Linked bibliography for the SEP article "Hilbert’s Program" by Richard Zach
This is an automatically generated and experimental page
If everything goes well, this page should display the bibliography of the aforementioned article as it appears in the Stanford Encyclopedia of Philosophy, but with links added to PhilPapers records and Google Scholar for your convenience. Some bibliographies are not going to be represented correctly or fully up to date. In general, bibliographies of recent works are going to be much better linked than bibliographies of primary literature and older works. Entries with PhilPapers records have links on their titles. A green link indicates that the item is available online at least partially.
This experiment has been authorized by the editors of the Stanford Encyclopedia of Philosophy. The original article and bibliography can be found here.
An extended version of the first revision of this entry can be found
in
Zach (2006).
- Ackermann, Wilhelm, 1924,
“Begründung des ‘tertium non datur’ mittels
der Hilbertschen Theorie der Widerspruchsfreiheit,”
Mathematische Annalen, 93: 1–36. (Scholar)
- Artemov, Sergei, 2020,
“The provability of consistency,” arXiv:1902.07404. (Scholar)
- Auerbach, David, 1992, “How to say things with formalisms,” in Proof, Logic, and Formalization, Michael Detlefsen, ed., London: Routledge, 77–93. (Scholar)
- Avigad, Jeremy, 2003, “Number theory and elementary arithmetic,” Philosophia Mathematica, 11: 257–284. (Scholar)
- Bernays, Paul, 1922,
“Über Hilberts Gedanken zur Grundlegung der
Arithmetik,” Jahresbericht der Deutschen
Mathematiker-Vereinigung, 31: 10–19. English translation in
Mancosu (1998a, 215–222). (Scholar)
- –––, 1923, “Erwiderung auf die Note von Herrn Aloys Müller: Über Zahlen als Zeichen,” Mathematische Annalen, 90: 159–63. English translation in Mancosu (1998a, 223–226). (Scholar)
- –––, 1928a,
“Über Nelsons Stellungnahme in der Philosophie der
Mathematik,” Die Naturwissenschaften, 16:
142–45. (Scholar)
- –––, 1928b,,
“Zusatz zu Hilberts Vortrag über ‘Die Grundlagen der
Mathematik,’” Abhandlungen aus dem Mathematischen
Seminar der Universität Hamburg, 6: 88–92. English
translation in:
van Heijenoort (1967, 485–489). (Scholar)
- –––, 1930,
“Die Philosophie der Mathematik und die Hilbertsche
Beweistheorie,” Blätter für deutsche
Philosophie, 4: 326–67. Reprinted in
Bernays (1976, 17–61).
English translation in
Mancosu (1998a, 234–265). (Scholar)
- –––, 1976, Abhandlungen zur Philosophie der Mathematik, Darmstadt: Wissenschaftliche Buchgesellschaft.
- Cheng, Yong, 2021, “Current Research on Gödel’s Incompleteness Theorems,” Bulletin of Symbolic Logic, 27(2): 113–67. (Scholar)
- Dean, Walter, 2015, “Arithmetical reflection and the provability of soundness,” Philosophia Mathematica, 23: 31–64, doi:10.1093/philmat/nku026 (Scholar)
- Detlefsen, Michael, 1979,
“On interpreting Gödel’s second theorem,”
Journal of Philosophical Logic, 8: 297–313. Reprinted
with a postscript in
Shanker (1988, 131–154). (Scholar)
- –––, 1986,
Hilbert’s Program, Dordrecht: Reidel. (Scholar)
- –––, 1990,
“On an alleged refutation of Hilbert’s program using
Gödel’s first incompleteness theorem,” Journal of
Philosophical Logic, 19: 343–377. (Scholar)
- –––, 2001,
“What does Gödel’s second theorem say?,”
Philosophia Mathematica, 9: 37–71. (Scholar)
- Eder, Günther, forthcoming, “The Bernays-Müller debate,” HOPOS: The Journal of the International Society for the History of Philosophy of Science. (Scholar)
- Ewald, William Bragg (ed.), 1996, From Kant to Hilbert. A Source Book in the Foundations of Mathematics, vol. 2, Oxford: Oxford University Press. (Scholar)
- Ewald, William Bragg and Wilfried Sieg
(eds.), 2013,
David Hilbert’s Lectures on the Foundations of Arithmetic
and Logic 1917–1933, Berlin and Heidelberg: Springer. (Scholar)
- Feferman, Solomon, 1988,
“Hilbert’s Program relativized: Proof-theoretical and
foundational reductions,” Journal of Symbolic Logic,
53(2): 364–284. (Scholar)
- –––, 1993a, “What rests on what? The proof-theoretic analysis of mathematics,” in Philosophy of Mathematics. Proceedings of the Fifteenth International Wittgenstein-Symposium, Part 1, Johannes Czermak, ed., Vienna: Hölder-Pichler-Tempsky, 147–171. Reprinted in Feferman (1998, Ch. 10, 187–208). (Scholar)
- –––, 1993b, “Why a little bit goes a long way: Logical foundations of scientifically applicable mathematics,” PSA 1992, 2: 442–455. Reprinted in Feferman (1998, Ch. 14, 284–298). [Preprint available online]. (Scholar)
- –––, 1998, In the Light of Logic, Oxford: Oxford University Press. (Scholar)
- –––, 2000, “Does reductive proof theory have a viable rationale?.” Erkenntnis, 53: 63–96. (Scholar)
- Franks, Curtis, 2009,
The Autonomy of Mathematical Knowledge: Hilbert’s Program
Revisited, Cambridge: Cambridge University Press. (Scholar)
- Ganea, Mihai, 2010, “Two (or three) notions of finitism,” Review of Symbolic Logic, 3: 119–144. (Scholar)
- Gentzen, Gerhard, 1936,, “Die Widerspruchsfreiheit der reinen Zahlentheorie,” Mathematische Annalen, 112: 493–565. English translation in Gentzen (1969, 132–213). (Scholar)
- –––, 1969, The Collected Papers of Gerhard Gentzen, Amsterdam: North-Holland. (Scholar)
- Giaquinto, Marcus, 1983,
“Hilbert’s philosophy of mathematics,” British
Journal for Philosophy of Science, 34: 119–132. (Scholar)
- Gödel, Kurt, 1931,
“Über formal unentscheidbare Sätze der Principia
Mathematica und verwandter Systeme I,” Monatshefte
für Mathematik und Physik, 38: 173–198. Reprinted and
translated in
Gödel (1986, 144–195). (Scholar)
- –––, 1958, “Über eine bisher noch nicht benütze Erweiterung des finiten standpunktes,” Dialectica, 280–287. Reprinted and translated in Gödel (1990, 217–251). (Scholar)
- –––, 1986, Collected Works, vol. 1, Oxford: Oxford University Press. (Scholar)
- –––, 1990,
Collected Works, vol. 2, Oxford: Oxford University
Press. (Scholar)
- –––, 2003,
Collected Works, vol. 4, Oxford: Oxford University
Press. (Scholar)
- Hallett, Michael, 1990,
“Physicalism, reductionism and Hilbert,” in
Physicalism in Mathematics, Andrew D. Irvine, ed., Dordrecht:
Reidel, 183–257. (Scholar)
- Hilbert, David, 1899,
“Grundlagen der Geometrie,” in Festschrift zur Feier
der Enthüllung des Gauss-Weber-Denkmals in Göttingen,
Leipzig: Teubner, 1–92, 1st ed. (Scholar)
- –––, 1900a,
“Mathematische Probleme,” Nachrichten von der
Königlichen Gesellschaft der Wissenschaften zu Göttingen,
Math.-Phys. Klasse, 253–297. Lecture given at the
International Congress of Mathematicians, Paris, 1900. Partial English
translation in
Ewald (1996, 1096–1105). (Scholar)
- –––, 1900b,
“Über den Zahlbegriff,” Jahresbericht der
Deutschen Mathematiker-Vereinigung, 8: 180-184. English
translation in
Ewald (1996, 1089–1096). (Scholar)
- –––, 1905, “Über die Grundlagen der Logik und der Arithmetik,” in Verhandlungen des dritten Internationalen Mathematiker-Kongresses in Heidelberg vom 8. bis 13. August 1904, A. Krazer, ed., Leipzig: Teubner, 174–85. English translation in van Heijenoort (1967, 129–138). (Scholar)
- –––, 1918a,
“Axiomatisches Denken,” Mathematische Annalen,
78: 405–15. Lecture given at the Swiss Society of
Mathematicians, 11 September 1917. Reprinted in
Hilbert (1935, 146–156).
English translation in
Ewald (1996, 1105–1115). (Scholar)
- –––, 1918b,
“Prinzipien der Mathematik,” Lecture notes by Paul
Bernays. Winter-Semester 1917/18. Typescript. Bibliothek,
Mathematisches Institut, Universität Göttingen. Edited in
Ewald and Sieg (2013, 59–221).. (Scholar)
- –––, 1922a,
“Grundlagen der Mathematik,” Vorlesung, Winter-Semester
1921/22. Lecture notes by Paul Bernays. Typescript. Bibliothek,
Mathematisches Institut, Universität Göttingen. Edited in
Ewald and Sieg (2013, 431–527). (Scholar)
- –––, 1922b,
“Neubegründung der Mathematik: Erste Mitteilung,”
Abhandlungen aus dem Seminar der Hamburgischen
Universität, 1: 157–177. Series of talks given at the
University of Hamburg, July 25–27, 1921. Reprinted with notes by
Bernays in
Hilbert (1935, 157–177).
English translation in
Mancosu (1998a, 198–214)
and
Ewald (1996, 1115–1134). (Scholar)
- –––, 1923,
“Die logischen Grundlagen der Mathematik,”
Mathematische Annalen, 88: 151–165. Lecture given at
the Deutsche Naturforscher-Gesellschaft, September 1922. Reprinted in
Hilbert (1935, 178–191).
English translation in
Ewald (1996, 1134–1148). (Scholar)
- –––, 1926,
“Über das Unendliche,” Mathematische
Annalen, 95: 161–190. Lecture given Münster, 4 June
1925. English translation in
van Heijenoort (1967, 367–392). (Scholar)
- –––, 1928,
“Die Grundlagen der Mathematik,” Abhandlungen aus dem
Seminar der Hamburgischen Universität, 6: 65–85.
Reprinted in
Ewald and Sieg (2013, 917–942).
English translation in
van Heijenoort (1967, 464–479). (Scholar)
- –––, 1929,
“Probleme der Grundlegung der Mathematik,”
Mathematische Annalen, 102: 1–9. Lecture given at the
International Congress of Mathematicians, 3 September 1928. Reprinted
in
Ewald and Sieg (2013, 954–966).
English translation in
Mancosu (1998a, 227–233). (Scholar)
- –––, 1931a,
“Beweis des Tertium non datur,” Nachrichten der
Gesellschaft der Wissenschaften zu Göttingen. Math.-phys.
Klasse, 120-125. Reprinted in
Ewald and Sieg (2013, 967–982). (Scholar)
- –––, 1931b,
“Die Grundlegung der elementaren Zahlenlehre,”
Mathematische Annalen, 104: 485–494. Reprinted in
Hilbert (1935, 192–195) and Ewald and Sieg (2013, 983–990).
English translation in
Ewald (1996, 1148–1157). (Scholar)
- –––, 1935,
Gesammelte Abhandlungen, vol. 3, Berlin: Springer. (Scholar)
- –––, 1992, Natur und mathematisches Erkennen, Basel: Birkhäuser. Vorlesungen, 1919–20. (Scholar)
- Hilbert, David and Ackermann, Wilhelm, 1928, Grundzüge der theoretischen Logik, Berlin: Springer. (Scholar)
- Hilbert, David and Bernays, Paul,
1923, “Logische Grundlagen der Mathematik,” Vorlesung,
Winter-Semester 1922-23. Lecture notes by Paul Bernays, with
handwritten notes by Hilbert. Hilbert-Nachlaß,
Niedersächsische Staats- und Universitätsbibliothek, Cod.
Ms. Hilbert 567. (Scholar)
- –––, 1934, Grundlagen der Mathematik, vol. 1, Berlin: Springer. (Scholar)
- –––,
1939, Grundlagen der Mathematik, vol. 2, Berlin:
Springer. (Scholar)
- Hofweber, Thomas, 2000,
“Proof-theoretic reduction as a philosopher’s
tool,” Erkenntnis, 53: 127–146. (Scholar)
- Ignjatovic, Aleksandar, 1994,
“Hilbert’s program and the omega rule,” Journal
of Symbolic Logic, 59: 322–343. (Scholar)
- Incurvati, Luca, 2019,
“On the concept of finitism,” Synthese, 192:
2413–2436. (Scholar)
- Kish-Bar-On, Kati, 2021,
“Towards a New Philosophical Perspective on Hermann
Weyl’s Turn to Intuitionism,” Science in Context,
34: 51–68. (Scholar)
- Kitcher, Philip, 1976,
“Hilbert’s epistemology,” Philosophy of
Science, 43: 99–115. (Scholar)
- Kreisel, Georg, 1960,
“Ordinal logics and the characterization of informal notions of
proof,” in Proceedings of the International Congress of
Mathematicians. Edinburgh, 14–21 August 1958, J. A. Todd,
ed., Cambridge: Cambridge University Press, 289–299. (Scholar)
- –––, 1968,
“A survey of proof theory,” Journal of Symbolic
Logic, 33: 321–388.
- –––, 1970,
“Principles of proof and ordinals implicit in given
concepts,” in Intuitionism and Proof Theory, A. Kino,
J. Myhill, and R. E. Veseley, eds., Amsterdam: North-Holland. (Scholar)
- –––, 1983,
“Hilbert’s programme,” in Philosophy of
Mathematics, Paul Benacerraf and Hilary Putnam, eds., Cambridge:
Cambridge University Press, 207–238, 2nd ed. (Scholar)
- Kripke, Saul A., forthcoming, “The Collapse of the Hilbert Program: A Variation on the Gödelian Theme,” Bulletin of Symbolic Logic. (Scholar)
- Mancosu, Paolo (ed.), 1998a, From Brouwer to Hilbert. The Debate on the Foundations of Mathematics in the 1920s, Oxford: Oxford University Press. (Scholar)
- Mancosu, Paolo, 1998b, “Hilbert and Bernays on Metamathematics,” in (Mancosu, 1998a), 149–188. Reprinted in Mancosu (2010). (Scholar)
- –––, 1999, “Between Russell and Hilbert: Behmann on the foundations of mathematics,” Bulletin of Symbolic Logic, 5(3): 303–330. Reprinted in Mancosu (2010). (Scholar)
- –––, 2010, The Adventure of Reason: Interplay Between Philosophy of Mathematics and Mathematical Logic, 1900–1940, Oxford: Oxford University Press. (Scholar)
- Mancosu, Paolo, Sergio Galvan, and Richard Zach, 2021, An Introduction to Proof Theory: Normalization, Cut-Elimination, and Consistency Proofs. Oxford: Oxford University Press. (Scholar)
- Mancosu, Paolo and Ryckman, Thomas, 2002, “Mathematics and phenomenology: The correspondence between O. Becker and H. Weyl,” Philosophia Mathematica, 10: 130–202. Reprinted in Mancosu (2010). (Scholar)
- McCarthy, T., 2016,
“Gödel’s third incompleteness theorem,”
Dialectica 70: 87–112.
- Parsons, Charles, 1998, “Finitism and intuitive knowledge,” in The Philosophy of Mathematics Today, Matthias Schirn, ed., Oxford: Oxford University Press, 249–270. (Scholar)
- –––, 2007, Mathematical Thought and its Objects, Cambridge: Cambridge University Press. (Scholar)
- Patton, Lydia, 2014,
“Hilbert’s objectivity,” Historia
Mathematica, 41(2): 188–203. (Scholar)
- Peckhaus, Volker, 1990, Hilbertprogramm und Kritische Philosophie, Göttingen: Vandenhoeck und Ruprecht. (Scholar)
- Poincaré, Henri, 1906, “Les mathématiques et la logique,” Revue de métaphysique et de morale, 14: 294–317. English translation in Ewald (1996, 1038–1052). (Scholar)
- Resnik, Michael D., 1974, “On the philosophical significance of consistency proofs,” Journal of Philosophical Logic, 3: 133–47. (Scholar)
- –––, 1980, Frege and the Philosophy of Mathematics, Ithaca: Cornell University Press.
- Santos, Paulo Guilherme, Wilfried Sieg, and Reinhard Kahle, forthcoming, “A New Perspective on Completeness and Finitist Consistency,” Journal of Logic and Computation. (Scholar)
- Schirn, Matthias, 2019,
“The finite and the infinite: On Hilbert’s formalist
approach before and after Gödel’s incompleteness
theorems,” Logique et Analyse, 245: 1–34. (Scholar)
- Schirn, Matthias, and Karl-Georg Niebergall, 2001, “Extensions of the finitist point of view,” History and Philosophy of Logic, 22(3): 135–61. (Scholar)
- Shanker, Stuart G., 1988,
Gödel’s Theorem in Focus, London: Routledge.
- Sieg, Wilfried, 1990,
“Reflections on Hilbert’s program,” in Acting
and Reflecting, Wilfried Sieg, ed., Dordrecht: Kluwer,
171–82. Reprinted in
Sieg (2013). (Scholar)
- –––, 1999,
“Hilbert’s programs: 1917–1922,” Bulletin
of Symbolic Logic, 5(1): 1–44. Reprinted in
Sieg (2013). (Scholar)
- –––, 2013,
Hilbert’s Programs and Beyond, New York: Oxford
University Press. (Scholar)
- Simpson, Stephen G., 1988,
“Partial realizations of Hilbert’s program,”
Journal of Symbolic Logic, 53(2): 349–363. (Scholar)
- –––, 1999, Subsystems of Second Order Arithmetic, Berlin: Springer. (Scholar)
- Smorynski, Craig, 1977, “The incompleteness theorems,” in Handbook of Mathematical Logic, Jon Barwise, ed., Amsterdam: North-Holland, 821–865. (Scholar)
- Steiner, Mark, 1975, Mathematical Knowledge, Ithaca: Cornell University Press. (Scholar)
- –––, 1991, “Review of Hilbert’s Program: An Essay on Mathematical Instrumentalism (Detlefsen, 1986),” Journal of Philosophy, 88(6): 331–336. (Scholar)
- Tait, W. W., 1981, “Finitism,” Journal of Philosophy, 78: 524–546. Reprinted in Tait (2005a, 21–42). (Scholar)
- –––, 2002, “Remarks on finitism,” in Reflections on the Foundations of Mathematics. Essays in Honor of Solomon Feferman, Wilfried Sieg, Richard Sommer, and Carolyn Talcott, eds., Association for Symbolic Logic, LNL 15. Reprinted in Tait (2005a, 43–53). [Preprint available online] (Scholar)
- –––, 2005a, The Provenance of Pure Reason: Essays in the Philosophy of Mathematics and its History, New York: Oxford University Press. (Scholar)
- –––, 2005b,
“Appendix to Chapters 1 and 2,” in
Tait (2005a, 54–60). (Scholar)
- –––, 2019,
“What Hilbert and Bernays meant by
‘finitism,’” in Philosophy of Logic and
Mathematics: Proceedings of the 41st International Ludwig Wittgenstein
Symposium, Gabriele M. Mras, Paul Weingartner, and Bernhard
Ritter (eds.), Berlin: De Gruyter, 249–62. (Scholar)
- Takeuti, Gaisi, 1987, Proof Theory (Studies in Logic: 81), Amsterdam: North-Holland, 2nd edition. (Scholar)
- Thomas-Bolduc, Aaron, and Eamon
Darnell, 2022, “Takeuti’s well-ordering proof: An
accessible recontruction,” The Australasian Journal of
Logic, 19(1): 1–31. (Scholar)
- van Heijenoort, Jean (ed.), 1967,
From Frege to Gödel. A Source Book in Mathematical Logic,
1897–1931, Cambridge, Mass.: Harvard University Press. (Scholar)
- von Neumann, Johann, 1927,
“Zur Hilbertschen Beweistheorie,” Mathematische
Zeitschrift, 26: 1–46. (Scholar)
- Weyl, Hermann, 1921,
“Über die neue Grundlagenkrise der Mathematik,”
Mathematische Zeitschrift, 10: 37–79. Reprinted in
Weyl (1968, 143–180).
English translation in
Mancosu (1998a, 86–118). (Scholar)
- –––, 1925, “Die heutige Erkenntnislage in der Mathematik,” Symposion, 1: 1–23. Reprinted in: Weyl (1968, 511–42). English translation in: Mancosu (1998a, 123–42). (Scholar)
- –––, 1928,
“Diskussionsbemerkungen zu dem zweiten Hilbertschen Vortrag
über die Grundlagen der Mathematik,” Abhandlungen aus
dem Mathematischen Seminar der Universität Hamburg, 6:
86–88. English translation in
van Heijenoort (1967, 480–484). (Scholar)
- –––, 1968,
Gesammelte Abhandlungen, vol. 1, Berlin: Springer
Verlag. (Scholar)
- Zach, Richard, 1999, “Completeness before Post: Bernays, Hilbert, and the development of propositional logic,” Bulletin of Symbolic Logic, 5(3): 331–366. (Scholar)
- –––, 2003, “The practice of finitism. Epsilon calculus and consistency proofs in Hilbert’s Program,” Synthese, 137: 211–259. (Scholar)
- –––, 2004,
“Hilbert’s ‘Verunglückter Beweis,’ the
first epsilon theorem, and consistency proofs,” History and
Philosophy of Logic, 25: 79–94. (Scholar)
- –––, 2006,
“Hilbert’s program then and now,” in: Dale
Jacquette, ed., Philosophy of Logic. Handbook of the
Philosophy of Science, vol. 5. Amsterdam: Elsevier,
411–447. (Scholar)