Linked bibliography for the SEP article "Continuity and Infinitesimals" by John L. Bell
This is an automatically generated and experimental page
If everything goes well, this page should display the bibliography of the aforementioned article as it appears in the Stanford Encyclopedia of Philosophy, but with links added to PhilPapers records and Google Scholar for your convenience. Some bibliographies are not going to be represented correctly or fully up to date. In general, bibliographies of recent works are going to be much better linked than bibliographies of primary literature and older works. Entries with PhilPapers records have links on their titles. A green link indicates that the item is available online at least partially.
This experiment has been authorized by the editors of the Stanford Encyclopedia of Philosophy. The original article and bibliography can be found here.
- Aristotle, Physics, 2 volumes (Loeb Classical Library, 228 and 255), P. H. Wickstead and F. M. Cornford (trans), Cambridge, MA: Harvard University Press and Heinemann, 1980.
- –––, [MOMM], Metaphysics, Oeconomica, Magna Moralia, 2 volumes (Loeb Classical Library, 271 and 287), Hugh Tredinnick and G. Cyril Armstrong (trans), Cambridge, MA: Harvard University Press, 1996.
- –––, The Categories, On Interpretation, Prior Analytics (Loeb Classical Library, 325), H. P. Cooke and Hugh Tredinnick (trans), Cambridge, MA: Harvard University Press, 1996a.
- –––, On the Heavens (Loeb Classical Library, 338), W. K. C. Guthrie (trans.), Cambridge, MA: Harvard University Press, 2000.
- –––, On Sophistical Refutations, On Coming-to-Be and Passing Away, On the Cosmos (Loeb Classical Library, 400), E. S. Forster and D. J. Furley (trans), Cambridge, MA: Harvard University Press, 2000a.
- Arthur, Richard T.W., 2009, “Actual Infinitesimals in Leibniz’s Early Thought”, in The Philosophy of the Young Leibniz (Studia Leibnitziana Sonderhefte 35), Mark Kurstad, Mogens Maeke, and David Snyder (eds.), Stuttgart: Franz Stener, pp. 11–28. (Scholar)
- Barnes, Jonathan, 1982, The Presocratic Philosophers, revised edition, London: Routledge. doi:10.4324/9780203007372 (Scholar)
- Baron, Margaret E., 1969 [1987], The Origins of the Infinitesimal Calculus, Oxford: Pergamon Press. Reprinted New York: Dover, 1987. (Scholar)
- Barrow, Isaac, 1670 [1916], Lectiones Geometricae, London. Translated in The Geometrical Lectures of Isaac Barrow, J. M. Child Chicago: Open Court, 1916. (Scholar)
- Beeson, Michael J., 1985, Foundations of Constructive Mathematics, Berlin: Springer-Verlag. doi:10.1007/978-3-642-68952-9 (Scholar)
- Bell, Eric Temple (ed.), 1945, The Development of Mathematics, second edition, New York: McGraw-Hill. (Scholar)
- –––, 1937 [1965], Men of Mathematics, New York: Dover publications. Reprinted, 2 volumes, London: Penguin Books, 1965. (Scholar)
- Bell, John L., 1998, A Primer of Infinitesimal Analysis, Cambridge: Cambridge University Press. doi:10.1017/cbo9780511619625 (Scholar)
- –––, 2000, “Hermann Weyl on Intuition and the Continuum”, Philosophia Mathematica, 8(3): 259–273. doi:10.1093/philmat/8.3.259 (Scholar)
- –––, 2001, “The Continuum in Smooth Infinitesimal Analysis”, in Schuster, Berger, and Osswald 2001: 19–24. doi:10.1007/978-94-015-9757-9_2">10.1007/978-94-015-9757-9_2 (Scholar)
- –––, 2003, “Hermann Weyl’s Later Philosophical Views: His Divergence from Husserl”, in Husserl and the Sciences: Selected Perspectives, Richard A. Feist (ed.), Ottawa: University of Ottawa Press. (Scholar)
- –––, 2005, The Continuous and the Infinitesimal in Mathematics and Philosophy, Milan: Polimetrica S.A. (Scholar)
- –––, 2019, The Continuous, the Discrete and the Infinitesimal in Philosophy and Mathematics (The Western Ontario Series in Philosophy of Science 82), Cham, Switzerland: Springer International Publishing. doi:10.1007/978-3-030-18707-1 (Scholar)
- –––, 2020, “Intuitionistic/constructive accounts of the continuum today”, in Shapiro and Hellman 2020: 476–501. doi:10.1093/oso/9780198809647.003.0018 (Scholar)
- –––, 2021, “The Continuum and the Evolution of the Concept of Real Number”, in Bharath Sriraman (ed), Handbook of the History and Philosophy of Mathematical Practice, Cham, Switzerland: Springer. doi:10.1007/978-3-030-19071-2_76-1 (Scholar)
- Berkeley, George, 1710 [1960], A Treatise Concerning the Principles of Human Knowledge, Dublin. Reprinted as Principles of Human Knowledge, New York: Doubleday, 1960. (Scholar)
- –––, 1734, The Analyst: A Discourse Addressed to an Infidel Mathematician: Wherein It Is Examined Whether the Object, Principles, and Inferences of the Modern Analysis Are More Distinctly Conceived, or More Evidently Deduced, Than Religious Mysteries and Points of Faith, London: J. Tonson. (Scholar)
- Bishop, Errett, 1967, Foundations of Constructive Analysis, New York: McGraw-Hill. (Scholar)
- Bishop, Errett and Douglas S. Bridges, 1985, Constructive Analysis, Berlin: Springer. doi:10.1007/978-3-642-61667-9 (Scholar)
- Bolzano, Bernard, 1817, “Rein analytischer Beweis des Lehrsatzes, dass zwischen je zwey Werthen, die ein entgegengesetzes Resultat gewähren, wenigstens eine reelle Wurzel der Gleichung liege” (Purely Analytic Proof of the Theorem That Between Any Two Values Which Give Results of Opposite Sign There Lies at Least One Real Root of the Equation), Prague. Translated in S. B. Russ, 1980, “A Translation of Bolzano’s Paper on the Intermediate Value Theorem”, Historia Mathematica, 7(2): 156–185. doi:10.1016/0315-0860(80)90036-1 (Scholar)
- –––, 1851 [1950], Paradoxien des Unendlichen, František Přihonský (ed.), Leipzig: C.H. Reclam. Translated as Paradoxes of the Infinite, Donald A. Steele (trans.), London: Routledge & Kegan Paul, 1950. doi:10.4324/9781315795782 (Scholar)
- Bos, H. J. M., 1974, “Differentials, Higher-Order Differentials and the Derivative in the Leibnizian Calculus”, Archive for History of Exact Sciences, 14(1): 1–90. doi:10.1007/bf00327456 (Scholar)
- Boyer, Carl Benjamin, 1939 [1959], The Concepts of the Calculus: a Critical and Historical Discussion of the Derivative and the Integral, New York: Columbia University Press; second edition 1949. Second edition reprinted as The History of the Calculus and its Conceptual Development, New York: Dover, 1959. (Scholar)
- –––, 1968, A History of Mathematics, New York: Wiley. (Scholar)
- Boyer, Carl B. and Uta C. Merzbach, 1989, A History of Mathematics, second edition, New York: Wiley. (Scholar)
- Bradwardine, Thomas, c. 1330, Tractatus de Continuo, published in Murdoch 1957: 339–471. (Scholar)
- Brentano, Franz, 1905 [1966], “Draft of a letter from Brentano to Husserl: Florence, 30 April, 1905”, in Franz Brentano, The True and the Evident, Oskar Kraus (ed.), Roderick M. Chilsholm (English Edition ed.), Roderick M. Chisholm, Ilse Politzer, and Kurt R. Fischer (trans.), London: Routledge and Kegan Paul, pp. 94–95. (Scholar)
- –––, 1976 [PISTC], Philosophische Untersuchungen zu Raum, Zeit und Kontinuum, Hamburg: Felix Meiner. Translated as Philosophical Investigations on Space, Time and the Continuum, Barry Smith (trans.), London: Croom Helm, 1988. This is a selection of some of Brentano’s writings. (Scholar)
- Bridges, Douglas S., 1994, “A Constructive Look at the Real Number Line”, in Ehrlich 1994a: 29–92. doi:10.1007/978-94-015-8248-3_2">10.1007/978-94-015-8248-3_2 (Scholar)
- –––, 1999, “Constructive Mathematics: A Foundation for Computable Analysis”, Theoretical Computer Science, 219(1–2): 95–109. doi:10.1016/s0304-3975(98)00285-0 (Scholar)
- Bridges, Douglas and Fred Richman, 1987, Varieties of Constructive Mathematics, Cambridge: Cambridge University Press. doi:10.1017/cbo9780511565663 (Scholar)
- Brouwer, L. E. J., 1924, “Beweis dass jede volle Funktion gleichmässig stetig ist”, Koninklijke Akademie van Wetenschappen Proc., 27: 189–193. (Scholar)
- Brouwer, L. E. J., [1975], Collected Works, Volume 1: Philosophy and Foundations of Mathematics, Arend Heyting (ed.), Amsterdam: North-Holland. (Scholar)
- Burns, C. Delisle, 1916, “William of Ockham on Continuity”, Mind, 25(4): 506–512. doi:10.1093/mind/xxv.4.506 (Scholar)
- Cajori, Florian, 1919, A History of the Conceptions of Limits and Fluxions in Great Britain, from Newton to Woodhouse, Chicago: Open Court. (Scholar)
- Cantor, Georg, 1872, “Ueber die Ausdehnung eines Satzes aus der Theorie der trigonometrischen Reihen”, Mathematische Annalen, 5(1): 123–132. doi:10.1007/bf01446327 (Scholar)
- –––, 1883 [1999], “Ueber unendliche, lineare Punktmannichfaltigkeiten”, Mathematische Annalen, 21(4): 545–591. Separately published in the same year as Grundlagen einer allgemeinen Mannigfaltigkeitslehre, Leipzig: Teubner. Translated as “Foundations of a General Theory of Manifolds: A Mathematico-Philosophical Investigation”, in Ewald 1999: II, pp. 878–919. doi:10.1007/BF01446819 (German, first publication) (Scholar)
- –––, 1893 [1965], Letter to Giulio Vivanti, 13 December 1893, published in Herbert Meschkowski, 1965, “Aus den Briefbüchern Georg Cantors”, Archive for History of Exact Sciences, 2(6): 503–519. doi:10.1007/BF00324881 (Scholar)
- –––, 1895/1897, “Beiträge zur Begrüngung der transfiniten Mengenlehre”, Mathematische Annalen, 46(4): 481–512 and 49(2): 207–246. Translated as Contributions to the Founding of the Theory of Transfinite Numbers, Philip E.B. Jourdain (trans.), New York: Dover, 1961 (original translation date 1952). See also Dauben 1979: chapter 8. doi:10.1007/bf02124929 (German, part I) doi:10.1007/BF01444205 (German, part II) (Scholar)
- Carnot, Lazare, 1797 [1832], Reflexions sur la Métaphysique du Calcul Infinitesimal, Paris: Duprat. Translated as Reflexions on the Metaphysical Principles of the Infinitesimal Analysis, W. R. Browell (trans.), Oxford: J. H. Parker, 1832. (Scholar)
- Cauchy, Augustin-Louis, 1821, Cours d’Analyse de l’École Royale Polytechnique; I.re Partie. Analyse algébrique, Paris: L’Imprimerie Royale. (Scholar)
- Chevalier, G., (ed.), 1929, “Continu et Discontinu”, special issue of Cahiers de la Nouvelle Journée, 15, Paris: Bould & Gay. (Scholar)
- Child, J. M., 1916, “Introducion” to the 1916 edition of Barrow 1670 [1916: 1–32. (Scholar)
- Cusanus, Nicolas, 1440 [1954], De Docta Ignorantia, manuscript. Translated as Of Learned Ignorance, Germain Heron (trans.), London: Routledge and Kegan Paul, 1954. (Scholar)
- D’Alembert, Jean le Rond and Denis Diderot, 1751–1766, Encyclopédie, ou, Dictionnaire raisonné des sciences, des arts et des métiers /, mis en ordre et publié par Diderot, quant à la partie mathématique, par d’Alembert, Paris. Reprinted Stuttgart-Bad Cannstatt: Frommann, 1966. (Scholar)
- Dauben, Joseph W., 1979, Georg Cantor: His Mathematics and Philosophy of the Infinite, Cambridge, MA: Harvard University Press. (Scholar)
- Dedekind, Richard, 1872 [1999], Stetigkeit und irrationale Zahlen (Continuity and Irrational Numbers), Braunschweig: F. Vieweg & Sohn. Translated in Essays on the Theory of Numbers: I. Continuity and Irrational Numbers. II. The Nature and Meaning of Numbers, Wooster Woodruff Beman (trans.), Chicago: Open Court, 1901. Reprinted New York: Dover, 1963. A revised version of the English translation appears in Ewald 1999: vol. II, p. 765–778. (Scholar)
- Descartes, René, 1637, Discours de la Méthode Pour bien conduire sa raison, et chercher la vérité dans les sciences, Leiden. Translated as Discourse on Method, Meditations, and Principles of Philosophy (Everyman’s Library), London: Dent, 1927. (Scholar)
- Dugas, René, 1950 [1988], Histoire de la mécanique, Neuchâtel, Éditions du Griffon. Translated as A History of Mechanics, J. R. Maddox (trans.), Neuchatel: Éditions du Griffon and New York: Central Book Co., 1955. Reprinted New York: Dover, 1988. (Scholar)
- Dummett, Michael A. E., 1977, Elements of Intuitionism, Oxford: Clarendon Press. (Scholar)
- Ehrlich, Philip (ed.), 1994a, Real Numbers, Generalizations of the Reals, and Theories of Continua, Dordrecht: Kluwer. doi:10.1007/978-94-015-8248-3 (Scholar)
- –––, 1994b, “All Numbers Great and Small”, in Ehrlich 1994a: 239–258. doi:10.1007/978-94-015-8248-3_9 (Scholar)
- –––, 2012, “The Absolute Arithmetic Continuum and the Unification Of All Numbers Great and Small”, The Bulletin of Symbolic Logic, 18(1): 1–45. doi:10.2178/bsl/1327328438 (Scholar)
- Euclid, The Thirteen Books of Euclid’s Elements, 3 volumes, T. L. Heath (trans.), Cambridge: Cambridge University Press, 1908. Second edition in 1926. (Scholar)
- Euler, Leonhard, 1748, Introductio in analysin infinitorum, 2 volumes, Lausanne. Translated as Introduction to Analysis of the Infinite, John D. Blanton (trans.), New York: Springer, 1988. (Scholar)
- –––, 1768/1774, Lettres à une princesse d’Allemagne sur divers sujets de physique et de philosophie, 3 volumes, Saint Petersburg (1768, first 2 volumes), Frankfurt (1774, last volume); letters originally written between 1760 and 1762. Translated as Letters of Euler on Different Subjects in Natural Philosophy: Addressed to a German Princess, 2 volumes, Henry Hunter (trans.), second edition, London, 1802. Reprinted New York: Harper and Brothers, 1835. (Scholar)
- Evans, Melbourne G., 1955, “Aristotle, Newton, and the Theory of Continuous Magnitude”, Journal of the History of Ideas, 16(4): 548–557. doi:10.2307/2707510 (Scholar)
- Ewald, William (ed.), 1999, From Kant to Hilbert: A Source Book in the Foundations of Mathematics, Volumes I and II, Oxford: Oxford University Press. (Scholar)
- Fermat, Pierre de, c. 1638, Methodus ad Disquirendam Maximam et Minimam, circulated manuscript. Printed in Oeuvres de Fermat, Tannery and Charles Henry (eds), Paris: Gauthier-Villars et fils, 1891–1922, Volume I, pp. 133–134. (Scholar)
- Fisher, Gordon M, 1978, “Cauchy and the Infinitely Small”, Historia Mathematica, 5(3): 313–331. doi:10.1016/0315-0860(78)90117-9 (Scholar)
- –––, 1981, “The Infinite and Infinitesimal Quantities of Du Bois-Reymond and Their Reception”, Archive for History of Exact Sciences, 24(2): 101–163. doi:10.1007/bf00348259 (Scholar)
- –––, 1994, “Veronese’s Non-Archimedean Linear Continuum”, in Ehrlich 1994a: 107–145. doi:10.1007/978-94-015-8248-3_4 (Scholar)
- Folina, Janet M., 1992, Poincaré and the Philosophy of Mathematics, New York: St. Martin’s Press. (Scholar)
- Furley, David J., 1967, Two Studies in the Greek Atomists. Princeton, NJ: Princeton University Press. (Scholar)
- –––, 1982, “The Greek Commentators’ Treatment of Aristotle’s Theory of the Continuous”, in Kretzmann 1982: 17–36. (Scholar)
- –––, 1987, The Greek Cosmologists, Cambridge: Cambridge University Press. doi:10.1017/cbo9780511552540 (Scholar)
- Furley, David and Reginald E Allen (eds.), 1970, Studies in Presocratic Philosophy, Volume 1: The Beginnings of Philosophy, London: Routledge. doi:10.4324/9781315511535 (Scholar)
- Galilei, Galileo, 1638 [NE; 1914], Discorsi e Dimostrazioni Matematiche, intorno a due nuove scienze, Leiden. Reprinted in the Edizione nazionale [NE] of Galileo’s works, Antonio Favaro (ed.), 1890–1909, volume 7. Translated as Dialogues Concerning Two New Sciences, Henry Crew and Alfonso de Salvio (trans), New York:Macmillan, 1914. [Galileo 1638 [1914] available online] (Scholar)
- Giordano, Paolo, 2001, “Nilpotent Infinitesimals and Synthetic Differential Geometry in Classical Logic”, in Schuster, Berger, and Osswald 2001: 75–92. doi:10.1007/978-94-015-9757-9_7 (Scholar)
- Gray, Jeremy, 1973, Ideas of Space: Euclidean, Non-Euclidean, and Relativistic, Oxford: Clarendon Press. (Scholar)
- Grant, Edward (ed.), 1974, A Source Book in Medieval Science, Cambridge, MA: Harvard University Press (Scholar)
- Gregory, Joshua Craven, 1931, A Short History of Atomism: From Democritus to Bohr, London: A. & C. Black. (Scholar)
- Grünbaum, Adolf, 1967, Modern Science and Zeno’s Paradoxes, London: Allen and Unwin. (Scholar)
- Hallett, Michael, 1984, Cantorian Set Theory and Limitation of Size, Oxford: Clarendon Press. (Scholar)
- Heath, Thomas Little, 1949, Mathematics in Aristotle, Oxford: Oxford University Press. (Scholar)
- Heron, Timothy, 1997, “C.S. Peirce’s Theories of Infinitesimals”, Transactions of the Charles S. Peirce Society, 33(3): 590–645. (Scholar)
- –––, 1981, A History of Greek Mathematics, 2 volumes, New York: Dover. (Scholar)
- Heyting, Arend, 1956, Intuitionism: An Introduction, Amsterdam: North-Holland. (Scholar)
- Hobson, E. W., 1907, The Theory of Functions of a Real Variable and the Theory of Fourier’s Series, Cambridge: Cambridge University Press. Reprinted in 2 volumes, New York: Dover, 1957 (volume 1 from the 1927 third edition and volume 2 from the 1926 second edition). (Scholar)
- Hocking, John G. and Gail S. Young, 1961, Topology, Reading, MA: Addison-Wesley. (Scholar)
- Houzel, Christian, et al., 1976, Philosophie et Calcul de l’Infini, Paris: F. Maspéro. (Scholar)
- Hyland, J. M. E., 1979, “Continuity in Spatial Toposes”, in Applications of Sheaves, Michael Fourman, Christopher Mulvey, and Dana Scott (eds.), (Lecture Notes in Mathematics 753), Berlin, Heidelberg: Springer Berlin Heidelberg, 442–465. doi:10.1007/bfb0061827 (Scholar)
- Jesseph, Douglas Michael, 1993, Berkeley’s Philosophy of Mathematics, Chicago: University of Chicago Press. (Scholar)
- Johnstone, Peter T., 1977, Topos Theory, London: Academic Press. (Scholar)
- –––, 1982, Stone Spaces (Cambridge Studies in Advanced Mathematics, 3), Cambridge: Cambridge University Press. (Scholar)
- –––, 1983, “The Point of Pointless Topology”, Bulletin of the American Mathematical Society, new series 8(1): 41–53. [Johnstone 1983 available online] (Scholar)
- –––, 2002, Sketches of an Elephant: A Topos Theory Compendium, Volumes I and II (Oxford Logic Guides: Volumes 43 and 44), Oxford: Clarendon Press. (Scholar)
- Kahn, Charles H., 2001, Pythagoras and the Pythagoreans: A Brief History, Indianapolis, IN: Hackett. (Scholar)
- Kant, Immanuel, 1781/1787, Kritik der reinen Vernunft, Riga. Translated as Critique of Pure Reason, Norman Kemp Smith (trans.), London: Macmillan, 1929; reprinted 1964. (Scholar)
- –––, 1783, Prolegomena zu einer jeden künftigen Metaphysik, die als Wissenschaft wird auftreten können, Riga. Translated as Prolegomena to Any Future Metaphysics, 2nd ed., Paul Carus (trans.), revised by James W. Ellington, Indianapolis, IN: Hackett, 2001. (Scholar)
- –––, 1786, Metaphysische Anfangsgründe der Naturwissenschaft, Riga. Translated as Metaphysical Foundations of Natural Science, James Ellington (trans.), Indianapolis, IN: Bobbs-Merrill, 1970. (Scholar)
- –––, [1992], Theoretical Philosophy, 1755–1770, David Walford (trans./ed.) in collaboration with Ralf Meerbote, Cambridge: Cambridge University Press. doi:10.1017/cbo9780511840180 (Scholar)
- Katz, Karin U. and Mikhail G. Katz, 2011, “Cauchy’s Continuum”, Perspectives on Science, 19(4): 426–452. doi:10.1162/posc_a_00047 (Scholar)
- Keisler, H. Jerome, 1994, “The Hyperreal Line”, in Ehrlich 1994a: 207–237. doi:10.1007/978-94-015-8248-3_8 (Scholar)
- Kepler, Johann, 1604, Ad Vitellionem paralipomena. Astronomiae pars optica. Translated in Optics: Paralipomena to Witelo & Optical Part of Astronomy, William H. Donahue (trans.), New Mexico: Green Lion Press, 2000. (Scholar)
- –––, 1609, Astronomia nova, Translated in New Astronomy, W. H. Donahue (trans.), Cambridge, New York: University Press, 1992; and in Selections from Kepler’s Astronomia Nova: A Science Classics Module for Humanities Studies, W. H. Donahue (trans.), Santa Fe, NM: Green Lion Press, 2005. (Scholar)
- –––, 1615, Nova stereometria doliorum vinariorum, Linz. Reprinted in Opera omnia IV, pp. 551-646. (Scholar)
- –––, [Opera omnia], Joannis Kepleri Astronomi Opera omnia, Ch. Frisch (ed.), vols. 1–8, 2; Frankfurt a.M. and Erlangen: Heyder & Zimmer, 1858–1872.
- Ketner, Kenneth Laine and Hilary Putnam, 1992, “Introduction: The Consequences of Mathematics”, in the 1992 edition of Peirce 1898 [1992: 1–54. (Scholar)
- Kirk, G. S., J. E. Raven, and M. Schofield, 1983, The Presocratic Philosophers: A Critical History with a Selection of Texts, second edition, Cambridge: Cambridge University Press. doi:10.1017/cbo9780511813375 (Scholar)
- Kline, Morris, 1972, Mathematical Thought from Ancient to Modern Times, 3 volumes, Oxford: Oxford University Press. (Scholar)
- Kock, Anders, 1981, Synthetic Differential Geometry, Cambridge: Cambridge University Press. Second edition 2006, doi:10.1017/cbo9780511550812 (Scholar)
- Körner, Stephan, 1955, Kant, Harmondsworth: Penguin Books. (Scholar)
- –––, 1960, The Philosophy of Mathematics, London: Hutchinson. (Scholar)
- Kretzmann, Norman (ed.), 1982, Infinity and Continuity in Ancient and Medieval Thought, Ithaca, NY: Cornell University Press. (Scholar)
- Kuratowski, K. and A. Mostowski, 1969, Set Theory, Amsterdam: North-Holland. (Scholar)
- Lavendhomme, René, 1996, Basic Concepts of Synthetic Differential Geometry, Dordrecht: Kluwer. doi:10.1007/978-1-4757-4588-7 (Scholar)
- Lawvere, F. W., 1971, “Quantifiers and Sheaves”, in Actes du Congrès international des mathématiciens, Nice 1970, tome I. Paris: Gauthier-Villars, pp. 329–334. (Scholar)
- –––, 1980, “Toward the Description in a Smooth Topos of the Dynamically Possible Motions and Deformations of a Continuous Body”, Cahiers de Topologie et Géométrie Différentielle Catégoriques, 21(4): 377–392. (Scholar)
- Leibniz, Gottfried Wilhelm, 1684, “Nova Methodus pro Maximis et Minimis”, Acta Eruditorum, 1684(October): 467–473. (Scholar)
- –––, 1686, “De geometria recondita et analysi indivisibilium atque infinitorum”, Acta Eruditorum, 1686(June): 292–300. (Scholar)
- –––, Mathematische Schriften, C. I. Gerhardt (ed.), Gesammelte Werke, G. H. Pertz (ed.), Third Series, Mathematik. 7 vols., Halle, 1849–63.
- –––, The Early Mathematical Manuscripts, translated from the Latin Texts of Carl Immanuel Gerhardt with Notes by J. M. Child, Chicago: Open Court, 1920.
- –––, Leibniz: Philosophical Writings, Mary De Selincourt Morris (trans.), (Everyman’s Library 905), London: Dent, 1934.
- –––, Leibniz: Selections, Philip P. Wiener (ed.), New York: Scribner, 1951.
- –––, [2001], The Labyrinth of the Continuum: Writings on the Continuum Problem, 1672-1686, Richard T. W. Arthur (trans.), (The Yale Leibniz), New Haven, CT: Yale University Press. (Scholar)
- L’Hôpital, Guillaume de [published anonymously], 1696, Analyse des Infiniments Petits pour l’Intelligence des Lignes Courbes (Analysis of the infinitely small to understand curves), 2 volumes, Paris, Imprimerie royale. Translated in Guillaume François Antoine de L’Hôpital and Johann Bernoulli, 2015, L’Hôpital’s Analyse des Infiniments Petits: An Annotated Translation with Source Material by Johann Bernoulli, Robert E. Bradley, Salvatore J. Petrilli, and Charles Edward Sandifer (trans.), (Science Networks Historical Studies, 50), Cham: Birkhäuser. doi:10.1007/978-3-319-17115-9 (Scholar)
- Mac Lane, Saunders, 1986, Mathematics Form and Function, New York, NY: Springer New York. doi:10.1007/978-1-4612-4872-9 (Scholar)
- Mancosu, Paolo, 1996, Philosophy of Mathematics and Mathematical Practice in the Seventeenth Century, New York: Oxford University Press. (Scholar)
- ––– (ed.), 1998, From Brouwer to Hilbert: The Debate on the Foundations of Mathematics in the1920s, New York: Oxford University Press. (Scholar)
- McLarty, Colin, 1988, “Defining Sets as Sets of Points of Spaces”, Journal of Philosophical Logic, 17(1): 75–90. doi:10.1007/bf00249676 (Scholar)
- –––, 1992, Elementary Categories, Elementary Toposes, Oxford: Oxford University Press. (Scholar)
- Miller, Fred D., Jr, 1982, “Aristotle Against the Atomists”, in Kretzmann 1982: 87–111. (Scholar)
- Moerdijk, Ieke and Gonzalo E. Reyes, 1991, Models for Smooth Infinitesimal Analysis, New York, NY: Springer New York. doi:10.1007/978-1-4757-4143-8 (Scholar)
- Moore, A. W., 1990, The Infinite, London: Routledge. (Scholar)
- Murdoch, John Emery, 1957, Geometry and the Continuum in the Fourteenth Century: A Philosophical Analysis of Thomas Bradwardine’s “Tractatus de Continuo”, PhD Dissertation, University of Wisconsin-Madison. (Scholar)
- –––, 1982, “William of Ockham and the Logic of Infinity and Continuity”, in Kretzmann 1982: 165–206. (Scholar)
- Newton, Isaac, 1687, Philosophiae Naturalis Principia Mathematica, 3 volumes, London. Translated as The Mathematical Principles of Natural Philosophy, 2 volumes, Andrew Motte (trans.), London, 1729. Revised translation, Sir Isaac Newton’s Mathematical Principles of Natural Philosophy and his System of the World, Florian Cajori (reviser), Berkeley, CA: University of California Press, 1934. (Scholar)
- –––, 1704a, Opticks: or, A Treatise of the Reflexions, Refractions, Inflexions and Colours of Light, London. Fourth edition, 1730, reprinted New York: Dover, 1952. (Scholar)
- –––, 1704b, “Tractatus de Quadratura Curvarum”, an appendix to Newton 1704. Originally written c. 1676. (Scholar)
- –––, 1711, De analysi per aequationes numero terminorum infinitas, London: Jones. Originally written in 1666. (Scholar)
- –––, 1736, The Method of Fluxions, London: Henry Woodfall. Originally written in Latin as Methodus fluxionum et serierum infinitarum, 1671. (Scholar)
- Nicholas of Autrecourt [Nicolaus de Autricuria], c. 1333–35, Exigit ordo also known as Tractatus universalis. Translated as The Universal Treatise of Nicholas of Autrecourt, Leonard A. Kennedy, Richard E. Arnold, and Arthur E. Millward (trans), Milwaukee, WI: Marquette University Press, 1971. (Scholar)
- Peirce, Charles Sanders, 1898 [1992], Reasoning and the Logic of Things: The Cambridge Conferences Lectures of 1898, Kenneth Laine Ketner (ed.), Cambridge, MA: Harvard University Press, 1992. (Scholar)
- –––, [1976], The New Elements of Mathematics, Volume III, Carolyn Eisele (ed.), The Hague: Mouton Publishers and Humanities Press, 1976. (Scholar)
- Peters, F. E., 1967, Greek Philosophical Terms: A Historic Lexicon, New York: New York University Press. (Scholar)
- Poincaré, Henri, 1902, La Science et l’Hypothèse, Paris: Ernest Flammarion. Translated as “Science and Hypothesis” in Poincaré 1913a. (Scholar)
- –––, 1905, La Valeur de la Science, Paris: Ernest Flammarion. Translated as “The Value of Science” in Poincaré 1913a. (Scholar)
- –––, 1908, Science et Méthode, Paris: Ernest Flammarion. Translated as “Science and Method” in Poincaré 1913a. (Scholar)
- –––, 1913a, Foundations of Science: Science: Science and Hypothesis, the Value of Science, Science and Method, George Bruce Halsted (trans.), New York: Science Press. (Scholar)
- –––, 1913b [1963], Dernières Pensées, Paris: Flammarion. Translated as Mathematics and Science: Last Essays, John W. Bolduc (trans.), New York: Dover, 1963. (Scholar)
- Pycior, Helena M., 1987, “Mathematics and Philosophy: Wallis, Hobbes, Barrow, and Berkeley”, Journal of the History of Ideas, 48(2): 265–286. doi:10.2307/2709558 (Scholar)
- Pyle, Andrew, 1997, Atomism and Its Critics: From Democritus to Newton, London: Thoemmes Press. (Scholar)
- Rescher, Nicholas, 1967, The Philosophy of Leibniz, Upper Saddle River, NJ: Prentice-Hall. (Scholar)
- Robinson, Abraham, 1966 [1996], Non-Standard Analysis (Studies in Logic and the Foundations of Mathematics, 42), Amsterdam: North-Holland. Revised edition, Princeton, NJ: Princeton University Press, 1974; reprinted 1996. (Scholar)
- Russell, Bertrand, 1900 [1937], A Critical Exposition of the Philosophy of Leibniz, Cambridge: Cambridge University Press. Second edition, London: Allen & Unwin, 1937. (Scholar)
- –––, 1903, Principles of Mathematics, Cambridge: Cambridge University Press. (Scholar)
- Sambursky, Samuel, 1954 [1956], Chukot Shamayim Va’aretz: Hakosmos Shel Ha’yevanim, Jerusalem: Bialik Institute. Translated as The Physical World of the Greeks, Merton Dagut (trans.), London: Routledge and Kegan Paul, 1956. (Scholar)
- –––, 1959, Physics of the Stoics, London: Routledge & Kegan Paul. (Scholar)
- Schmieden, Curt and Detlef Laugwitz, 1958, “Eine Erweiterung der Infinitesimalrechnung”, Mathematische Zeitschrift, 69(1): 1–39. doi:10.1007/bf01187391 (Scholar)
- Schuster, Peter, Ulrich Berger, and Horst Osswald (eds.), 2001, Reuniting the Antipodes—Constructive and Nonstandard Views of the Continuum: Symposium Proceedings, San Servolo, Venice, Italy, May 16–22, 1999, Dordrecht: Kluwer. doi:10.1007/978-94-015-9757-9 (Scholar)
- Shapiro, Stewart and Geoffrey Hellman (eds.), 2020, The History of Continua: Philosophical and Mathematical Perspectives, Oxford: Oxford University Press. doi:10.1093/oso/9780198809647.001.0001 (Scholar)
- Sorabji, Richard, 1982, “Atoms and Time Atoms”, in Kretzmann 1982: 37–86. (Scholar)
- –––, 1983, Time, Creation and the Continuum, Ithaca, NY: Cornell University Press. (Scholar)
- Stokes, Michael C., 1971, One and Many in Presocratic Philosophy, Cambridge, MA: Harvard University Press. (Scholar)
- Stones, G.B., 1928, “The atomic view of matter in the XVth, XVIth and XVIIth centuries”, Isis, 10: 444–65. (Scholar)
- Struik, Dirk J., 1948, A Concise History of Mathematics, 2 volumes, New York: Dover (Scholar)
- Stump, Eleonore, 1982, “Theology and Physics in De sacramento altaris: Ockham’s Theory of Indivisibles”, in Kretzmann 1982: 207–230. (Scholar)
- Truesdell, Clifford, 1972 [1984], “Leonard Euler, Supreme Geometer”, in Studies in Eighteenth Century Culture, Volume 2: Irrationalism in the Eighteenth Century, Harold E. Pagliaro (ed.), Cleveland, OH: Case Western Reserve University Press, 51–95. Revised and reprinted in his An Idiot’s Fugitive Essays on Science: Methods, Criticism, Training, Circumstances, New York: Springer Verlag, 1984, 337–379. (Scholar)
- Van Atten, Mark, Dirk Van Dalen, and Richard Tieszen, 2002, “Brouwer and Weyl: The Phenomenology and Mathematics of the Intuitive Continuumt”, Philosophia Mathematica, 10(2): 203–226. doi:10.1093/philmat/10.2.203 (Scholar)
- Van Cleve, James, 1981, “Reflections on Kant’s Second Antimony”, Synthese, 47(3): 481–494. doi:10.1007/bf01073780 (Scholar)
- Van Dalen, Dirk, 1995, “Hermann Weyl’s Intuitionistic Mathematics”, Bulletin of Symbolic Logic, 1(2): 145–169. doi:10.2307/421038 (Scholar)
- –––, 1997, “How Connected Is the Intuitionistic Continuum?”, Journal of Symbolic Logic, 62(4): 1147–1150. doi:10.2307/2275631 (Scholar)
- –––, 1998, “From a Brouwerian Point of View”, Philosophia Mathematica, 6(2): 209–226. doi:10.1093/philmat/6.2.209 (Scholar)
- Van Melsen, Andrew G., 1949 [1952], Van atomos naar atoom; de geschiedenis van het begrip atoom (Wetenschappelijk-wijsgerige bibliotheek, 2), Amsterdam: J.M. Meulenhoff. Translated as From Atomos to Atom: the History of the Concept Atom, Henry J. Koren (trans.), Pittsburgh, PA: Duquesne University Press, 1952. (Scholar)
- Vesley, Richard, 1981, “An Intuitionistic Infinitesimal Calculus”, in Constructive Mathematics, Fred Richman (ed.), (Lecture Notes in Mathematics, 873), Berlin, Heidelberg: Springer Berlin Heidelberg, 208–212. doi:10.1007/bfb0090735 (Scholar)
- Wagon, Stan, 1993, The Banach-Tarski Paradox, Cambridge: Cambridge University Press. doi:10.1017/cbo9780511609596 (Scholar)
- Weyl, Hermann, 1918 [1987], Das Kontinuum, Leipzig: Veit. Translated as The Continuum: A Critical Examination of the Foundation of Analysis, Stephen Pollard and Thomas Bole (trans), Kirksville, MO: Thomas Jefferson University Press, 1987. (Scholar)
- –––, 1918 [1922], Raum, Zeit, Materie: Vorlesungen über allgemeine Relativitätstheorie, Berlin: Springer Verlag. Fourth edition (1921) translated as Space-Time-Matter, Henry L. Brose (trans.), London: Methuen, 1922. (Scholar)
- –––, 1921 [1998], “Über der neue Grundlagenkrise der Mathematik”, Mathematische Zeitschrift, 10(1–2): 37–79. Translated as “On the New Foundational Crisis in Mathematics”, in Mancosu 1998: 86–122. doi:10.1007/BF02102305 (German) (Scholar)
- –––, 1925–27 [1998], “Die heutige Erkenntnislage in der Mathematik”, Symposion, 1: 1–32. Translated as “On the Current Epistemological Situation in Mathematics”, in Mancosu 1998: 123–142. (Scholar)
- –––, 1926 [1949], Philosophie der mathematik und naturwissenschaft (Handbuch der Philosophie), München und Berlin: R. Oldenbourg. Translated as Philosophy of Mathematics and Natural Science, Olaf Helmer and Joachim Weyl (trans) and revised by the author, Princeton, NJ: Princeton University Press, 1949. (Scholar)
- –––, 1929, “Consistency in Mathematics”, Rice Institute Pamphlets, 16(4): 245–265. Reprinted in Weyl 1968: II, pp. 150–170. [Weyl 1929 available online] (Scholar)
- –––, 1932, The Open World: Three Lectures on the Metaphysical Implications of Science, New Haven, CT: Yale University Press. (Scholar)
- –––, 1940 [1968], “The Ghost of Modality”, in Philosophical Essays in Memory of Edmund Husserl, Martin Farber (ed.), Cambridge, MA: Harvard University Press. Reprinted in Weyl 1968: III, pp. 684–709. doi:10.4159/harvard.9780674333512.c16 (Scholar)
- –––, 1954 [1968], “Address on the Unity of Knowledge”, Columbia University Bicentennial Celebration. Reprinted in Weyl 1968: IV, pp. 623–630. (Scholar)
- –––, 1955 [1969], “Erkenntnis und Besinnung”, Studia Philosophica 15: 153–171; Lecture delivered at the University of Lausanne, Switzerland, May 1954. Translated as “Insight and Reflection”, in The Spirit and Uses of the Mathematical Sciences, Thomas L. Saaty and F. Joachim Weyl (eds.), New York: McGraw-Hill, 1969, 281–301. (Scholar)
- –––, 1968, Gesammelte Abhandlungen, 4 volumes, K. Chandrasehharan (ed.), Berlin: Springer-Verlag. (Scholar)
- –––, 1985, “Axiomatic versus Constructive Procedures in Mathematics”, Tito Tonietti (ed.), The Mathematical Intelligencer, 7(4): 10–17. Probably originally written after 1953 and before his death in 1955. doi:10.1007/bf03024481 (Scholar)
- White, Michael J., 1992, The Continuous and the Discrete: Ancient Physical Theories from a Contemporary Perspective, Oxford: Clarendon Press. doi:10.1093/acprof:oso/9780198239529.001.0001 (Scholar)
- Whyte, Lancelot Law, 1961, Essay on Atomism from Peano to 1960, Middletown, CT: Wesleyan University Press. (Scholar)
- Wike, Victoria, 1982, Kant’s Antinomies of Reason: Their Origin and Resolution, Washington, DC: University Press of America. (Scholar)
- William of Ockham, [QQ], Quodlibetal questions, Alfred J Freddoso and Francis E Kelley (trans), New Haven; London: Yale University Press, 1998.