Linked bibliography for the SEP article "The Frege-Hilbert Controversy" by Patricia Blanchette

This is an automatically generated and experimental page

If everything goes well, this page should display the bibliography of the aforementioned article as it appears in the Stanford Encyclopedia of Philosophy, but with links added to PhilPapers records and Google Scholar for your convenience. Some bibliographies are not going to be represented correctly or fully up to date. In general, bibliographies of recent works are going to be much better linked than bibliographies of primary literature and older works. Entries with PhilPapers records have links on their titles. A green link indicates that the item is available online at least partially.

This experiment has been authorized by the editors of the Stanford Encyclopedia of Philosophy. The original article and bibliography can be found here.

Primary Sources

  • Frege, Gottlob, 1879, Begriffsschrift, eine der arithmetischen nachgebildete Formelsprache des reinen Denkens, Halle: Louis Nebert. Translated as Concept Script, A Formal Language of Pure Thought Modeled Upon that of Arithmetic, by Stefan Bauer-Mengelberg in From Frege to Gödel, Jean van Heijenoort (ed.), Cambridge, MA: Harvard University Press, 1967, pp. 5–82. (Scholar)
  • –––, 1881, “Booles rechnende Logik und die Begriffsschrift”, unpublished manuscript in Frege 1969: 9–52 [1979: 9–46]. (Scholar)
  • –––, 1884, Die Grundlagen der Arithmetik: eine logisch-mathematische Untersuchung über den Begriff der Zahl, Breslau: W. Koebner. Translated as The Foundations of Arithmetic: A Logico-Mathematical Enquiry into the Concept of Number, by J. L. Austin, Oxford: Oxford University Press, 1950. Reprinted Evanston, IL: Northwestern University Press, 1978. (Scholar)
  • –––, 1903, “Über die Grundlagen der Geometrie” (On the Foundations of Geometry) – First Series. Jahresbericht der Deutschen Mathematiker-Vereinigung, English translation in Frege 1984: 273–284.
  • –––, 1906, “Über die Grundlagen der Geometrie” (On the Foundations of Geometry) – Second Series, Jahresbericht der Deutschen Mathematiker-Vereinigung, English translation in Frege 1984: 293–340.
  • –––, 1969 [1979], Nachgelassene Schriften und Wissenschaftlicher Briefwechsel, Hans Hermes, Friedrich Kambartel, and Friedrich Kaulbach (eds.), Hamburg: Felix Meiner Verlag, volume 1. English translation of some selections as Posthumous Writings, translated by Peter Long and Roger White, with the assistance of Raymond Hargreaves, Chicago: University of Chicago Press. (Scholar)
  • –––, 1971, On the Foundations of Geometry and Formal Theories of Arithmetic, Eike-Henner W. Kluge (trans.), New Haven, CT: Yale University Press. (Scholar)
  • –––, 1980, Philosophical and Mathematical Correspondence, Gottfried Gabriel, Hans Hermes, Friedrich Kambartel, Christian Thiel, Albert Veraart, Brian McGuinness, and Hans Kaal (eds.) Oxford: Blackwell Publishers. (Scholar)
  • –––, 1984, Collected Papers on Mathematics, Logic and Philosophy, Brian F. McGuinness (ed.), Oxford: Blackwell Publishers. (Scholar)
  • Hallett, Michael and Ulrich Majer (eds.), 2004, David Hilbert’s Lectures on the Foundations of Geometry 1891–1902, Berlin: Springer. (Scholar)
  • Hilbert, David, 1899, Grundlagen der Geometrie, Leipzig: Teubner. An English translation of the 10th edition is available as Foundations of Geometry, Leo Unger (trans.), La Salle, IL: Open Court Press, 1971. (Scholar)
  • Huntington, Edward V., 1902, “A Complete Set of Postulates for the Theory of Absolute Continuous Magnitude”, Transactions of the American Mathematical Society, 3(2): 264–279. (Scholar)
  • Padoa, Alessandro, 1900, “Essai d’une théorie algébrique des nombres entiers, précédé d’une introduction logique à une theorie déductive quelconque” in Bibliothèque du Congrès International de Philosophie, Paris, 1900, Paris: Armand Colin, 1901, Volume 3, pp. 309–365; partial English translation as “Logical introduction to any deductive theory” in From Frege to Gödel, Jean van Heijenoort (ed.), Cambridge, MA: Harvard University Press, 1967, pp. 118–123. (Scholar)
  • Peano, Giuseppe, 1889, Principii di Geometria logicamente esposti, Torino: Fratelli Bocca. (Scholar)
  • Pieri, Mario, 1898, “I Principii della geometria di posizione composti in sistema logico deduttivo”, Memorie della Reale Accademia delle Scienze di Torino (Series 2), 48: 1–62. (Scholar)
  • Veblen, Oswald, 1904, “A System of Axioms for Geometry”, Transactions of the American Mathematical Society, 5(3): 343–384. doi:10.2307/1986462 (Scholar)

Secondary Sources

Generated Sun Aug 2 16:04:10 2020