Linked bibliography for the SEP article "Generalized Quantifiers" by Dag Westerståhl

This is an automatically generated and experimental page

If everything goes well, this page should display the bibliography of the aforementioned article as it appears in the Stanford Encyclopedia of Philosophy, but with links added to PhilPapers records and Google Scholar for your convenience. Some bibliographies are not going to be represented correctly or fully up to date. In general, bibliographies of recent works are going to be much better linked than bibliographies of primary literature and older works. Entries with PhilPapers records have links on their titles. A green link indicates that the item is available online at least partially.

This experiment has been authorized by the editors of the Stanford Encyclopedia of Philosophy. The original article and bibliography can be found here.

  • Bach, Emmon, Eloise Jelinek, Angelika Kratzer, and Barbara H. Partee (eds.), 1995, Quantification in Natural Languages, (Studies in Linguistics and Philosophy 54), Dordrecht: Springer Netherlands. doi:10.1007/978-94-017-2817-1
  • Barwise, Jon, 1979, “On Branching Quantifiers in English”, Journal of Philosophical Logic, 8(1): 47–80. doi:10.1007/BF00258419
  • Barwise, Jon and Robin Cooper, 1981, “Generalized Quantifiers and Natural Language”, Linguistics and Philosophy, 4(2): 159–219. doi:10.1007/BF00350139
  • Barwise, Jon and Solomon Feferman (eds.), 1985, Model Theoretic Logics, (Perspectives in Mathematical Logic), New York: Springer-Verlag.
  • van Benthem, Johan, 1986, Essays in Logical Semantics, (Studies in Linguistics and Philosophy, 29), Dordrecht: D. Reidel.
  • –––, 1989, “Polyadic Quantifiers”, Linguistics and Philosophy, 12(4): 437–464. doi:10.1007/BF00632472
  • van Benthem, Johan F. A. K. and Alice ter Meulen (eds.), 2011, Handbook of Logic and Language, second edition, Amsterdam: Elsevier.
  • Bonnay, Denis, 2008, “Logicality and Invariance”, Bulletin of Symbolic Logic, 14(1): 29–68. doi:10.2178/bsl/1208358843
  • Cartwright, Richard L., 1994, “Speaking of Everything”, Noûs, 28(1): 1–20. doi:10.2307/2215917
  • Clark, Robin, 2011a, “Generalized Quantifiers and Number Sense”, Philosophy Compass, 6(9): 611–621. doi:10.1111/j.1747-9991.2011.00419.x
  • –––, 2011b, “On the Learnability of Quantifiers”, in van Benthem and ter Meulen 2011: 911–923.
  • Clark, Robin and Murray Grossman, 2007, “Number Sense and Quantifier Interpretation”, Topoi, 26(1): 51–62. doi:10.1007/s11245-006-9008-2
  • Dalrymple, Mary, Makoto Kanazawa, Yookyung Kim, Sam McHombo, and Stanley Peters, 1998, “Reciprocal Expressions and the Concept of Reciprocity”, Linguistics and Philosophy, 21(2): 159–210. doi:10.1023/A:1005330227480
  • Ebbinghaus, Heinz-Dieter and Jörg Flum, 1995, Finite Model Theory, (Springer Monographs in Mathematics), Berlin: Springer Berlin Heidelberg. doi:10.1007/3-540-28788-4
  • Ebbinghaus, Heinz-Dieter, Jörg Flum, and Wolfgang Thomas, 1994, Mathematical Logic (Einführung in die mathematische Logik), second edition, New York: Springer-Verlag. doi:10.1007/978-1-4757-2355-7
  • Filin Karlsson, Martin, 2017, “All There Is: On the Semantics of Quantification over Absolutely Everything”, Ph.D. Thesis, University of Gothenburg, (Acta Philosophica Gothoburgensia 31). [Karlsson 2017 available online]
  • Geurts, Bart and Frans van der Slik, 2005, “Monotonicity and Processing Load”, Journal of Semantics, 22(1): 97–117. doi:10.1093/jos/ffh018
  • Glanzberg, Michael, 2004, “Quantification and Realism”, Philosophy and Phenomenological Research, 69(3): 541–572. doi:10.1111/j.1933-1592.2004.tb00518.x
  • Hackl, Martin, 2000, “Comparative Quantifiers”, PhD Thesis, Massachusetts Institute of Technology. [Hackl 2000 available online]
  • Hella, Lauri, 1989, “Definability Hierarchies of Generalized Quantifiers”, Annals of Pure and Applied Logic, 43(3): 235–271. doi:10.1016/0168-0072(89)90070-5
  • Hella, Lauri, Jouko Väänänen, and Dag Westerståhl, 1997, “Definability of Polyadic Lifts of Generalized Quantifiers”, Journal of Logic, Language and Information, 6(3): 305–335. doi:10.1023/A:1008215718090
  • Henkin, Leon, 1961, “Some Remarks on Infinitely Long Formulas”, in Infinitistic Methods: Proceedings of the Symposium on Foundations of Mathematics, Warsaw, 2-9 September 1959, Oxford: Pergamon Press, 167–183.
  • Higginbotham, James and Robert May, 1981, “Questions, Quantifiers and Crossing”, The Linguistic Review, 1(1): 41–79. doi:10.1515/tlir.1981.1.1.41
  • Hintikka, Jaakko, 1973, “Quantifiers vs. Quantification Theory”, Dialectica, 27(3–4): 329–358. doi:10.1111/j.1746-8361.1973.tb00624.x
  • Hopcroft, John E. and Jeffrey D. Ullman, 1979, Introduction to Automata Theory, Languages, and Computation, (Addison-Wesley Series in Computer Science), Reading, MA: Addison-Wesley.
  • Icard III, Thomas F., 2014, “Higher-Order Syllogistics”, in Formal Grammar 2014, Glyn Morrill, Reinhard Muskens, Rainer Osswald, and Frank Richter (eds.), (Lecture Notes in Computer Science 8612), Berlin, Heidelberg: Springer Berlin Heidelberg, 1–14. doi:10.1007/978-3-662-44121-3_1
  • Icard III, Thomas Icard and Lawrence S. Moss, 2014, “Recent Progress in Monotonicity”, in Perspectives on Semantic Representations for Textual Inference, (LiLT 9), Stanford, CA: CSLI Publications, 167–194. [Icard and Moss 2014 available online]
  • Icard, Thomas, Lawrence Moss, and William Tune, 2017, “A Monotonicity Calculus and Its Completeness”, in Proceedings of the 15th Meeting on the Mathematics of Language, London, UK: Association for Computational Linguistics, 75–87. doi:10.18653/v1/W17-3408
  • Keenan, Edward L., 1992, “Beyond the Frege Boundary”, Linguistics and Philosophy, 15(2): 199–221. doi:10.1007/BF00635807
  • Keenan, Edward L. and Leonard M. Faltz, 1984, Boolean Semantics for Natural Language, Dordrecht: Springer Netherlands. doi:10.1007/978-94-009-6404-4
  • Keenan, Edward L. and Lawrence S. Moss, 1985, “Generalized Quantifiers and the Expressive Power of Natural Language”, in Generalized Quantifiers in Natural Language, Alice ter Meulen and Johan van Benthem (eds.), Berlin, Boston: De Gruyter, 73–124. doi:10.1515/9783110867909.73
  • Keenan, Edward L. and Denis Paperno (eds.), 2012, Handbook of Quantifiers in Natural Language, (Studies in Linguistics and Philosophy 90), Dordrecht: Springer Netherlands. doi:10.1007/978-94-007-2681-9
  • Keenan, Edward L. and Jonathan Stavi, 1986, “A Semantic Characterization of Natural Language Determiners”, Linguistics and Philosophy, 9(3): 253–326. doi:10.1007/BF00630273
  • Keenan, Edward L. and Dag Westerståhl, 2011, “Generalized Quantifiers in Linguistics and Logic”, in van Benthem and ter Meulen 2011: 859–910.
  • Lewis, David, 1975, “Adverbs of Quantification”, in Formal Semantics of Natural Language, Edward L. Keenan (ed.), Cambridge: Cambridge University Press, 3–15. doi:10.1017/CBO9780511897696.003
  • Lindström, Per, 1966, “First Order Predicate Logic with Generalized Quantifiers”, Theoria, 32(3): 186–195. doi:10.1111/j.1755-2567.1966.tb00600.x
  • Linnebo, Øystein, 2006, “Sets, Properties, and Unrestricted Quantification”, in Rayo and Uzquiano 2006: 149–178.
  • Luosto, Kerkko, 2000, “Hierarchies of Monadic Generalized Quantifiers”, Journal of Symbolic Logic, 65(3): 1241–1263. doi:10.2307/2586699
  • Montague, Richard, 1974, Formal Philosophy: Selected Papers of Richard Montague, Richmond H. Thomason (ed.), New Haven, CT: Yale University Press.
  • Moss, Lawrence S., 2015, “Natural Logic”, in The Handbook of Contemporary Semantic Theory, Shalom Lappin and Chris Fox (eds.), second edition, John Wiley & Sons, 646–681.
  • Mostowski, Andrzej, 1957, “On a Generalization of Quantifiers”, Fundamenta Mathematicae, 44(1): 12–36. doi:10.4064/fm-44-1-12-36
  • Mostowski, Marcin, 1998, “Computational Semantics for Monadic Quantifiers”, Journal of Applied Non-Classical Logics, 8(1–2): 107–121. doi:10.1080/11663081.1998.10510934
  • Odic, Darko, Paul Pietroski, Tim Hunter, Justin Halberda, and Jeffrey Lidz, 2018, “Individuals and Non-Individuals in Cognition and Semantics: The Mass/Count Distinction and Quantity Representation”, Glossa: A Journal of General Linguistics, 3(1): 61. doi:10.5334/gjgl.409
  • Paperno, Denis and Edward L. Keenan (eds.), 2017, Handbook of Quantifiers in Natural Language: Volume II, (Studies in Linguistics and Philosophy 97), Cham: Springer International Publishing. doi:10.1007/978-3-319-44330-0
  • Parsons, Terence, 1997 [2017], “The Traditional Square of Opposition”, The Stanford Encyclopedia of Philosophy, (Summer 2017), Edward N. Zalta (ed.). URL = <https://plato.stanford.edu/archives/sum2017/entries/square/>
  • Peters, Stanley and Dag Westerståhl, 2002, “Does English Really Have Resumptive Quantification?”, in The Construction of Meaning, David I. Beaver, Luis D. Casillas Martínez, Brady Z. Clark, and Stefan Kaufmann (eds.), Stanford, CA: CSLI Publications, 181–195.
  • –––, 2006, Quantifiers in Language and Logic, Oxford: Oxford University Press. doi:10.1093/acprof:oso/9780199291267.001.0001
  • –––, 2013, “The Semantics of Possessives”, Language, 89(4): 713–759. doi:10.1353/lan.2013.0065
  • Pietroski, Paul, Jeffrey Lidz, Tim Hunter, and Justin Halberda, 2009, “The Meaning of ‘Most’: Semantics, Numerosity and Psychology”, Mind & Language, 24(5): 554–585. doi:10.1111/j.1468-0017.2009.01374.x
  • Rayo, Agustín, 2012, “Absolute Generality Reconsidered”, in Oxford Studies in Metaphysics Volume 7, Karen Bennett and Dean W. Zimmerman (eds.), Oxford: Oxford University Press, 93–126. doi:10.1093/acprof:oso/9780199659081.003.0004
  • Rayo, Agustín and Gabriel Uzquiano (eds.), 2006, Absolute Generality, Oxford: Clarendon Press.
  • Sher, Gila Y., 1997, “Partially-Ordered (Branching) Generalized Quantifiers: A General Definition”, Journal of Philosophical Logic, 26(1): 1–43. doi:10.1023/A:1017944808396
  • Steinert-Threlkeld, Shane, 2016, “Some Properties of Iterated Languages”, Journal of Logic, Language and Information, 25(2): 191–213. doi:10.1007/s10849-016-9239-6
  • Steinert-Threlkeld, Shane and Thomas F. Icard III, 2013, “Iterating Semantic Automata”, Linguistics and Philosophy, 36(2): 151–173. doi:10.1007/s10988-013-9132-6
  • Steinert-Threlkeld, Shane and Jakub Szymanik, forthcoming, “Learnability and Semantic Universals”, Semantics and Pragmatics. [Steinert-Threlkeld and Szymanik forthcoming available online]
  • Szabolcsi, Anna, 2010, Quantification, Cambridge: Cambridge University Press. doi:10.1017/CBO9780511781681
  • Szymanik, Jakub, 2016, Quantifiers and Cognition: Logical and Computational Perspectives, (Studies in Linguistics and Philosophy 96), Cham: Springer International Publishing. doi:10.1007/978-3-319-28749-2
  • Westerståhl, Dag, 1987, “Branching Generalized Quantifiers and Natural Language”, in Generalized Quantifiers, Peter Gärdenfors (ed.) (Studies in Linguistics and Philosophy 31), Dordrecht: Springer Netherlands, 269–298. doi:10.1007/978-94-009-3381-1_10
  • –––, 1989, “Quantifiers in Formal and Natural Languages”, in Handbook of Philosophical Logic, Dov M. Gabbay and Franz Guenthner (eds.), Dordrecht: Springer Netherlands, 4:1–131. Reprinted, 2007, Handbook of Philosophical Logic, Dov M. Gabbay and Franz Guenthner (eds.), Dordrecht: Springer Netherlands, 14:223–338. doi:10.1007/978-1-4020-6324-4_4
  • –––, 1994, “Iterated Quantifiers”, in Dynamics, Polarity, and Quantification, Makoto Kanazawa and Christopher J. Piñón (eds.), (CSLI Lecture Notes 48), Stanford, CA: CSLI Publications, 173–209.
  • –––, 2012, “Classical vs. Modern Squares of Opposition, and Beyond”, in The Square of Opposition: A General Framework for Cognition, Jean-Yves Beziau and Gillman Payette (eds.), Bern: P. Lang, 195–229.
  • –––, 2017, “Sameness”, in Feferman on Foundations, Gerhard Jäger and Wilfried Sieg (eds.), (Outstanding Contributions to Logic 13), Cham: Springer International Publishing, 449–467. doi:10.1007/978-3-319-63334-3_16
  • Williamson, Timothy, 2003, “Everything”, Philosophical Perspectives, 17(1): 415–465. doi:10.1111/j.1520-8583.2003.00017.x

Generated Mon Feb 17 10:22:33 2020