1–4. (Scholar)
- Ivanchenko, M., Kozinov, E., Volokitin, V., Liniov, A., Meyerov,
I., and Denisov, S. (2017), “Quantum Bifurcation
Diagrams,” Annalen der Physik, 529(8): 1600402.
doi:10.1002/andp.201600402 (Scholar)
- Ivanov, I. A., Nam, C. H., and Kim, K. T. (2019), “Quantum
Chaos in Strong Field Ionization of Hydrogen,” Journal of
Physics B, 52: 225002. doi:10.1088/1361-6455/ab46f1 (Scholar)
- Jones, R. (1990), “Determinism in Deterministic Chaos,” in A. Fine, M. Forbes, and L. Wessels (eds.), PSA 1990, Volume 2, East Lansing, MI: Philosophy of Science Association, pp. 537–549. (Scholar)
- Juarrero, A. (1999), Dynamics in Action: Intentional Behavior
as a Complex System, Cambridge, MA: MIT Press.
doi:10.7551/mitpress/2528.001.0001 (Scholar)
- Kellert, S. H.. (1993), In the Wake of Chaos, Chicago,
IL: University of Chicago Press. doi:10.7208/9780226429823 (Scholar)
- Larkin, A. and Ovchinnikov, Yu. N. (1969), “Quasiclassical
Method in the Theory of Superconductivity,” Soviet Physics
JETP 28: 1200. (Scholar)
- Le Boité, A., Orso, G., and Ciuti, C. (2014),
“Bose-Hubbard Model: Relation Between Driven-dissipative Steady
States and Equilibrium Quantum Phases,” Physical Review
A, 90: 063821. doi:10.1103/physreva.90.063821 (Scholar)
- Li, T.-Y. and Yorke, J. A. (1975), “Period Three Implies
Chaos,” The American Mathematical Monthly 82(10):
985–992. doi:10.1080/00029890.1975.11994008 (Scholar)
- Lichtenberg, A. J. and Liebermann, M. A. (1992), Regular and
Chaotic Dynamics, Second Edition. New York, NY: Springer-Verlag,
NY. doi:10.1007/978-1-4757-2184-3 (Scholar)
- Lin, W. A. and Ballentine, L. E. (1990), “Quantum Tunneling
and Chaos in a Driven Anharmonic Oscillator,” Physical
Review Letters, 65(24): 2927–2930.
doi:10.1103/physrevlett.65.2927 (Scholar)
- Lorenz, E. N. (1963), “Deterministic Nonperiodic Flow,” Journal of Atmospheric Science, 20: 131–40. doi:10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2 (Scholar)
- Lorenz, E. N. (1965), “A Study of the Predictability of a
28-Variable Atmospheric Model,” Tellus, 17:
321–33. doi:10.1111/j.2153-3490.1965.tb01424.x (Scholar)
- Marcus, B. (1975), “Unique Ergodicity of the Horocycle Flow:
Variable Negative Curvature Case,” Israel Journal of
Mathematics, 21: 133–144. doi:10.1007/bf02760791 (Scholar)
- Maxwell, J. C. [1860] (1965), “Illustrations of The
Dynamical Theory of Gases,” Philosophical Magazine, in
W. D. Nivens (ed.), The Scientific Papers of James Clerk
Maxwell. New York, NY: Dover, pp. 378–379. (Scholar)
- Maxwell, J. C. [1876] (1992), Matter and Motion. New
York, NY: Dover. (Scholar)
- May, R. M. (1976), “Simple Mathematical Models with Very
Complicated Dynamics,” Nature, 261: 459–467.
10.1038/261459a0 (Scholar)
- Mayo-Wilson, C. (2015), “Structural Chaos,” Philosophy of Science, 82: 1236–1247. doi:10.1086/684086 (Scholar)
- Muraev, P., Maksimov, D., and Kolovsky, A. (2023), “Quantum
Manifestation of the Classical Bifurcation in the Driven Dissipative
Bose-Hubbard Dimer,” Entropy, 25: 117.
doi:10.3390/e25010117 (Scholar)
- Müller, S., Heusler, S., Altland, A., Braun, P., and Haake,
F. (2009), “Periodic-orbit Theory of Universal Level
Correlations in Quantum Chaos,” New Journal of Physics,
11(10): 103025. doi:10.1088/1367-2630/11/10/103025 (Scholar)
- Müller, S., Heusler, S., Braun, P., Haake, F., and Altland,
A. (2005) “Periodic-orbit Theory of Universality in Quantum
Chaos,” Physical Review E, 72(4): 04620.
doi:10.1103/PhysRevE.72.046207 (Scholar)
- Nemes, M.C,. Furuya, K., Pellegrino, G.Q., Oliveira, A.C., Reis,
M., and Sanze, L. (2006), “Quantum Entanglement and Fixed Point
Hopf Bifurcation,” Physics Letters A, 354: 60–66.
doi:10.1016/j.physleta.2006.01.028 (Scholar)
- Omnés, R. (1994), The Interpretation of Quantum Mechanics. Princeton, NJ: University of Princeton Press. (Scholar)
- Oseledec, V. I. (1969), “A Multiplicative Ergodic Theorem.
Lyapunov Characteristic Numbers for Dynamical Systems,”
Transactions of the Moscow Mathematical Society, 19:
197–232. (Scholar)
- Ott, E. (2002), Chaos in Dynamical Systems, 2nd edition.
Cambridge, MA: Cambridge University Press.
doi:10.1017/cbo9780511803260 (Scholar)
- Palmer, T. N. (2019), “Stochastic Weather and Climate
Models,” Nature Reviews Physics, 1: 463–471.
doi:10.1038/s42254-019-0062-2 (Scholar)
- Pauli, W. (1993), “Allgemeinen Prinzipien der
Wellenmechanik,” in H. Geiger and K. Scheel (eds.), Handbuch
der Physik, vol 24. Berlin, DE: Springer-Verlag, pp.
83–272. (Scholar)
- Penrose, R. (1991), The Emperor’s New Mind: Concerning
Computers, Minds, and the Laws of Physics. New York, NY: Penguin
Books. (Scholar)
- Penrose, R. (1994), Shadows of the Mind, Oxford. Oxford, UK: Oxford University Press. (Scholar)
- Penrose, R. (1997). The Large, the Small and the Human Mind. Cambridge, UK: Cambridge University Press. (Scholar)
- Pesenson, M. Z., and Schuster, H. G., eds. (2013), Multiscale
Analysis and Nonlinear Dynamics. Weinheim, DE: Wiley-VCH (Scholar)
- Percival, I. C. (1973), “Regular and Irregular
Spectra,” Journal of Physics B, 6(9): L229–L232.
doi:10.1088/0022-3700/6/9/002 (Scholar)
- Pierre, G., Sadovskii, D. A., and Zhilinskii, B. I. (1989),
“Organization of Quantum Bifurcations: Crossover of
Rovibrational Bands in Spherical Top Molecules,” Europhysics
Letters, 10(5): 409–414.
doi:10.1209/0295-5075/10/5/004 (Scholar)
- Pilatowsky-Cameo, S., Chávez-Carlos, J.,
Bastarrachea-Magnani, M. A., Stránský, P.,
Lerma-Hernández, S., Santos, L. F., and Hirsch, J. G. (2020),
“Positive Quantum Lyapunov Exponents in Experimental Systems
with a Regular Classical Limit,” Physical Review E,
101: 010202(R). doi:10.1103/physreve.101.010202 (Scholar)
- Plenio, M. B., and Knight, P. (1998), “The Quantum-jump
Approach to Dissipative Dynamics in Quantum Optics,” Reviews
of Modern Physics, 70(1): 101–144.
doi:10.1103/revmodphys.70.101 (Scholar)
- Poincaré, H. (1913), The Foundations of Science: Science and Method, Lancaster, UK: The Science Press. (Scholar)
- Polkinghorne, J. (1989), Science and Creation: The Search for Understanding, Boston, MA: Shambhala Publications. (Scholar)
- Ponomarenko, L. A., Schedin, F., Katsnelson, M. I., Yang, R.,
Hill, E. W., Novoselov, K. S., and Geim, K. A. (2008), “Chaotic
Dirac Billiard in Graphene Quantum Dots,” Science, 320:
356–358. doi:10.1126/science.1154663 (Scholar)
- Popper, K. (1950), “Indeterminism in Quantum Physics and in
Classical Physics I,” The British Journal for the Philosophy
of Science, 1: 117–133. (Scholar)
- Port, R. and van Gelder, T., eds. (1995), Mind as Motion,
Cambridge, MA: MIT Press. (Scholar)
- Plotnitsky. A. (2023), “‘The Agency of Observation Not
to Be Neglected’: Complementarity, Causality and the Arrow of
Events in Quantum and Quantum-like Theories,” Philosophical
Transactions of the Royal Society, 381: 20220295. (Scholar)
- Primas, H. (1998), “Emergence in Exact Natural Sciences,” Acta Polytechnica Scandinavia, 91: 83–98. (Scholar)
- Reichl, L. E. and Zheng, W. M. (1984), “Field-induced
Barrier Penetration in the Quartic Potential,” Physical
Review A, 29: 2186. doi:10.1103/physreva.29.2186 (Scholar)
- Rigol, M., Dunjko, V., and Olshanii, M. (2008),
“Thermalization and Its Mechanism for Generic Isolated Quantum
Systems,” Nature, 452: 854–858.
doi:10.1038/nature06838 (Scholar)
- Robinson, C. (1995), Dynamical Systems: Stability, Symbol
Dynamics and Chaos. Boca Raton, FL: CRC Press. (Scholar)
- Rozenbaum, E. B., Ganeshan, S., and Galitski, V. (2017),
“Lyapunov Exponent and Out-of-Time-Ordered Correlator’s
Growth Rate in a Chaotic System,” Physical Review
Letters, 118: 086801. doi:10.1103/physrevlett.118.086801 (Scholar)
- Rozenbaum, E. B., Ganeshan, S., and Galitski, V. (2019),
“Early-Time Exponential Instabilities in Non-Chaotic Quantum
Systems,” arXiv:1902.05466v2 [quant-ph] 19 Sep 2019. (Scholar)
- Rueger, A. and Sharp, D. (1996), “Simple Theories of a Messy World: Truth and Explanatory Power in Nonlinear Dynamics,” British Journal for the Philosophy of Science, 47: 93–112. doi:10.1093/bjps/47.1.93 (Scholar)
- Ruelle, D., and Takens, F. (1971), “On the Nature of
Turbulence,” Communications in Mathematical Physics,
20: 167–92. doi:10.1007/bf01646553 (Scholar)
- Ruhla, C. (1992), “Poincaré, or Deterministic Chaos
(Sensitivity to Initial Conditions),” in C. Ruhla (ed.), The
Physics of Chance: From Blaise Pascal to Niels Bohr, translated
from the French by G. Barton, Oxford, UK: Oxford University
Press. (Scholar)
- Salmon, W. C. (1984), Scientific Explanation and the Causal Structure of the World, Princeton, NJ: Princeton University Press. doi:10.2307/2185459 (Scholar)
- Santos, G. C. (2015), “Ontological Emergence: How Is That Possible? Towards a New Relational Ontology,” Foundations of Science, 20: 429–446. doi:10.1007/s10699-015-9419-x (Scholar)
- Santos, G. C. (2020), “Integrated-structure Emergence and Its Mechanistic Explanation,” Synthese, 198(9): 8687–8711. doi:10.1007/s11229-020-02594-3 (Scholar)
- Schapira, B. (2017), “Dynamics of Geodesic and Horocyclic
Flows,” in B. Hasselblatt (ed.), Ergodic Theory and Negative
Curvature, Lecture Notes in Mathematics, Vol. 2164. Cham, CH:
Springer, pp.129–155. doi:10.1007/978-3-319-43059-1 (Scholar)
- Shen, B. L., Wang, M.-H., Yan, P.-C., Yu, H.-P., Song, J., and Da,
C. J. (2018), “Stable and Unstable Regions of the Lorenz
system,” Scientific Reports, 8: 14982.
doi:10.1038/s41598-018-33010-z (Scholar)
- Shenker, O. (1994), “Fractal Geometry Is not the Geometry of Nature,” Studies in the History and Philosophy of Modern Physics, 25: 147–82. doi:10.1016/0039-3681(94)90072-8 (Scholar)
- Shettigar, N., Yang, C.-L., Tu, K.-C., and Suh, C. S. (2022),
“On The Biophysical Complexity of Brain Dynamics: An
Outlook,” Dynamics, 2(2): 114–148.
doi:10.3390/dynamics2020006 (Scholar)
- Sieber, M. and Steiner, F. (1990), “Quantum Chaos in the
Hyperbola Billiard,” Physics Letters A, 148:
415–420. doi:10.1016/0375-9601(90)90492-7 (Scholar)
- Sklar, L. (1995), Physics and Chance: Philosophical Issues in the Foundations of Statistical Mechanics. Cambridge, MA: Cambridge University Press. doi:10.1017/cbo9780511624933 (Scholar)
- Smart, J. (1963), Philosophy and Scientific Realism. New York, NY: The Humanities Press. (Scholar)
- Smith, L. A. (1992), “Identification and Prediction of Low
Dimensional Dynamics,” Physica D, 58: 50–76.
doi:10.1016/0167-2789(92)90101-r (Scholar)
- Smith, L. A. (2000), “Disentangling Uncertainty and Error:
On the Predictability of Nonlinear Systems,” in A. I. Mees (ed.)
Nonlinear Dynamics and Statistics. Boston, MA: Birkhauser,
pp. 31–64. doi:10.1007/978-1-4612-0177-9 (Scholar)
- Smith, L. A. (2003), “Predictability Past Predictability
Present,” in T. Palmer and R. Hagedorn (eds.),
Predictability of Weather and Climate, Reading. New York, NY:
Cambridge University Press, pp. 217–250. (Scholar)
- Smith, L. A. (2007), Chaos: A Very Short Introduction.
Oxford, UK: Oxford University Press.
doi:10.1093/actrade/9780192853783.001.0001 (Scholar)
- Smith, L. A., Ziehmann, C., and Fraedrich, K. (1999),
“Uncertainty Dynamics and Predictability in Chaotic
Systems,” Quarterly Journal of the Royal Meteorological
Society, 125: 2855–86. doi:10.1002/qj.49712556005 (Scholar)
- Smith, P. (1998), Explaining Chaos. Cambridge, UK: Cambridge University Press. doi:10.1017/cbo9780511554544 (Scholar)
- Schneider, S. and Milburn, G. J. (2002), “Entanglement in
the Steady State of a Collective-angular-momentum (Dicke)
Model,” Physical Review A, 65: 042107.
doi:10.1103/physreva.65.042107 (Scholar)
- Stam, C. J. (2006), Nonlinear Brain Dynamics. New York,
NY: Nova Science Publishing. (Scholar)
- Stapp, H. (1993) Mind, Matter, and Quantum Mechanics.
Berlin, DE: Springer. doi:10.1007/978-3-540-89654-8 (Scholar)
- Stone, M. A. (1989), “Chaos, Prediction and Laplacian Determinism,” American Philosophical Quarterly, 26: 123–31. (Scholar)
- Sutcliffe, B. T. and Woolley, Guy R. (2012), “Atoms and
Molecules in Classical Chemistry and Quantum Mechanics,” in R.
F. Hendry, P. Needham, and A. I. Woody (eds.), Handbook of the
Philosophy of Science, Vol. 6. Amsterdam, NL: Elsevier, pp.
388–426. (Scholar)
- Symons, J. (2018), “Brute Facts about Emergence,” in E. Vintiadis and C. Mekios (eds.), Brute Facts. Oxford. UK: Oxford University Press, pp. 177–196. doi:10.1093/oso/9780198758600.001.0001 (Scholar)
- Takens, F. (1981), “Detecting Strange Attractors in
Turbulence,” in D. Rand and L.-S. Young (eds.), Dynamical
Systems and Turbulence, Lecture Notes in Mathematics, Vol. 898.
Berlin, DE: Springer-Verlag, pp. 366–381.
doi:10.1007/bfb00919 (Scholar)
- Teller, P. (2013), “The concept of measurement-precision,” Synthese, 190: 189–202. doi:10.1007/s11229-012-0141-8 (Scholar)
- Teller, P. (2018), “Measurement Accuracy Realism,” in I. Peschard and B. C. van Fraassen (eds.), The Experimental Side of Modeling. Minneapolis, MN: University of Minnesota Press, pp. 273–98. (Scholar)
- Thompson, P. D. (1957), “Uncertainty of Initial State as a
Factor in the Predictability of Large Scale Atmospheric Flow
Patterns,” Tellus, 9: 275–295.
doi:10.1111/j.2153-3490.1957.tb01885.x (Scholar)
- Toker, D., Sommer, F. T., and D’Esposito, M. (2020),
“A Simple Method for Detecting Chaos in Nature,”
Communications Biology 3: 11.
doi:10.1038/s42003-019-0715-9 (Scholar)
- Tomsovic, S. and Heller, E. J. (1993), “Long-time
Semiclassical Dynamics of Chaos: The Stadium Billiard,”
Physical Review E, 47: 282–300.
doi:10.1103/physreve.47.282 (Scholar)
- Tsuda, I (2001), “Towards an Interpretation of Dynamic Neural Activity in Terms of Chaotic Dynamical Systems,” Behavioral and Brain Sciences, 24: 793–847. doi:10.1017/s0140525x01000097 (Scholar)
- Ullmo, D. (2016), “Bohigas-Giannoni-Schmit
Conjecture,” Scholarpedia, 11(9): 31721,
available online,
accessed on 22 August 2023. doi:10.4249/scholarpedia.31721 (Scholar)
- van Gelder, T. (1995), “What Might Cognition Be If Not Computation?”, Journal of Philosophy, 92: 345–381. doi:10.2307/2941061 (Scholar)
- Viswanath, D. (2004), “The Fractal Property of the Lorenz
Attractor,” Physica D, 190: 115–128.
doi:10.1016/j.physd.2003.10.006 (Scholar)
- Wallace, D. (2012) The Emergent Multiverse: Quantum Theory according to the Everett Interpretation. Oxford, UK: Oxford University Press. doi:10.1093/acprof:oso/9780199546961.001.0001 (Scholar)
- Weigert, S. (1990), “The Configurational Quantum Cat
Map,” Zeitschrift für Physik B, 80: 3–4.
doi:10.1007/bf01390645 (Scholar)
- Weigert, S. (1992), “The Problem of Quantum
Integrability,” Physica D, 56: 107–119.
doi:10.1016/0167-2789(92)90053-p (Scholar)
- Weigert, S. (1993), “Quantum Chaos in the Configurational
Quantum Cat Map,” Physical Review A, 48:
1780–1798. doi:10.1103/physreva.48.1780 (Scholar)
- Werndl, C. (2009), “What Are the New Implications of Chaos for Unpredictability?”, British Journal for the Philosophy of Science, 60(1): 195–220. doi:10.1093/bjps/axn053 (Scholar)
- Wigner, E. P. (1951), “On the Statistical Distribution of
the Widths and Spacings of Nuclear Resonance Levels,”
Mathematical Proceedings of the Cambridge Philosophical
Society, 47: 790–798. doi:10.1017/S0305004100027237 (Scholar)
- Wigner, E. P. (1955), “Characteristic Vectors of Bordered
Matrices with Infinite Dimensions,” Annals of
Mathematics, 62(3): 548–564. doi:10.2307/1970079 (Scholar)
- Wigner, E. P. (1957), “Characteristic Vectors of Bordered
Matrices with Infinite Dimensions II,” Annals of
Mathematics, 65(2): 203–207. doi:10.2307/1969956 (Scholar)
- Wigner, E. P. (1958), “On the Distribution of the Roots of
Certain Symmetric Matrices,” Annals of Mathematics,
67(2): 325–326. doi:10.2307/1970008 (Scholar)
- Wigner, E. P. (1967), “Random Matrices in Physics,”
SAIM Reviews, 9(1): 1–23. doi:10.1137/10090 (Scholar)
- Xia, Z. (1992), “The Existence of Noncollision Singularities
in Newtonian Systems,” Annals of Mathematics, Second
Series, 135(1): 411–468. doi:10.2307/2946572 (Scholar)
- Zheng, Z., Misra, B., and Atmanspacher, H. (2003), “Observer-Dependence of Chaos Under Lorentz and Rindler Transformations,” International Journal of Theoretical Physics, 42: 869–878. doi:10.1023/a:1024427119893 (Scholar)
- Ziehmann, C., Smith, L. A., and Kurths, J. (2000),
“Localized Lyapunov Exponents and the Prediction of
Predictability,” Physics Letters A, 271: 237–51.
doi:10.1016/s0375-9601(00)00336-4 (Scholar)
- Zirnbauer, M. (1996) “Supersymmetry for Systems with Unitary
Disorder: Circular Ensembles,” Journal of Physics A,
29: 7113–7136. doi:10.1088/0305-4470/29/22/013 (Scholar)
- Zhilinskií, B. I. (2001), “Symmetry, Invariants, and
Topology II: Symmetry, Invariants, and Topology in Molecular
Models,” Physics Reports, 341: 85–171.
doi:10.1016/s0370-1573(00)00089-2 (Scholar)
- Zhilinskií, B. I. (2009). “Quantum
Bifurcations,” in R. Meyers (ed.) Encyclopedia of Complexity
and Systems Science. New York, NY: Springer, pp. 7135–7154.
doi:10.1007/978-0-387-30440-3_425 (Scholar)
- Zurek, W. H. (1991), “Quantum Measurements and the
Environment-Induced Transition from Quantum to Classical,” in A.
Ashtekar and J. Stachel (eds.), Conceptual Problems of Quantum
Gravity, Boston, MA: Birkhäuser, pp. 43–62. (Scholar)
- Zurek, W. H. and Paz, J. P. (1998), “Quantum Chaos: A
Decoherent Definition,” Physica D: Nonlinear Phenomena,
83(1-3): 300–308. doi:10.1016/0167-2789(94)00271-q (Scholar)