Linked bibliography for the SEP article "Nineteenth Century Geometry" by Roberto Torretti
This is an automatically generated and experimental page
If everything goes well, this page should display the bibliography of the aforementioned article as it appears in the Stanford Encyclopedia of Philosophy, but with links added to PhilPapers records and Google Scholar for your convenience. Some bibliographies are not going to be represented correctly or fully up to date. In general, bibliographies of recent works are going to be much better linked than bibliographies of primary literature and older works. Entries with PhilPapers records have links on their titles. A green link indicates that the item is available online at least partially.
This experiment has been authorized by the editors of the Stanford Encyclopedia of Philosophy. The original article and bibliography can be found here.
- Bolyai, J., 1832. Scientia absoluta spatii. Appendix to
Bolyai, F., Tentamen juventutem studiosam in elementa matheseos
purae elementis ac sublimioris, methodo intuitiva, evidentiaque huic
propria, introducendi, Tomus Primus. Maros Vasarhely: J. et S.
Kali. (English translation by G. B. Halsted printed as a supplement to
Bonola 1955.) (Scholar)
- Cayley, Arthur, 1859. “A sixth memoir upon quantics,”
Philosophical Transactions of the Royal Society of London,
149: 61–90.
- Ehresmann, Ch., 1957. “Les connexions infinitésimales dans
un espace fibré différentiable,” in Colloque de
Topologie (Espaces Fibrés), Bruxelles
1950, Paris: Masson, pp. 29–55. (Scholar)
- Einstein, A., 1915. “Die Feldgleichungen der
Gravitation,” Sitzungsberichte der Königlich
Preussischen Akademie der Wissenschaften zu Berlin (1915), pp.
844–847. (Scholar)
- Einstein, A., 1916. “Die Grundlagen der allgemeinen
Relativitätstheorie,” Annalen der Physik,
49: 769–822. (Scholar)
- Euclides, Elementa, I. L. Heiberg (ed.), Leipzig:
B. G. Teubner, 5 volumes., 1883–88. (For English translation,
see below under Heath). (Scholar)
- Gauss, C. F., 1828. Disquisitiones generales circa superficies
curvas, Göttingen: Dieterich. (English translation by A.
Hiltebietel and J. Morehead: Hewlett, NY, Raven Press, 1965.) (Scholar)
- Hilbert, D., 1899. “Die Grundlagen der Geometrie,” in
Festschrift zur Feier der Enthüllung des Gauss-Weber
Denkmals, Leipzig: B.G. Teubner, pp. 3–92. (Scholar)
- Hilbert, D., 1968. Grundlagen der Geometrie, mit
Supplementen von P. Bernays. Zehnte Auflage. Stuttgart: Teubner.
(Tenth, revised edition of Hilbert 1899.) (Scholar)
- Klein, F., 1871. “Über die sogenannte Nicht-Euklidische
Geometrie,” Mathematische Annalen, 4:
573–625. (Scholar)
- Klein, F., 1872. Vergleichende Betrachtungen über neuere
geometrische Forschungen, Erlangen: A. Duchert. (Scholar)
- Klein, F., 1873. “Über die sogenannte Nicht-Euklidische
Geometrie (Zweiter Aufsatz),” Mathematische Annalen,
6: 112–145. (Scholar)
- Klein, F., 1893. “Vergleichende Betrachtungen über neuere
geometrische Forschungen,” Mathematische Annalen,
43: 63–100. (Revised version of Klein 1872). (Scholar)
- Klein, F., 1911. “Über die geometrischen Grundlagen der
Lorentz-Gruppe,” Physikalische Zeitschrift,
12: 17–27. (Scholar)
- Lie, S., 1888–1893. Theorie der Transformationsgruppen (3
volumes), Unter Mitwirkung von F. Engel, Leipzig: Teubner. (Scholar)
- Lobachevsky, N. I., 1837. “Géométrie imaginaire,”
Journal für die reine und angewandte Mathematik,
17: 295–320.
- Lobachevsky, N. I., 1840. Geometrische Untersuchungen zur
Theorie der Parallellinien, Berlin: F. Fincke. (English
translation by G. B. Halsted printed as a supplement to Bonola
1955.) (Scholar)
- Lobachevsky, N. I., 1856. Pangéométrie ou
précis de géométrie fondée sur une
théorie générale et rigoureuse des
parallèles, Kazan: Universitet. (Scholar)
- Locke, J., 1690. An Essay concerning Humane Understanding (in four books), London: Printed for Thomas Basset and sold by Edward Mory. (Published anonymously; the author's name was added in the second edition). (Scholar)
- Minkowski, H., 1909. “Raum und Zeit,” Physikalische
Zeitschrift, 10: 104–111. (Scholar)
- Pasch, M., 1882. Vorlesungen über neueren Geometrie,
Leipzig: Teubner. (Scholar)
- Poincaré, H., 1887. “Sur les hipothèses fondamentales
de la géométrie,” Bulletin de la
Société mathématique de France,
15: 203–216. (Scholar)
- Poncelet, J. V., 1822. Traité des
propriétés projectives des figures, Paris:
Bachelier. (Scholar)
- Ricci, G. and T. Levi-Cività, 1901. “Méthodes de
calcul différentiel absolu et leurs applications,”
Mathematische Annalen, 54: 125–201.
- Riemann, B., 1854. “Über die Hypothesen, welche der Geometrie
zugrunde liegen,” Abhandlungen der Königlichen Gesellschaft der
Wissenschaften zu Göttingen, 13 (1867):
133–152. (For English translation, see below under Spivak.) (Scholar)
- Riemann, B., 1861. “Commentatio mathematica, qua respondere
tentatur quaestioni ab illustrissima Acad. Parisiensi propositae,” in
Bernhard Riemanns gesammelte mathematische Werke und
wissenschaftlicher Nachlass, Leipzig: Teubner, 1876, pp.
391–404. (Scholar)
- Russell, B., 1897. An Essay on the Foundations of Geometry, Cambridge: Cambridge University Press. (Unaltered reprint: New York, Dover, 1956.) (Scholar)
- Saccheri, G. 1733. Euclides ab omni nævo vindicatus sive
conatus geometricus quo stabiliuntur prima ipsa universæ
geometriæ principia, Mediolani: Ex Typographia Pauli Antonii
Montani. (Reprint, with facing English translation by G. B. Halsted:
New York, Chelsea, 1986.) (Scholar)
- Acuña, Pablo, 2016. “Minkowski spacetime and Lorentz invariance: The cart and the horse or two sides of a single coin?,” Studies in History and Philosophy of Science (Part B: Studies in History and Philosophy of Modern Physics), 55: 1–12. (Scholar)
- Blumenthal, L. M., 1961. A Modern View of Geometry, San
Francisco: Freeman. (Scholar)
- Boi, Luciano, 1995. Le problème mathématique de
l'espace: Une quête de l'intelligible, Berlin:
Springer. (Scholar)
- Bonola, R., 1955. Non-Euclidean Geometry: A critical and
historical study of its development. English translation with
additional appendices by H.S. Carslaw. New York: Dover. (Scholar)
- Freudenthal, H., 1957. “Zur Geschichte der Grundlagen der
Geometrie,” Nieuw Archief vor Wiskunde, 5:
105–142. (Scholar)
- Freudenthal, H., 1960. “Die Grundlagen der Geometrie um die
Wende des 19. Jahrhunderts,” Mathematisch-physikalische
Semesterbericht, 7: 2–25. (Scholar)
- Gallot, S., D. Hulin, and J. Lafontaine, 2004. Riemannian
Geometry, Berlin: Springer, 3rd edition. (An up-to-date
textbook, with solutions to odd-numbered exercises. A section is
devoted to the “pseudo”-Riemannian geometry employed in Relativity
Theory.) (Scholar)
- Giedymin, J., 1982. Science and Convention: Essays on Henri Poincaré's Philosophy of Science and the Conventionalist Tradition, Oxford: Pergamon. (Scholar)
- Greenberg, M. J., 2008. Euclidean & Non-Euclidean Geometry:
Development and History, New York: Freeman, 4th edition. (An
excellent tool for self-study at the high-school senior or
college freshman level.) (Scholar)
- Heath, T. L., 1956. The Thirteen Books of Euclid's
Elements, translated from the text of Heiberg with introduction
and commentary, New York: Dover, 3 volumes, 2nd edition, revised
with additions. (Scholar)
- Magnani, L., 2001. Philosophy and Geometry: Theoretical and Historical Issues, Dordrecht: Kluwer. (Scholar)
- Nagel, E., 1939. “The formation of modern conceptions of formal
logic in the development of geometry,” Osiris,
7: 142–224. (Scholar)
- O'Neill, B., 1983. Semi-Riemannian Geometry with Applications
to Relativity, New York: Academic Press. (Scholar)
- Nomizu, K., 1956. Lie Groups and Differential Geometry,
Tokyo: The Mathematical Society of Japan. (Scholar)
- Ronan, M., 2008. “Lie Theory,” in T. Gowers (ed.), The
Princeton Companion to Mathematics, Princeton, NJ: Princeton
University Press, pp. 229–234. (Scholar)
- Rosenfeld, B. A., 1988. A History of Non-Euclidean Geometry:
Evolution of the Concept of a Geometric Space, translated by Abe
Shenitzer, New York: Springer. (Scholar)
- Spivak, M., 1979. A Comprehensive Introduction to Differential
Geometry (5 volumes), Berkeley: Publish or Perish, 2nd edition.
(Contains an excellent English translation, with mathematical
commentary, of Riemann's lecture “On the hypotheses that lie at the
foundation of geometry”; see Vol. 2, pp. 135ff.) (Scholar)
- Torretti, R., 1978. Philosophy of Geometry from Riemann to Poincaré, Dordrecht: Reidel. (Corrected reprint: Dordrecht, Reidel, 1984). (Scholar)
- Trudeau, R. J., 1987. The Non-Euclidean Revolution,
Boston: Birkhäuser. (Scholar)
- Winnie, J. W., 1986. “Invariants and objectivity: A theory with
applications to relativity and geometry,” in R. G. Colodny (ed.),
From Quarks to Quasars, Pittsburgh: Pittsburgh University
Press, pp. 71–180. (Scholar)