Linked bibliography for the SEP article "Continuity and Infinitesimals" by John L. Bell
This is an automatically generated and experimental page
If everything goes well, this page should display the bibliography of the aforementioned article as it appears in the Stanford Encyclopedia of Philosophy, but with links added to PhilPapers records and Google Scholar for your convenience. Some bibliographies are not going to be represented correctly or fully up to date. In general, bibliographies of recent works are going to be much better linked than bibliographies of primary literature and older works. Entries with PhilPapers records have links on their titles. A green link indicates that the item is available online at least partially.
This experiment has been authorized by the editors of the Stanford Encyclopedia of Philosophy. The original article and bibliography can be found here.
- Aristotle (1980). Physics, 2 volumes, trans. Cornford and Wickstead. Loeb Classical Library, Cambridge, MA: Harvard University Press and Heinemann. (Scholar)
- ––– (1996). Metaphysics, Oeconomica, Magna Moralia, 2 volumes, trans. Cooke and Tredinnick. Loeb Classical Library, Cambridge, MA: Harvard University Press. (Scholar)
- ––– (1996a). The Categories, On Interpretation, Prior Analytics, trans. Cooke and Tredinnick. Loeb Classical Library, Cambridge, MA: Harvard University Press. (Scholar)
- ––– (2000). On the Heavens, trans. Guthrie. Loeb Classical Library, Cambridge, MA: Harvard University Press. (Scholar)
- ––– (2000a). On Sophistical Refutations, On Coming-to-Be and Passing Away, On the Cosmos, trans. Forster and Furley. Loeb Classical Library, Cambridge, MA: Harvard University Press. (Scholar)
- Arthur, R.T.W. (2009). “Actual infinitesimals in Leibniz`s early thought,” in The Philosophy of the Young Leibniz (Studia Leibnitziana Sonderhefte 35), M. Kurstad, M. Maeke and D. Snyder (eds.), Stuttgart: Franz Stener, pp. 11–28. (Scholar)
- Barnes, J. (1986).The Presocratic Philosophers, London: Routledge. (Scholar)
- Baron, M. E. (1987). The Origins of the Infinitesimal Calculus, New York: Dover. (Scholar)
- Beeson, M.J. (1985). Foundations of Constructive Mathematics, Berlin: Springer-Verlag. (Scholar)
- Bell, E. T. (ed.) (1945). The Development of Mathematics, 2nd, New York: McGraw-Hill. (Scholar)
- ––– (1965). Men of Mathematics, 2 volumes, London: Penguin Books. (Scholar)
- Bell, J. L. (1998). A Primer of Infinitesimal Analysis, Cambridge: Cambridge University Press. (Scholar)
- ––– (2000). “Hermann Weyl on intuition and the continuum,” Philosophia Mathematica, 8: 259–273. (Scholar)
- ––– (2001). “The continuum in smooth infinitesimal analysis,” in Schuster, Berger and Osswald (2001), pp. 19–24. (Scholar)
- ––– (2003). “Hermann Weyl’s later philosophical views: his divergence from Husserl,” in Husserl and the Sciences, R. Feist (ed.), Ottawa: University of Ottawa Press. (Scholar)
- ––– (2005) The Continuous and the Infinitesimal in Mathematics and Philosophy, Milan: Polimetrica S.A. (Scholar)
- Berkeley, G. (1960). Principles of Human Knowledge, New York: Doubleday. (Scholar)
- Bishop, E. (1967). Foundations of Constructive Analysis, New York: McGraw-Hill. (Scholar)
- Bishop, E., and D. Bridges (1985). Constructive Analysis, Berlin: Springer. (Scholar)
- Bolzano, B. (1950). Paradoxes of the Infinite, trans. Prihovsky, London: Routledge & Kegan Paul. (Scholar)
- Bos, H. (1974). “Differentials, higher order differentials and the derivative in the Leibnizian Calculus,” Archive for History of Exact Sciences, 14: 1–90. (Scholar)
- Boyer, C., (1959). The History of the Calculus and its Conceptual Development, New York: Dover. (Scholar)
- ––– (1968). A History of Mathematics, New York: Wiley. (Scholar)
- ––– and U. Merzbach (1989). A History of Mathematics, 2nd edition, New York: Wiley. (Scholar)
- Brentano, F. (1988). Philosophical Investigations on Space, Time and the Continuum trans. Smith, London: Croom Helm. (Scholar)
- Bridges, D. (1994). “A constructive look at the real line,” in Ehrlich (ed.) (1994), pp. 29–92.
- ––– (1999). “Constructive mathematics: a foundation for computable analysis,” Theoretical Computer Science, 219: 95–109. (Scholar)
- ––– and F. Richman (1987). Varieties of Constructive Mathematics, Cambridge: Cambridge University Press. (Scholar)
- Brouwer, L. E. J. (1975). Collected Works: 1. A. Heyting (ed.), Amsterdam: North-Holland. (Scholar)
- Burns, C. D. (1916). “William of Ockham on continuity,” Mind, 25: 506–12. (Scholar)
- Cajori, F. (1919). A Short History of the concepts of Limits and Fluxions, Chicago: Open Court. (Scholar)
- Cantor, G., (1961). Contributions to the Founding of the Theory of Transfinite Numbers, New York: Dover. (Scholar)
- Carnot, L. (1832). Reflexions sur la Métaphysique du Calcul Infinitesimal, trans. Browell, Oxford: Parker. (Scholar)
- Chevalier, G. et al. (1929). “Continu et Discontinu,” Cahiers de la Nouvelle Journée, 15: PAGES. (Scholar)
- Child, J. (1916) The Geometrical Lectures of Isaac Barrow, Chicago: Open Court. (Scholar)
- Cusanus, N. (1954). Of Learned Ignorance, trans. Heron, London: Routledge and Kegan Paul. (Scholar)
- D’ Alembert, J., and D. Diderot (1966). Encyclopédie, ou, Dictionnaire raisonné des sciences, des arts et des métiers / (mis en ordre et publié par Diderot, quant à la partie mathématique, par d'Alembert), Stuttgart: Cannstatt = Frommann. (Scholar)
- Dauben, J. (1979). Georg Cantor: His Mathematics and Philosophy of the Infinite, Cambridge, MA: Harvard University Press. (Scholar)
- Descartes, R. (1927). Discourse on Method, Meditations, and Principles of Philosophy (Everyman's Library), London: Dent. (Scholar)
- Dedekind, R. (1963). Essays on the Theory of Numbers, New York: Dover. (Scholar)
- Dugas, R. (1988). A History of Mechanics, New York: Dover. (Scholar)
- Dummett, M. (1977). Elements of Intuitionism, Oxford: Clarendon Press. (Scholar)
- Ehrlich, P., ed. (1994). Real Numbers, Generalizations of the Reals, and Theories of Continua, Dordrecht: Kluwer. (Scholar)
- Ehrlich, P. (1994a). All numbers great and small, in Ehrlich (ed.) (1994), pp. 239–258. (Scholar)
- Ehrlich, P. (2012). “The absolute arithmetical continuum and the unification of all numbers great and small,” Bulletin of Symbolic Logic, 18: 1–45. (Scholar)
- Euler, L. (1843). Letters of Euler on Different Subjects in Natural Philosophy: Addressed to a German Princess; with Notes, and a Life of Euler, by David Brewster; Containing a Glossary of Scientific Term[s] with Additional Notes, by John Griscom, New York: Harper and Brothers. (Scholar)
- Euler, L. (1990). Introduction to Analysis of the Infinite, trans. Blanton, New York: Springer. (Scholar)
- Evans, M. (1955). “Aristotle, Newton, and the Theory of Continuous Magnitude,” Journal of the History of Ideas, 16: 548–557. (Scholar)
- Ewald, W. (1999). From Kant to Hilbert, A Source Book in the Foundations of Mathematics, Volumes I and II, Oxford: Oxford University Press. (Scholar)
- Fisher, G. (1978). “Cauchy and the Infinitely Small,” Historia Mathematica, 5: 313–331. (Scholar)
- ––– (1981), “The infinite and infinitesimal quantities of du Bois-Reymond and their reception,” Archive for History of Exact Sciences, 24/2: 101–163. (Scholar)
- ––– (1994) “Veronese's non-Archimedean linear continuum,” in Ehrlich (ed.) (1994), pp. 107–146. (Scholar)
- Folina, J. (1992). Poincaré and the Philosophy of Mathematics, New York: St. Martin's Press. (Scholar)
- Furley, D. (1967). Two Studies in the Greek Atomists. Princeton: Princeton University Press. (Scholar)
- ––– (1982). “The Greek commentators' treatment of Aristotle's theory of the continuous,” in Kretzmann (1982), pp. 17–36. (Scholar)
- ––– (1987). The Greek Cosmologists. Cambridge: Cambridge University Press. (Scholar)
- ––– and R. Allen (eds.) (1970). Studies in Presocratic Philosophy, Vol. I. London: Routledge and Kegan Paul. (Scholar)
- Galilei, G. (1954). Dialogues Concerning Two New Sciences, trans. Crew and De Salvio. New York: Dover. (Scholar)
- Giordano, P. (2001). “Nilpotent infinitesimals and synthetic differential geometry in classical logic,” in Schuster, Berger and Osswald (2001), pp. 75–92. (Scholar)
- Gray, J. (1973). Ideas of Space: Euclidean, Non-Euclidean, and Relativistic, Oxford: Clarendon Press. (Scholar)
- Grant, E. (ed.) (1974). A Source Book in Medieval Science, Cambridge, MA: Harvard University Press (Scholar)
- Gregory, J. (1931). A Short History of Atomism, London: A. & C. Black. (Scholar)
- Grünbaum, A. (1967). Zeno's Paradoxes and Modern Science, London: Allen and Unwin. (Scholar)
- Hallett, M. (1984). Cantorian Set Theory and Limitation of Size, Oxford: Clarendon Press. (Scholar)
- Heath, T. (1949). Mathematics in Aristotle, Oxford: Oxford University Press. (Scholar)
- Heron, T. (1997). “C.S. Peirce's theories of infinitesimals,” Transactions of the Charles S. Peirce Society, 33(3): 590–645. (Scholar)
- ––– (1981). A History of Greek Mathematics, 2 volumes, New York: Dover. (Scholar)
- Heyting, A. (1956). Intuitionism: An Introduction, Amsterdam: North-Holland. (Scholar)
- Hobson, E. W. (1957). The Theory of Functions of a Real Variable, New York: Dover. (Scholar)
- Hocking, J.G. and G. S. Young (1961). Topology, Reading, MA: Addison-Wesley. (Scholar)
- Houzel, C., et al. (1976). Philosophie et Calcul de l'Infini, Paris: Maspero. (Scholar)
- Hyland, J. (1979) “Continuity in spatial toposes,” in Fourman et al. (1979), pp. 442–465. (Scholar)
- Jesseph, D. (1993). Berkeley's Philosophy of Mathematics, Chicago: University of Chicago Press. (Scholar)
- Johnstone, P. T. (1977). Topos Theory, London: Academic Press. (Scholar)
- ––– (1982). Stone Spaces (Cambridge Studies in Advanced Mathematics, Volume 3), Cambridge: Cambridge University Press. (Scholar)
- ––– (1983). “The point of pointless topology,” Bull. Amer. Math. Soc. (New Series) 8 (1): 41–53. (Scholar)
- ––– (2002. Sketches of an Elephant: A Topos Theory Compendium, Vols. I and II (Oxford Logic Guides, Volumes 43 and 44), Oxford: Clarendon Press. (Scholar)
- Kahn, C. (2001). Pythagoras and the Pythagoreans: A Brief History, Indianapolis: Hackett. (Scholar)
- Kant, I. (1964). Critique of Pure Reason, London: Macmillan. (Scholar)
- ––– (1970). Metaphysical Foundations of natural Science, trans. Ellington, Indianapolis: Bobbs-Merrill. (Scholar)
- ––– (1977). Prolegomena to Any Future Metaphysics, trans. Carus, revised Ellington, Indianapolis: Hackett. (Scholar)
- ––– (1992). Theoretical Philosophy 1755–1770, Watford and Meerbote (eds.), Cambridge: Cambridge University Press. (Scholar)
- Katz, K. and Katz, M. (2011)“Cauchy's continuum,” Perspectives on Science: Historical, Philosophical, Social, 19(4): 426–452. (Scholar)
- Keisler, H. (1994). “The hyperreal line,” in Ehrlich (ed.) (1994), pp. 207–238. (Scholar)
- Kirk, G. S., J. E. Raven, and M. Schofield (1983). The Presocratic Philosophers, 2nd edition, Cambridge: Cambridge University Press. (Scholar)
- Kline, M. (1972). Mathematical Thought from Ancient to Modern Times, 3 volumes, Oxford: Oxford University Press. (Scholar)
- Kock, A. (1981). Synthetic Differential Geometry, Cambridge: Cambridge University Press. (Scholar)
- Körner, S. (1955). Kant, Harmondsworth: Penguin Books. (Scholar)
- ––– (1960). The Philosophy of Mathematics, London: Hutchinson. (Scholar)
- Kretzmann, N., (ed.) (1982). Infinity and Continuity in Ancient and Medieval Thought, Ithaca: Cornell University Press. (Scholar)
- Lavendhomme, R. (1996). Basic Concepts of Synthetic Differential Geometry, Dordrecht: Kluwer. (Scholar)
- Lawvere, F. W. (1971). “Quantifiers and sheaves,” in Actes du Congrès Intern. Des Math. Nice 1970, tome I. Paris: Gauthier-Villars, pp. 329-34. (Scholar)
- ––– (1980). “Toward the description in a smooth topos of the dynamically possible motions and deformations of a continuous body,” Cahiers de Top. et Géom. Diff., 21: 377–92. (Scholar)
- Leibniz, G. (1951). Selections. Wiener (ed.), New York: Scribners. (Scholar)
- ––– (1961). Philosophical Writings, trans. Morris (Everyman Library), London: Dent. (Scholar)
- ––– (2001). The Labyrinth of the Continuum : Writings on the Continuum Problem, 1672–1686, trans. Arthur, New Haven: Yale University Press. (Scholar)
- Mac Lane, S. (1986). Mathematics: Form and Function, Berlin: Springer-Verlag. (Scholar)
- Mancosu, P. (1996). Philosophy of Mathematics and Mathematical Practice in the Seventeenth Century, New York, Oxford: Oxford University Press. (Scholar)
- ––– (1998). From Brouwer to Hilbert: The Debate on the Foundations of Mathematics in the1920s, Oxford: Clarendon Press. (Scholar)
- McLarty, C. (1988). “Defining sets as sets of points of spaces,” J. Philosophical Logic, 17: 75–90. (Scholar)
- ––– (1992). Elementary Categories, Elementary Toposes, Oxford: Oxford University Press. (Scholar)
- Miller, F. (1982). “Aristotle against the atomists,” in Kretzmann (1982), pp. 87–111. (Scholar)
- Moerdijk, I. and Reyes, G. E. (1991). Models for Smooth Infinitesimal Analysis, Berlin: Springer-Verlag. (Scholar)
- Moore, A. W. (1990). The Infinite, London: Routledge. (Scholar)
- Murdoch, J. (1957). Geometry and the Continuum in the 14th Century: A Philosophical Analysis of Th. Bradwardinne's Tractatus de Continuo. Ph.D. Dissertation, University of Wisconsin. (Scholar)
- ––– (1982). “William of Ockham and the logic of infinity and continuity,” in Kretzmann (1982), pp. 165–206. (Scholar)
- Newton, I. (1730). Opticks, New York: Dover, 1952. (Scholar)
- Newton, I., (1962). Principia, Vols, I, II, trans. Motte, revised. Cajori, Berkeley: University of California Press. (Scholar)
- Nicholas of Autrecourt (1971). The Universal Treatise, trans. Kennedy et al., Milwaukee: Marquette University Press. (Scholar)
- Peirce, C.S. (1976). The New Elements of Mathematics, Volume III, Carolyn Eisele (ed.), The Hague: Mouton Publishers and Humanities Press. (Scholar)
- ––– (1992). Reasoning and the Logic of Things, Kenneth Laine Ketner (ed.), Cambridge, MA: Harvard University Press. (Scholar)
- Peters, F. (1967), Greek Philosophical Terms, New York: New York University Press. (Scholar)
- Poincaré. H. (1946). Foundations of Science, trans. G. Halsted, New York: Science Press. (Scholar)
- ––– (1963). Mathematics and Science: Last Essays, New York: Dover. (Scholar)
- Pycior, H. (1987). “Mathematics and Philosophy: Wallis, Hobbes, Barrow, and Berkeley.” Journal of the History of Ideas, 48 (2): 265–286. (Scholar)
- Pyle, A. (1997). Atomism and Its Critics, London: Thoemmes Press. (Scholar)
- Rescher, N. (1967). The Philosophy of Leibniz, Upper Saddle River: Prentice-Hall. (Scholar)
- Robinson, A. (1996). Non-Standard Analysis, Princeton: Princeton University Press. (Scholar)
- Russell, B. (1958). A Critical Exposition of the Philosophy of Leibniz, 2nd edition, London: Allen & Unwin. (Scholar)
- Sambursky, S. (1963). The Physical World of the Greeks, London: Routledge and Kegan Paul. (Scholar)
- ––– (1971). Physics of the Stoics, London: Hutchinson. (Scholar)
- Schuster, P., U. Berger and H. Osswald (2001). Reuniting the Antipodes—Constructive and Nonstandard Views of the Continuum, Dordrecht: Kluwer. (Scholar)
- Sorabji, R. (1982). “Atoms and time atoms,” in Kretzmann (1982), pp. 37–86. (Scholar)
- ––– (1983). Time, Creation and the Continuum, Ithaca: Cornell University Press. (Scholar)
- Stokes, M. (1971). One and Many in Presocratic Philosophy, Cambridge, MA: Harvard University Press. (Scholar)
- Stones, G.B. (1928). “The atomic view of matter in the XVth, XVIth and XVIIth centuries,” Isis, 10: 444–65. (Scholar)
- Struik, D. (1948). A Concise History of Mathematics, New York: Dover (Scholar)
- Truesdell, C. (1972). Leonard Euler, Supreme Geometer. In Irrationalism in the Eighteenth Century, H. Pagliaro (ed.), Cleveland: Case Western Reserve University Press. (Scholar)
- Van Atten, M., D. van Dalen and R. Tieszen (2002). “The phenomenology and mathematics of the intuitive continuum,” Philosophia Mathematica, 10: 203–236. (Scholar)
- Van Cleve, J. (1981). “Reflections on Kant's 2nd antinomy,” Synthese, 47: 1147–50. (Scholar)
- Van Dalen, D. (1995). “Hermann Weyl's intuitionistic mathematics,” Bulletin of Symbolic Logic, 1 (2): 145–169. (Scholar)
- ––– (1997). “How connected is the intuitionistic continuum?,” Journal of Symbolic Logic, 62: 1147–50. (Scholar)
- ––– (1998). “From a Brouwerian point of view,” Philosophia Mathematica, 6: 209–226. (Scholar)
- Van Melsen, A. (1952). From Atomos to Atom, trans. Koren, Pittsburgh: Duquesne University Press. (Scholar)
- Vesley, R. (1981). An Intuitionistic Infinitesimal Calculus (Lecture Notes in Mathematics: 873), Berlin: Springer-Verlag, pp. 208–212. (Scholar)
- Wagon, S. (1993). The Banach-Tarski Paradox, Cambridge: Cambridge University Press. (Scholar)
- Weyl, H. (1929). Consistency in Mathematics, Pamphlet 16, Houston: Rice Institute Pamphlets, pp. 245–265. Reprinted in Weyl (1968) II, pp. 150–170. (Scholar)
- ––– (1932). The Open World: Three Lectures on the Metaphysical Implications of Science, New Haven: Yale University Press. (Scholar)
- ––– (1940). “The ghost of modality,” Philosophical Essays in Memory of Edmund Husserl, Cambridge, MA: Harvard University Press. Reprinted in Weyl (1968) III, pp. 684–709. (Scholar)
- ––– (1949). Philosophy of Mathematics and Natural Science, Princeton: Princeton University Press. (Scholar)
- ––– (1950). Space-Time-Matter, trans. Brose, New York: Dover. (English translation of Raum, Zeit, Materie, Berlin: Springer Verlag, 1921.) (Scholar)
- ––– (1954). “Address on the unity of knowledge,” Columbia University Bicentennial Celebration. Reprinted in Weyl (1968) IV, pp. 623–630. (Scholar)
- ––– (1968). Gesammelte Abhandlungen, I-IV, K. Chandrasehharan (ed.), Berlin: Springer-Verlag. (Scholar)
- ––– (1969). “Insight and reflection,” Lecture delivered at the University of Lausanne, Switzerland, May 1954. Translated from German original in Studia Philosophica 15, 1955. In T.L. Saaty and F.J. Weyl (eds.), The Spirit and Uses of the Mathematical Sciences, pp. 281–301. New York: McGraw-Hill, 1969. (Scholar)
- ––– (1985). “Axiomatic versus constructive procedures in mathematics,” T. Tonietti (ed.), Mathematical Intelligencer, 7 (4): 10–17, 38. (Scholar)
- ––– (1987). The Continuum: A Critical Examination of the Foundation of Analysis, trans. S. Pollard and T. Bole, Philadelphia: Thomas Jefferson University Press. (English translation of Das Kontinuum, Leipzig: Veit, 1918.) (Scholar)
- ––– (1998). “On the New Foundational Crisis in Mathematics,” in Mancosu (1998), pp. 86–122. (English translation of ‘Über der neue Grundlagenkrise der Mathematik,’ Mathematische Zeitschrift 10, 1921, pp. 37–79.) (Scholar)
- ––– (1998a). “On the Current Epistemological Situation in Mathematics,” in Mancosu (1998), pp. 123–142. (English translation of ‘Die heutige Erkenntnislage in der Mathematik, Symposion 1, 1925–27, pp. 1–32.) (Scholar)
- White, M. J. (1992). The Continuous and the Discrete: Ancient Physical Theories from a Contemporary Perspective, Oxford: Clarendon Press, Oxford. (Scholar)
- Whyte, L. (1961). Essay on Atomism from Peano to 1960, Middletown, CT: Wesleyan University Press. (Scholar)
- Wike, V. (1982). Kant's Antinomies of Reason: Their Origin and Resolution, Lanham, MD: University Press of America. (Scholar)