Linked bibliography for the SEP article "The Development of Intuitionistic Logic" by Mark van Atten

This is an automatically generated and experimental page

If everything goes well, this page should display the bibliography of the aforementioned article as it appears in the Stanford Encyclopedia of Philosophy, but with links added to PhilPapers records and Google Scholar for your convenience. Some bibliographies are not going to be represented correctly or fully up to date. In general, bibliographies of recent works are going to be much better linked than bibliographies of primary literature and older works. Entries with PhilPapers records have links on their titles. A green link indicates that the item is available online at least partially.

This experiment has been authorized by the editors of the Stanford Encyclopedia of Philosophy. The original article and bibliography can be found here.

Brouwer’s writings are referred to according to the scheme in the bibliography van Dalen 1997a; Gödel’s, according to the bibliography in Gödel 1986, Gödel 1990, Gödel 1995 (except for Gödel 1970); Heyting’s, according to the bibliography Troelstra et al. 1981 (except for Heyting 1928).

  • Apostel, L., 1972, “Negation: The tension between ontological positivity (negationless positivity) and anthropological negativity (positively described)”, Logique et Analyse, 15(57–58): 209–317. [Apostel 1972 available online] (Scholar)
  • Artemov, Sergei N., 2001, “Explicit provability and constructive semantics”, Bulletin of Symbolic Logic, 7(1): 1–36. doi:10.2307/2687821 (Scholar)
  • Arruda, Ayda Ignez, 1978, “Some remarks on Griss’ logic of negationless intuitionistic mathematics”, in Mathematical Logic, Proceedings of the 1st Brazilian Conference on Mathematical Logic, Campinas 1977 (Lecture Notes in Pure and Applied Mathematics 39), A.I. Arruda, N.C.A. da Costa, R. Chuaqui (eds.), 9–29. (Scholar)
  • van Atten, Mark, 2004a, “Review of Dennis E. Hesseling, Gnomes in the Fog. The Reception of Brouwer’s Intuitionism in the 1920s”, Bulletin of Symbolic Logic, 10(3): 423–427. doi:10.2307/3185194 (Scholar)
  • –––, 2004b, On Brouwer, Belmont, CA: Wadsworth. (Scholar)
  • –––, 2005, “The correspondence between Oskar Becker and Arend Heyting”, in Oskar Becker und die Philosophie der Mathematik, V. Peckhaus (ed.), München: Wilhelm Fink, 119–142. (Scholar)
  • –––, 2009, “The hypothetical judgement in the history of intuitionistic logic”, in Logic, Methodology, and Philosophy of Science 13: Proceedings of the 2007 International Congress in Beijing, C. Glymour, W. Wang, and D. Westerståhl, eds., London: King’s College Publications, 122–136. (Scholar)
  • –––, 2018, “The Creating Subject, the Brouwer-Kripke Schema, and infinite proofs”, Indagationes Mathematicae, 29: 1565–1636. doi: 10.1016/j.indag.2018.06.005 (Scholar)
  • van Atten, Mark, Göran Sundholm, Michel Bourdeau, and Vanessa van Atten, 2014, “‘Que les principes de la logique ne sont pas fiables.’ Nouvelle traduction française annotée et commentée de l’article de 1908 de L.E.J. Brouwer”, Revue d’Histoire des Sciences, 67(2): 257–281. doi:10.3917/rhs.672.0257 (Scholar)
  • van Atten, Mark, Pascal Boldini, Michel Bourdeau, and Gerhard Heinzmann (eds.), 2008, One Hundred Years of Intuitionism (1907–2007). The Cerisy Conference, Basel: Birkhäuser. doi:10.1007/978-3-7643-8653-5 (Scholar)
  • van Atten, Mark and Göran Sundholm, 2017, “L.E.J. Brouwer’s ‘Unreliability of the logical principles’: A new translation, with an introduction”, History and Philosophy of Logic, 38(1): 24–47. doi:10.1080/01445340.2016.1210986 (Scholar)
  • Barzin, M. and A. Errera, 1927, “Sur la logique de M. Brouwer”, Académie Royale de Belgique, Bulletin de la classe des sciences, 13: 56–71. (Scholar)
  • Bazhanov, Valentin A., 2003, “The Scholar and the ‘Wolfhound Era’: The Fate of Ivan E. Orlov’s Ideas in Logic, Philosophy, and Science”, Science in Context, 16(4): 535–550. doi:10.1017/s0269889703000954 (Scholar)
  • Becker, Oskar, 1927, “Mathematische Existenz. Untersuchungen zur Logik und Ontologie mathematischer Phänomene”, Jahrbuch für Philosophie und phänomenologische Forschung, 8: 439–809. (Scholar)
  • –––, 1930, “Zur Logik der Modalitäten”, Jahrbuch für Philosophie und phänomenologische Forschung, 11: 497–548. (Scholar)
  • Benacerraf, Paul and Hilary Putnam (eds.), 1983, Philosophy of Mathematics: Selected Readings, second edition, Cambridge: Cambridge University Press. doi:10.1017/cbo9781139171519 (Scholar)
  • Bergson, Henri, 1907, L’Évolution Créatrice, Paris: Félix Alcan.
  • Bernays, Paul, 1926, “Axiomatische Untersuchung des Aussagen-Kalküls der ‘Principia Mathematica’”, Mathematische Zeitschrift, 25: 305–320. doi:10.1007/bf01283841 (Scholar)
  • –––, 1967, “Hilbert, David”, in The Encyclopedia of Philosophy, vol. 3, Paul Edwards (ed.), New York: Macmillan. (Scholar)
  • Beth, Evert W., 1956, “Semantic Construction of Intuitionistic Logic”, Mededelingen der Koninklijke Nederlandse Akademie van Wetenschappen. Afdeling Letterkunde, 19(11): 357–388. (Scholar)
  • –––, 1966, The Foundations of Mathematics: A Study in the Philosophy of Science, second revised edition, New York: Harper & Row. (Scholar)
  • Blaschek, Günther, 1994, Object-Oriented Programming: with Prototypes, Berlin: Springer. doi:10.1007/978-3-642-78077-6 (Scholar)
  • Borwein, Jonathan M., 1998, “Brouwer-Heyting Sequences Converge”, Mathematical Intelligencer, 20(1): 14–15. doi:10.1007/bf03024393 (Scholar)
  • Brouwer, L.E.J., 1907, Over de Grondslagen der Wiskunde (On the Foundations of Mathematics), Ph.D. thesis, Universiteit van Amsterdam. English translation in Brouwer 1975: 11–101. (Scholar)
  • –––, 1908C, “De onbetrouwbaarheid der logische principes” (The Unreliability of the Logical Principles), Tijdschrift voor Wijsbegeerte, 2: 152–158. English translation in Van Atten and Sundholm 2017. An older English translation is in Brouwer 1975: 107–111. doi:10.1016/b978-0-7204-2076-0.50009-x (Scholar)
  • –––, 1918B, “Begründung der Mengenlehre unabhängig vom logischen Satz vom ausgeschlossenen Dritten. Erster Teil, Allgemeine Mengenlehre”, KNAW Verhandelingen, 5: 1–43. Also in Brouwer 1975: 150–190 (in German). doi:10.1016/b978-0-7204-2076-0.50015-5 (Scholar)
  • –––, 1919A, “Begründung der Mengenlehre unabhängig vom logischen Satz vom ausgeschlossenen Dritten. Zweiter Teil, Theorie der Punktmengen”, KNAW Verhandelingen, 7: 1–33. Also in Brouwer 1975: 191–221 (in German). doi:10.1016/b978-0-7204-2076-0.50016-7 (Scholar)
  • –––, 1919D, “Intuitionistische Mengenlehre”, Jahresbericht D.M.V., 28: 203–208. English translation in Mancosu 1998: 23–27. (Scholar)
  • –––, 1921A, “Besitzt jede reelle Zahl eine Dezimalbruchentwicklung?”, Mathematische Annalen, 83(3–4): 201–210. English translation in Mancosu 1998: 28–35. doi:10.1007/bf01458382 (Scholar)
  • –––, 1924D1, “Bewijs dat iedere volle functie gelijkmatig continu is”, KNAW verslagen, 33: 189–193. English translation in Mancosu 1998: 36–39.
  • –––, 1924N, “Über die Bedeutung des Satzes vom ausgeschlossenen Dritten in der Mathematik, insbesondere in der Funktionentheorie”, Journal für die reine und angewandte Mathematik, 154: 1–7. English translation in van Heijenoort 1967: 335–341. (Scholar)
  • –––, 1925E, “Intuitionistische Zerlegung mathematischer Grundbegriffe”, Jahresbericht D.M.V., 33: 251–256. English translation in Mancosu 1998: 287–289 (sections 2–4), 290–292 (section 1). (Scholar)
  • –––, 1926A, “Zur Begründung der intuitionistischen Mathematik, II”, Mathematische Annalen, 95: 453–472. doi:10.1007/bf01206621 (Scholar)
  • –––, 1926B2, “Intuitionistische Einführung des Dimensionsbegriffes”, Proceedings Koninklijke Akademie van Wetenschappen Amsterdam, 29: 855–873. (Scholar)
  • –––, 1927B, “Über Definitionsbereiche von Funktionen”, Mathematische Annalen, 97: 60–75. English translation of sections 1–3 in van Heijenoort 1967: 457–463. doi:10.1007/bf01447860 (Scholar)
  • –––, 1928A2, “Intuitionistische Betrachtungen über den Formalismus”, Proceedings Koninklijke Akademie van Wetenschappen Amsterdam, 31: 374–379. English translation in Mancosu 1998: 40–44. [Brouwer 1928A2 available online] (Scholar)
  • –––, 1929A, “Mathematik, Wissenschaft und Sprache”, Monatshefte für Mathematik und Physik, 36: 153–164. English translation in Mancosu 1998: 45–53. doi:10.1007/bf02307611 (Scholar)
  • –––, 1930A, Die Struktur des Kontinuums, Wien: Komitee zur Veranstaltung von Gastvorträgen ausländischer Gelehrter der exakten Wissenschaften. English translation in Mancosu 1998: 54–63. (Scholar)
  • –––, 1933A2, “Willen, weten, spreken” (Volition, Knowledge, Language), in De Uitdrukkingswijze der Wetenschap, L.E.J. Brouwer et al., Groningen: Noordhoff, 45–63. English translation in van Stigt 1990: 418–431. Partial English translation in Brouwer 1975: 443–446. (Scholar)
  • –––, 1942A, “Zum freien Werden von Mengen und Funktionen”, Proceedings Nederlandse Akademie van Wetenschappen Amsterdam, 45: 322–323. Also Indagationes Mathematicae, 4 (1942): 107–108. (Scholar)
  • –––, 1942B, “Die repräsentierende Menge der stetigen Funktionen des Einheitskontinuums”, Proceedings Nederlandse Akademie van Wetenschappen Amsterdam, 45: 443. Also Indagationes Mathematicae, 4 (1942): 154. (Scholar)
  • –––, 1948A, “Essentieel negatieve eigenschappen” (Essentially Negative Properties), Proceedings Koninklijke Nederlandse Akademie van Wetenschappen Amsterdam, 51: 963–964. Also Indagationes Mathematicae, 10 (1948): 322–323. English translation in Brouwer 1975: 478–479. doi:10.1016/b978-0-7204-2076-0.50053-2 (Scholar)
  • –––, 1949A, “De non-aequivalentie van de constructieve en de negatieve orderelatie in het continuum” (The Non-Equivalence of the Constructive and the Negative Order Relation on the Continuum), Proceedings Koninklijke Nederlandse Akademie van Wetenschappen Amsterdam, 52:122–124. Also Indagationes Mathematicae, 11 (1949): 37–39. English translation in Brouwer 1975: 495–496. doi:10.1016/b978-0-7204-2076-0.50055-6 (Scholar)
  • –––, 1949B, “Contradictoriteit der elementaire meetkunde” (Contradictority of Elementary Geometry), Proceedings Koninklijke Nederlandse Akademie van Wetenschappen Amsterdam, 52: 315–316. Also Indagationes Mathematicae, 11 (1949): 89–90. English translation in Brouwer 1975: 497–498. doi:10.1016/b978-0-7204-2076-0.50056-8 (Scholar)
  • –––, 1949C, “Consciousness, Philosophy and Mathematics”, Proceedings of the 10th International Congress of Philosophy, Amsterdam 1948, Amsterdam: North-Holland, 3: 1235–1249. (Scholar)
  • –––, 1952B, “Historical Background, Principles and Methods of Intuitionism”, South African Journal of Science, 49: 139–146. (Scholar)
  • –––, 1954A, “Points and Spaces”, Canadian Journal of Mathematics, 6: 1–17. doi:10.4153/cjm-1954-001-9 (Scholar)
  • –––, 1954F, “An Example of Contradictority in Classical Theory of Functions”, Proceedings Koninklijke Nederlandse Akademie van Wetenschappen Amsterdam, 57: 204–205. Also Indagationes Mathematicae, 16 (1954): 204–205. doi:10.1016/s1385-7258(54)50030-2 (Scholar)
  • –––, 1955, “The Effect of Intuitionism on Classical Algebra of Logic”, Proceedings of the Royal Irish Academy, 57: 113–116. (Scholar)
  • –––, 1975, Collected Works. I: Philosophy and Foundations of Mathematics, Arend Heyting (ed.), Amsterdam: North-Holland. (Scholar)
  • –––, 1977, Collected Works. II: Geometry, Analysis, Topology and Mechanics, H. Freudenthal (ed.), Amsterdam: North-Holland. (Scholar)
  • –––, 1981A, Brouwer’s Cambridge Lectures on Intuitionism, Cambridge: Cambridge University Press. (Scholar)
  • Brouwer, L.E.J., Fred. van Eeden, J. van Ginneken, and S.J.G. Mannoury, 1937, “Signifiese dialogen”, Synthese, 2: 168–174, 261–268, 316–324. doi:10.1007/bf00880415 doi:10.1007/BF00880431 doi:10.1007/BF00880440 (Scholar)
  • –––, 1939, Signifische dialogen, Utrecht: Erven J. Bijleveld. Partial English translation in Brouwer 1975: pp. 447–452. (Scholar)
  • Chronique générale, 1949. “Chronique générale”, Revue Philosophique de Louvain, 47(15): 432–436. [Chronique générale 1949 available online] (Scholar)
  • Colacito, Almudena, Dick de Jongh, and Ana Lucia Vargas, 2017, “Subminimal Negation”, Soft Computing, 2(1): 165–174. doi:10.1007/s00500-016-2391-8 (Scholar)
  • Colson, Loïc, and David Michel, 2007, “Pedagogical Natural Deduction Systems: the Propositional Case”, Journal of Universal Computer Science, 13(10): 1396–1410. [Colson & Michel 2007 available online] (Scholar)
  • –––, 2008, “Pedagogical Second-order Propositional Calculi”, Journal of Logic and Computation, 18(4): 669–695. doi:10.1093/logcom/exn001 (Scholar)
  • –––, 2009, “Pedagogical Second-order \(\lambda\)-calculus”, Theoretical Computer Science, 410(42): 4190–4203. doi:10.1016/j.tcs.2009.04.020 (Scholar)
  • van Dalen, Dirk, 1973, “Lectures on intuitionism”, in Mathias & Rodgers 1973: 1–94. doi:10.1007/bfb0066771 (Scholar)
  • –––, 1997, “A Bibliography of L.E.J. Brouwer”, Utrecht Logic Group Preprint Series, no. 175 [van Dalen 1997 updated preprint available from Universiteit Utrecht]. Updated version in van Atten et al. 2008: 343–390. doi:10.1007/978-3-7643-8653-5_22 (Scholar)
  • –––, 1999, Mystic, Geometer, and Intuitionist. The Life of L.E.J. Brouwer. 1: The Dawning Revolution, Oxford: Clarendon Press. (Scholar)
  • –––, 2001a, L.E.J. Brouwer 1881–1966. Een Biografie. Het Heldere Licht van de Wiskunde, Amsterdam: Bert Bakker. (Scholar)
  • –––, 2001b, L.E.J. Brouwer en de Grondslagen van de Wiskunde, Utrecht: Epsilon. (Scholar)
  • –––, 2004, “Kolmogorov and Brouwer on constructive implication and the Ex Falso rule”, Russian Mathematical Surveys, 59(2): 247–257. doi:10.1070/rm2004v059n02abeh000717 (Scholar)
  • –––, 2005, Mystic, Geometer, and Intuitionist. The Life of L.E.J. Brouwer. 2: Hope and Disillusion, Oxford: Clarendon Press. (Scholar)
  • –––, 2008, “Another look at Brouwer’s dissertation”, in van Atten et al. 2008: 3–20. doi:10.1007/978-3-7643-8653-5_1 (Scholar)
  • ––– (ed.), 2011, The Selected Correspondence of L.E.J. Brouwer, London: Springer. An online supplement (link and password on the copyright page of the book) presents most of the extant correspondence, but without English translations. doi:10.1007/978-0-85729-537-8 (Scholar)
  • van Dalen, Dirk and Volker R. Remmert, 2007, “Ce périodique foncièrement international: the birth and youth of Compositio Mathematica”, Nieuw Archief voor Wiskunde 5th series, 8(3): 178–189. [van Dalen & Remmert 2007 available online] (Scholar)
  • van Dantzig, D., 1947a, “On the principles of intuitionistic and affirmative mathematics. I”, Proceedings Koninklijke Nederlandse Akademie van Wetenschappen Amsterdam, 50: 918–929. Also Indagationes Mathematicae, 9: 429–440. (Scholar)
  • –––, 1947b, “On the principles of intuitionistic and affirmative mathematics. II”, Proceedings Koninklijke Nederlandse Akademie van Wetenschappen Amsterdam, 50:1092–1103. Also Indagationes Mathematicae, 9: 506–517. (Scholar)
  • –––, 1949, “Comments on Brouwer’s Theorem on Essentially-negative predicates”, Proceedings Koninklijke Nederlandse Akademie van Wetenschappen Amsterdam, 52: 949–957. Also Indagationes Mathematicae, 11: 347–355. (Scholar)
  • –––, 1951, “Mathématique stable et mathématique affirmative”, Congrès International de Philosophie des Sciences, 1949, II Logique (Actualités scientifiques et industrielles 1134), Paris: Hermann & Cie, pp. 123–135. (Scholar)
  • Demange, Vincent, 2015, “Pedagogical lambda-cube: the λ² case”, Journal of Logic and Computation, 25(3): 743–779. doi: 10.1093/logcom/exu049 (Scholar)
  • Dequoy, Nicolle, 1952 [1955], Axiomatique intuitionniste sans négation de la géométrie projective, PhD thesis, Université de Paris. Published in 1955, Paris:Gauthier-Villars (Collection de logique mathématique ; sér. A, 6). (Scholar)
  • Destouches-Février, Paulette, 1945a, “Rapports entre le calcul des problèmes et le calcul des propositions”, Comptes Rendus de l’Académie des sciences, 220: 484–486. [Destouches-Février 1945a available online] (Scholar)
  • –––, 1945b, “Logique adaptee aux théories quantiques”, Comptes Rendus de l’Académie des sciences, 221: 287–288. [Destouches-Février 1945b available online] (Scholar)
  • –––, 1947a, “Sur la notion d’adequation et le calcul minimal de Johannsson”, Comptes Rendus de l’Académie des sciences, 224: 545–547. [Destouches-Février 1947a available online] (Scholar)
  • –––, 1947b, “Esquisse d’une mathématique intuitioniste positive”, Comptes Rendus de l’Académie des sciences, 225: 1241–1243. [Destouches-Février 1947b available online] (Scholar)
  • –––, 1948, “Logique de l’intuitionisme sans négation et logique de l’intuitionisme positif”, Comptes Rendus de l’Académie des sciences, 226: 38–39. [Destouches-Février 1948 available online] (Scholar)
  • –––, 1949, “Connexions entre les calculs des constructions, des problèmes, des propositions”, Comptes Rendus de l’Académie des sciences, 228: 31–33. [Destouches-Février 1949 available online] (Scholar)
  • –––, 1951, “Sur l’intuitionnisme et la conception strictement constructive”, Proceedings Koninklijke Nederlandse Akademie van Wetenschappen Amsterdam, 54: 80–86. doi:10.1016/s1385-7258(51)50012-4 (Scholar)
  • Došen, Kosta, 1992, “The First Axiomatization of Relevant Logic”, Journal of Philosophical Logic, 21(4): 339–356. doi:10.1007/bf00260740 (Scholar)
  • Dummett, Michael A.E., 1973, “The Justification of Deduction”, British Academy, London. Page references to reprint in Dummett 1978: 290–318. [Dummett 1973 available online] (Scholar)
  • –––, 1978, Truth and Other Enigmas, Cambridge MA: Harvard University Press. (Scholar)
  • –––, 2000, Elements of Intuitionism, second revised edition, Oxford: Clarendon Press. (Scholar)
  • Ewald, William Bragg, 1996, From Kant to Hilbert: A Source Book in the Foundations of Mathematics, 2 vols, Oxford: Oxford University Press. (Scholar)
  • Fitting, Melvin Chris, 1969, Intuitionistic Logic, Model Theory and Forcing, (Studies in Logic and the Foundations of Mathematics, 54), Amsterdam: North-Holland. (Scholar)
  • Fraenkel, Abraham A., Yehoshua Bar-Hillel, and Azriel Levy, 1973, Foundations of Set Theory, second revised edition, (Studies in Logic and the Foundations of Mathematics, 67), Amsterdam: North-Holland. The revision of the chapter on intuitionism (4) was done by Dirk van Dalen. (Scholar)
  • Franchella, Miriam, 1994a, “Heyting’s contribution to the change in research into the foundations of mathematics”, History and Philosophy of Logic, 15(2): 149–172. doi:10.1080/01445349408837229 (Scholar)
  • –––, 1994b, “Brouwer and Griss on intuitionistic negation”, Modern Logic, 4(3): 256–265. [Franchella 1994b available online] (Scholar)
  • –––, 1995, “L.E.J. Brouwer towards intuitionistic logic”, Historia Mathematica, 22(3): 304–322. doi:10.1006/hmat.1995.1026 (Scholar)
  • –––, 2008, Con gli occhi negli occhi di Brouwer, Monza: Polimetrica. (Scholar)
  • Freudenthal, Hans, 1937a, “Zum intuitionistischen Raumbegriff”, Compositio Mathematica, 4: 82–111. [Freudenthal 1937a available online] (Scholar)
  • –––, 1937b, “Zur intuitionistischen Deutung logischer Formeln”, Compositio Mathematica, 4: 112–116. [Freudenthal 1937b available online] (Scholar)
  • –––, 1937c, “Nachwort”, Compositio Mathematica, 4: 118. [Freudenthal 1937c available online] (Scholar)
  • –––, 1973, Mathematics as an Educational Task, Dordrecht:Reidel. (Scholar)
  • Gentzen, Gerhard, 1934, “Untersuchungen über das logische Schliessen”, Mathematische Zeitschrift, 39: 176–210, 405–431. English translation in Gentzen 1969: 68–131. doi:10.1007/bf01201353 (Scholar)
  • –––, 1969, The Collected Papers of Gerhard Gentzen, M.E. Szabo (ed. and trans.), Amsterdam: North-Holland. (Scholar)
  • Georgacarakos, G.N., 1982, “The Semantics of Minimal Intuitionism”, Logique et Analyse, 25(100): 383–397. [Georgacarakos 1982 available online] (Scholar)
  • Gilmore, P.C., 1953a, “The effect of Griss’ criticism of the intuitionistic logic on deductive theories formalized within the intuitionistic logic. I”, Proceedings Koninklijke Nederlandse Akademie van Wetenschappen Amsterdam, 56: 162–174. Also Indagationes Mathematicae, 15: 162–174. doi:10.1016/s1385-7258(53)50022-8 (Scholar)
  • –––, 1953b, “The effect of Griss’ criticism of the intuitionistic logic on deductive theories formalized within the intuitionistic logic. II”, Proceedings Koninklijke Nederlandse Akademie van Wetenschappen Amsterdam, 56: 175–186. Also Indagationes Mathematicae, 15: 175–186. doi:10.1016/s1385-7258(53)50023-x (Scholar)
  • –––, 1953c, “Griss’ criticism of the intuitionistic logic and the theory of order”, Proceedings of the 11th International Congress of Philosophy, Brussels 1953, Amsterdam: North-Holland, 5: 98–104. (Scholar)
  • –––, 1956, “Mathématique stable et Mathématique affirmative, by D. van Dantzig”, Journal of Symbolic Logic, 21(3): 323–324. doi:10.2307/2269134 (Scholar)
  • Glivenko, V., 1928, “Sur la logique de M. Brouwer”, Académie Royale de Belgique, Bulletin de la classe des sciences, 14: 225–228. (Scholar)
  • –––, 1929, “Sur quelques points de la logique de M. Brouwer”, Académie Royale de Belgique, Bulletin de la classe des sciences, 5(15): 183–188. English translation in Mancosu 1998: 301–305. (Scholar)
  • Gödel, Kurt, 1932, “Zum intuitionistischen Aussagenkalkül”, Anzeiger der Akademie der Wissenschaften in Wien, 69: 65–66. Also, with English translation, in Gödel 1986: 222–225. (Scholar)
  • –––, 1932f, “Heyting, Arend: Die intuitionistische Grundlegung der Mathematik”, Zentralblatt für Mathematik und ihre Grenzgebiete, 2: 321–322. Also, with English translation, in Gödel 1986: 246–247. (Scholar)
  • –––, 1933e, “Zur intuitionistischen Arithmetik und Zahlentheorie”, Ergebnisse eines mathematischen Kolloquiums, 4: 34–38. Also, with English translation, in Gödel 1986: 286–295. (Scholar)
  • –––, 1933f, “Eine Interpretation des intuitionistischen Aussagenkalküls”, Ergebnisse eines mathematischen Kolloquiums, 4: 39–40. Also, with English translation, in Gödel 1986: 300–303. (Scholar)
  • –––, *1933o, “The present situation in the foundations of mathematics”, text of a lecture in Cambridge, MA, in Gödel 1995: 45–53. (Scholar)
  • –––, *1941, “In what sense is intuitionistic logic constructive?”, text of a lecture at Yale, in Gödel 1995: 189–200. (Scholar)
  • –––, 1958, “Über eine bisher noch nicht benutzte Erweiterung des finiten Standpunktes”, Dialectica, 12(3–4): 280–287. Also, with English translation, in Gödel 1990: 240–251. doi:10.1111/j.1746-8361.1958.tb01464.x (Scholar)
  • –––, 1970, “On an extension of finitary mathematics which has not yet been used”, Circulated earlier version of Gödel 1972. (Scholar)
  • –––, 1972, “On an extension of finitary mathematics which has not yet been used”, Revised and expanded translation of Gödel 1958, first published in Gödel 1990: 271–280. (Scholar)
  • –––, 1986–, Collected Works, Solomon Feferman et al. (eds.), Oxford: Oxford University Press.
    • –––, 1986, I: Publications 1929–1936 (Scholar)
    • –––, 1990, II: Publications 1938–1974 (Scholar)
    • –––, 1995, III: Unpublished Essays and Lectures (Scholar)
    • –––, 2003a, IV: Correspondence A–G (Scholar)
    • –––, 2003b, V: Correspondence H–Z (Scholar)
  • Griss, G.F.C., 1944, “Negatieloze intuitïonistische wiskunde”, Verslagen Nederlandse Akademie van Wetenschappen Amsterdam, 53: 261–268. (Scholar)
  • –––, 1946, “Negationless intuitionistic mathematics”, Proceedings Koninklijke Nederlandse Akademie van Wetenschappen Amsterdam, 49: 1127–1133. Also Indagationes Mathematicae, 8: 675–681. (Scholar)
  • –––, 1947, Idealistische Filosofie, Arnhem: Van Loghum Slaterus. (Scholar)
  • –––, 1948a, “Sur la négation (dans les mathématiques et la logique)”, Synthese, 7(1/2): 71–74. (Scholar)
  • –––, 1948b, “Logique des mathématiques intuitionistes sans négation”, Comptes Rendus de l’Académie des sciences, 227: 946–948. [Griss 1948b available online] (Scholar)
  • –––, 1950, “Negationless intuitionistic mathematics. II”, Proceedings Koninklijke Nederlandse Akademie van Wetenschappen Amsterdam, 53: 456–463. Also Indagationes Mathematicae, 12: 108–115. (Scholar)
  • –––, 1951a, “Negationless Intuitionistic Mathematics. III”, Proceedings Koninklijke Nederlandse Akademie van Wetenschappen Amsterdam, 54: 193–199. Also Indagationes Mathematicae, 13: 193–199. doi:10.1016/s1385-7258(51)50027-6 (Scholar)
  • –––, 1951b, “Negationless Intuitionistic Mathematics. IVa”, Proceedings Koninklijke Nederlandse Akademie van Wetenschappen Amsterdam, 54: 452–462. Also Indagationes Mathematicae, 13: 452–462. doi:10.1016/s1385-7258(51)50064-1 (Scholar)
  • –––, 1951c, “Negationless Intuitionistic Mathematics. IVb”, Proceedings Koninklijke Nederlandse Akademie van Wetenschappen Amsterdam, 54: 463–471. Also Indagationes Mathematicae, 13: 463–471. doi:10.1016/s1385-7258(51)50065-3 (Scholar)
  • –––, 1951d, “Logic of Negationless Intuitionistic Mathematics”, Proceedings Koninklijke Nederlandse Akademie van Wetenschappen Amsterdam, 54: 41–49. Also Indagationes Mathematicae, 13: 41–49. doi:10.1016/s1385-7258(51)50007-0 (Scholar)
  • van Heijenoort, Jean (ed.), 1967, From Frege to Gödel: A Sourcebook in Mathematical Logic, 1879–1931, Cambridge, MA: Harvard University Press. (Scholar)
  • Hazen, A.P., 1995, “Is Even Minimal Negation Constructive?”, Analysis, 55(2): 105–107. doi:10.1093/analys/55.2.105 (Scholar)
  • Herbrand, Jacques, 1931, “Sur la non-contradiction de l’arithmétique”, Journal für die reine und angewandte Mathematik, 166: 1–8. Also Herbrand 1968: 221–232. English translation in van Heijenoort 1967: 620–628, reprint in Herbrand 1971: 284–297. (Scholar)
  • –––, 1968, Écrits logiques, Jean van Heijenoort (ed.), Paris: Presses Unversitaires de France.
  • –––, 1971, Logical Writings, Warren D. Goldfarb (ed.), Cambridge, MA: Harvard University Press. (Scholar)
  • Hesseling, Dennis E., 2003, Gnomes in the Fog. The Reception of Brouwer’s Intuitionism in the 1920s, Basel: Birkhäuser. (Scholar)
  • Heyting, Arend, 1925, Intuïtionistische axiomatiek der projectieve meetkunde, Ph.D. thesis, Universiteit van Amsterdam. (Scholar)
  • –––, 1928, [Prize essay on the formalization of intuitionistic logic]. Expanded and revised version published as Heyting 1930, Heyting 1930A, Heyting 1930B.
    • –––, 1930, “Die formalen Regeln der intuitionistischen Logik I”, Sitzungsberichte der Preussischen Akademie der Wissenschaften, 42–56. English translation in Mancosu 1998: 311–327. (Scholar)
    • –––, 1930A, “Die formalen Regeln der intuitionistischen Logik II”, Sitzungsberichte der Preussischen Akademie der Wissenschaften, 57–71. (Scholar)
    • –––, 1930B, “Die formalen Regeln der intuitionistischen Logik III”, Sitzungsberichte der Preussischen Akademie der Wissenschaften, 158–169. (Scholar)
  • –––, 1930C, “Sur la logique intuitionniste”, Académie Royale de Belgique, Bulletin de la Classe des Sciences, 16: 957–963. English translation in Mancosu 1998: 306–310. (Scholar)
  • –––, 1931, “Die intuitionistische Grundlegung der Mathematik” (The Intuitionist Foundations of Mathematics), Erkenntnis, 2: 106–115. English translation in Benacerraf & Putnam 1983: 52–61. doi:10.1017/cbo9781139171519.003 and doi:10.1007/BF02028143 (Scholar)
  • –––, 1932, “A propos d’un article de MM. Barzin et Errera”, Enseignement Mathématique, 31: 121–122.
  • –––, 1932C, “Anwendung der intuitionistischen Logik auf die Definition der Vollständigkeit eines Kalküls”, in Verhandlungen des Internationalen Mathematikerkongresses Zürich 1932, W. Saxer (ed.), Zürich: Orell Füssli, vol. 2, 344–345. (Scholar)
  • –––, 1934, Mathematische Grundlagenforschung, Intuitionismus, Beweistheorie, Berlin: Springer. (Scholar)
  • –––, 1937, “Bemerkungen zu dem Aufsatz von Herrn Freudenthal ‘Zur intuitionistischen Deutung logischer Formeln’”, Compositio Mathematica, 4: 117–118. [Heyting 1937c available online] (Scholar)
  • –––, 1955, Les fondements des mathématiques. Intuitionnisme. Théorie de la démonstration, Paris: Gauthier-Villars. Updated version of Heyting 1934, translated into French by P. Destouches-Février. (Scholar)
  • –––, 1953–1955, “G. F. C. Griss and His Negationless Intuitionistic MathematicsSynthese, 9: 91–96. doi:10.1007/bf00567395 (Scholar)
  • –––, 1956, Intuitionism, an Introduction, Amsterdam: North–Holland. (Scholar)
  • –––, 1958A, “Blick von der intuitionistischen Warte”, Dialectica, 12(3–4): 332–345. doi:10.1111/j.1746-8361.1958.tb01468.x (Scholar)
  • –––, 1958C, “Intuitionism in Mathematics”, in La philosophie au milieu du vingtième siècle, Raymond Klibansky (ed.), Firenze: La nuova Italia, vol. 1, 101–115. (Scholar)
  • –––, 1968A, “L.E.J. Brouwer”, in Logic and Foundations of Mathematics, (Contemporary Philosophy. A Survey, Vol.1), Raymond Klibansky (ed.), Firenze: La Nuova Italia editrice, 308–315. (Scholar)
  • –––, 1974, “Intuitionistic views on the nature of mathematics”, Synthese, 27(1–2): 79–91. doi:10.1007/bf00660890 (Scholar)
  • –––, 1978, “History of the Foundations of Mathematics”, Nieuw Archief voor Wiskunde, 3rd series, 26(3): 1–21. (Scholar)
  • Hilbert, David, 1900, “Mathematische Probleme. Vortrag, gehalten auf dem internationalen Mathematiker-Kongress zu Paris 1900” (Mathematical Problems), Archiv der Mathematik und Physik (3), 1: 44–63,213–237. English translation in the Bulletin of the American Mathematical Society, 8(10): 437–479, 1902. doi:10.1090/s0002-9904-1902-00923-3 (Scholar)
  • –––, 1922, “Neubegründung der Mathematik (Erste Mitteilung)”, Abhandlungen aus dem Mathematischen Seminar der Hamburgischen Universität, 1: 157–177. English translation in Mancosu 1998: 198–214. (Scholar)
  • –––, 1923, “Die logischen Grundlagen der Mathematik”, Mathematische Annalen, 88(1–2): 151–165. English translation in Ewald 1996: 1134–1148. doi:10.1007/bf01448445 (Scholar)
  • Hilbert, D. and W. Ackermann, 1928, Grundzüge der theoretischen Logik, Berlin: Springer. doi:10.1007/978-3-642-52789-0 (Scholar)
  • Imai, Yasuyuki and Kiyoshi Iseki, 1966, “On Griss Algebra. I”, Proceedings of the Japan Academy, 42(3): 213–216. doi:10.3792/pja/1195522077 (Scholar)
  • de Iongh, J.J., 1949, “Restricted Forms of Intuitionistic Mathematics”, Proceedings of the 10th International Congress of Philosophy, Amsterdam 1948, Amsterdam: North-Holland, 2: 744–748. doi:10.5840/wcp1019492207 (Scholar)
  • Johansson, Ingebrigt, 1937, “Der Minimalkalkül, ein reduzierter intuitionistischer Formalismus”, Compositio Mathematica, 4: 119–136. [Johansson 1937 available online] (Scholar)
  • Joosten, Joost Johannes, 2004, Interpretability Formalized, Ph.D. thesis, Utrecht University. Quaestiones Infinitae vol. XLIX, [Joosten 2004 available from Universiteit Utrecht/Universiteitsbibliotheek]. (Scholar)
  • Kennedy, Juliette, 2007, “Kurt Gödel”, in The Stanford Encyclopedia of Philosophy, Winter 2007 Edition, Edward N. Zalta (ed.), URL = <https://plato.stanford.edu/archives/win2007/entries/goedel/>. (Scholar)
  • Kleene, Stephen Cole, 1945, “On the Interpretation of Intuitionistic Number Theory”, Journal of Symbolic Logic, 10(4): 109–124. doi:10.2307/2269016 (Scholar)
  • –––, 1952, Introduction to Metamathematics, Amsterdam: North-Holland. (Scholar)
  • –––, 1973, “Realisability: A Retrospective Survey”, in Mathias & Rodgers 1973: 95–112. doi:10.1007/bfb0066772 (Scholar)
  • Kleene, Stephen Cole and Richard Eugene Vesley, 1965, The Foundations of Intuitionistic Mathematics, Especially in Relation to Recursive Functions, (Studies in logic and the foundations of mathematics, 39), Amsterdam: North-Holland. (Scholar)
  • Kolmogorov, A., 1925, “O principe tertium non datur”, Matematiceskij Sbornik, 32: 646–667. English translation in van Heijenoort 1967: 416–437.
  • –––, 1932, “Zur Deutung der Intuitionistischen Logik”, Mathematische Zeitschrift, 35: 58–65. English translation in Mancosu 1998: 328–334. doi:10.1007/bf01186549 (Scholar)
  • –––, 1937, “Freudenthal, Hans: Zur intuitionistischen Deutung logischer Formeln. Heyting, A.: Bemerkungen zu dem Aufsatz von Herrn Freudenthal ‘Zur intuitionistischen Deutung logischer Formeln’”, Zentralblatt für Mathematik und ihre Grenzgebiete, 0015.24201 [Photocopy/scan of Kolmogorov 1937 available online]. (Scholar)
  • Korevaar, Jaap., 2016, “Enkele persoonlijke herinneringen aan L.E.J. Brouwer”, (“Some personal memories of L.E.J. Brouwer”), Nieuw Archief voor Wiskunde, 5th series, 17(4): 247–249. [Korevaar 2016 available online] (Scholar)
  • Kreisel, G., 1962, “Foundations of Intuitionistic Logic”, in Logic, Methodology and Philosophy of Science: Proceedings of the 1960 International Congress, Ernst Nagel, Patrick Suppes, and Alfred Tarski (eds.), Stanford: Stanford University Press, 198–210. doi:10.1016/s0049-237x(09)70587-7 (Scholar)
  • –––, 1987, “Gödel’s Excursions into Intuitionistic Logic”, in Gödel Remembered, P. Weingartner and L. Schmetterer (eds.), Napoli: Bibliopolis, 67–179.
  • Kripke, Saul A., 1965, “Semantical Analysis of Intuitionistic Logic I”, in Formal Systems and Recursive Functions, (Studies in Logic and the Foundations of Mathematics, 40), J.N. Crossley and M. Dummett (eds.), Amsterdam: North-Holland, 92–130. doi:10.1016/s0049-237x(08)71685-9 (Scholar)
  • Krivtsov, Victor N., 2000a, “A Negationless Interpretation of Intuitionistic Theories”, Erkenntnis, 53(1–2): 155–172. doi:10.1023/a:1005618302941 (Scholar)
  • –––, 2000b, “A Negationless Interpretation of Intuitionistic Theories. I”, Studia Logica, 64(3): 323–344. doi:10.1023/a:1005233526469 (Scholar)
  • –––, 2000c, “A Negationless Interpretation of Intuitionistic Theories. II”, Studia Logica, 65(2): 155–179. doi:10.1023/a:1005207512630 (Scholar)
  • Kuiper, Johannes John Carel, 2004, Ideas and Explorations. Brouwer’s Road to Intuitionism, Ph.D. thesis, Utrecht University. Quaestiones Infinitae vol. XLVI [Kuiper 2004 available from Universiteit Utrecht/Universiteitsbibliotheek]. (Scholar)
  • Lewis, C.I., 1914, “The Calculus of Strict Implication”, Mind, New Series, 23(90): 240–247. doi:10.1093/mind/xxiii.1.240 (Scholar)
  • Mancosu, Paolo (ed.), 1998, From Brouwer to Hilbert. The Debate on the Foundations of Mathematics in the 1920s, Oxford: Oxford University Press. (Scholar)
  • Mathias, A.R.D. and H. Rodgers (eds.), 1973, Cambridge Summer School in Mathematical Logic 1971, (Lecture Notes in Mathematics, 337), Heidelberg: Springer. doi:10.1007/bfb0066770 (Scholar)
  • McKinsey, J.C.C., 1939, “Proof of the Independence of the Primitive Symbols of Heyting’s Calculus of Propositions”, Journal of Symbolic Logic, 4(4): 155–158. doi:10.2307/2268715 (Scholar)
  • Mendez, José M., 1988, “A Note on the Semantics of Minimal Intuitionism”, Logique et Analyse, 31(123–124): 371–377. [Mendez 1988 available online] (Scholar)
  • Michel, David, 2008, Systèmes formels et systèmes fonctionnels pédagogiques, Ph.D. thesis, Université Metz. [Michel 2008 available from Université de Lorraine]. (Scholar)
  • Mints, Grigori, 2006, “Notes on Constructive Negation”, Synthese, 148(3): 701–717. doi:10.1007/s11229-004-6294-3 (Scholar)
  • van der Molen, Tim, 2016, “The Johansson/Heyting letters and the birth of minimal logic”, ILLC Publications, Technical Notes Series, X-2016-04 [van der Molen 2016 available online from ILLC]. (Scholar)
  • Moschovakis, Joan, 2007, “Intuitionistic Logic”, in The Stanford Encyclopedia of Philosophy, Spring 2007 Edition, Edward N. Zalta (ed.), URL=<https://plato.stanford.edu/archives/spr2007/entries/logic-intuitionistic/>. (Scholar)
  • Myhill, John, 1966, “Notes Towards An Axiomatization of Intuitionistic Analysis”, Logique et Analyse, 9(35–36): 280–297. [Myhill 1966 available online] (Scholar)
  • Nelson, David, 1966, “Non-Null Implication”, Journal of Symbolic Logic, 31(4): 562–572. doi:10.2307/2269691 (Scholar)
  • Parsons, Charles, 1967, [Introduction to the translation of sections 1–3 of Brouwer 1927B], in van Heijenoort 1967: 446–457. (Scholar)
  • Pieri, Mario, 1898, “I principii della geometria di posizione composti in sistema logico deduttivo”, Memorie della Reale Accademia delle Scienze di Torino, series II, 48: 1–62.
  • Plisko, V.E., 1988, “The Kolmogorov calculus as a part of minimal calculus”, Russian Mathematical Surveys, 43(6): 95–110. doi:10.1070/rm1988v043n06abeh001993 (Scholar)
  • Pos, H.J., 1953–1954, “G.F.C. Griss als wijsgerig humanist en als mens”, De Nieuwe Stem, 8: 654–663. (Scholar)
  • Posy, Carl J., 1992, “Review: Dirk van Dalen, Intuitionistic Logic; Walter Felscher, Dialogues as a Foundation for Intuitionistic Logic”, Journal of Symbolic Logic, 57(2): 754–756. doi:10.2307/2275309 (Scholar)
  • Prawitz, Dag, 1965, Natural Deduction. A Proof-Theoretical Study, Stockholm: Almqvist & Wiksell. (Scholar)
  • Prawitz, D. and P.-E. Malmnäs, 1968, “A Survey of Some Connections Between Classical, Intuitionistic and Minimal Logic”, in Contributions to Mathematical Logic, (Studies in Logic and the Foundations of Mathematics, 50), H. Arnold Schmidt, K. Schütte, and H.-J. Thiele (eds.), Amsterdam: North-Holland, pp. 215–229. doi:10.1016/s0049-237x(08)70527-5 (Scholar)
  • Rasiowa, Helena, 1974, An Algebraic Approach to Non-Classical Logics, (Studies in logic and the foundations of mathematics, 78), Amsterdam: North-Holland/ (Scholar)
  • Ruitenburg, Wim, 1991, “The Unintended Interpretations of Intuitionistic Logic”, in Perspectives on the History of Mathematical Logic, Thomas Drucker (ed.), Basel: Birkhäuser, 134–160. doi:10.1007/978-0-8176-4769-8_10 (Scholar)
  • van Rootselaar, B., 1953–1954, “In memoriam Dr. G.F.C. Griss”, Euclides, 29(1): 42–45. (Scholar)
  • Russell, Bertrand, 1903, The Principles of Mathematics, London: Allen & Unwin. (Scholar)
  • Sato, Masahiko, 1997, “Classical Brouwer-Heyting-Kolmogorov interpretation”, RIMS Kokyuroku, 1021: 28–47. (Scholar)
  • Smirnov, V.J., 1925 [published 1932], “Kolmogorov, A.N.: Über das Prinzip tertium non datur”, Jahrbuch über die Fortschritte der Mathematik 51.0048.01. (Scholar)
  • van Stigt, Walter P., 1990, Brouwer’s Intuitionism, (Studies in the history and philosophy of mathematics, 2), Amsterdam: North-Holland. (Scholar)
  • Stone, Marshall Harvey, 1937, “Topological Representations of Distributive Lattices and Brouwerian Logics”, Časopis pro pěstování matematiky a fysiky, 67(1): 1–25. (Scholar)
  • Sundholm, Göran, 1983, “Constructions, Proofs and the Meaning of Logical Constants”, Journal of Philosophical Logic, 12(2): 151–172. doi:10.1007/bf00247187 (Scholar)
  • –––, 2004, “The Proof-Explanation of Logical Constants is Logically Neutral”, Revue Internationale de Philosophie, 58(4): 401–410. (Scholar)
  • Sundholm, Göran and Mark van Atten, 2008, “The proper explanation of intuitionistic logic: on Brouwer’s proof of the Bar Theorem”, in van Atten et al. 2008: 60–77. doi:10.1007/978-3-7643-8653-5_5 (Scholar)
  • de Swart, H.C.M., 1976, “Another Intuitionistic Completeness Proof”, Journal of Symbolic Logic, 41(3): 644–662. doi:10.1017/s0022481200051215 (Scholar)
  • –––, 1977, “An Intuitionistically Plausible Interpretation of Intuitionistic Logic”, Journal of Symbolic Logic, 42(4): 564–578. doi:10.2307/2271877 (Scholar)
  • Tarski, Alfred, 1938, “Der Aussagenkalkül und die Topologie”, Fundamentae Mathematicae, 31: 103–134. English translation in Tarski 1956, pp. 421–454. (Scholar)
  • –––, 1953, “A General Method in Proofs of Undecidability”, in Undecidable Theories, A. Tarski, A. Mostowski, and R. Robinson (eds.), Amsterdam: North-Holland, 3–35. (Scholar)
  • –––, 1956, Logic, Semantics, Metamathematics. Papers from 1923 to 1938, J.H. Woodger (trl.), Clarendon Press. (Scholar)
  • Troelstra, A.S., 1977, “Aspects of constructive mathematics”, in Handbook of Mathematical Logic, (Studies in Logic and the Foundations of Mathematics, 90), Jon Barwise (ed.), Amsterdam: North-Holland, 973–1052. doi:10.1016/s0049-237x(08)71127-3 (Scholar)
  • –––, 1983, “Logic in the Writings of Brouwer and Heyting”, in Atti del Convegne Internazionaledi Storia della Logica. San Gimignano, 4–8 dicembre 1982, V. Abrusci, E. Casari, and M. Mugnai, eds., Bologna: CLUEB, 193–210. (Scholar)
  • –––, 1990, “On the Early History of Intuitionistic Logic”, in Mathematical Logic, Petio P. Petkov (ed.), New York: Plenum Press, 3–17. (Scholar)
  • Troelstra, A.S., J. Niekus, and H. van Riemsdijk, 1981, “Bibliography of A. Heyting”, Nieuw Archief voor Wiskunde, 3rd series, 29: 24–35. (Scholar)
  • Troelstra, A.S. and D. van Dalen, 1988, Constructivism in Mathematics, 2 vols., (Studies in Logic and the Foundations of Mathematics, 121 & 123), Amsterdam: North-Holland. (Scholar)
  • Valpola, Veli, 1955, “Ein system der negationlosen Logik mit ausschliesslich realisierbaren Prädicaten”, Acta Philosophica Fennica, 9: 1–247. (Scholar)
  • Veldman, Wim, 1976, “An Intuitionstic Completeness Theorem for Intuitionistic Predicate Logic”, Journal of Symbolic Logic, 41(1): 159–166. doi:10.1017/s0022481200051859 (Scholar)
  • –––, 1982, “On the Continuity of Functions in Intuitionistic Real Analysis. Some Remarks on Brouwer’s Paper: ‘Ueber Definitionsbereiche von Funktionen’”, Tech. Rep. 8210, Mathematisch Instituut, Katholieke Universiteit Nijmegen. (Scholar)
  • –––, 2008, “The Borel Hierarchy Theorem from Brouwer’s Intuitionistic Perspective”, Journal of Symbolic Logic, 73(1): 1–64. doi:10.2178/jsl/1208358742 (Scholar)
  • Vesley, Richard, 1980, “Intuitionistic Analysis: the Search for Axiomatization and Understanding”, in The Kleene Symposium, (Studies in Logic and the Foundations of Mathematics, 101), J. Barwise, H. J. Keisler, and K. Kunen (eds.), Amsterdam: North-Holland, 317–331. doi:10.1016/s0049-237x(08)71265-5 (Scholar)
  • Vredenduin, P.G.J., 1953, “The Logic of Negationless Mathematics”, Compositio Mathematica, 11: 204–277. [Vredenduin 1953 available online] (Scholar)
  • –––, 1956, “G.F.C. Griss and his Negationaless Intuitionistic Mathematics, by A. Heyting”, Journal of Symbolic Logic, 21(1): 91. doi:10.2307/2268511 (Scholar)
  • Wajsberg, Mordchaj, 1938, “Untersuchungen über den Aussagenkalkül [von A. Heyting]”, Wiadomosci Matematyczne, (old series) 46: 45–101. (Scholar)
  • Wang, Hao, 1987, Reflections on Kurt Gödel, Cambridge MA: MIT Press. (Scholar)
  • Wavre, Rolin, 1924, “Y a-t-il une crise des mathématiques? A propos de la notion d’existence et d’une application suspecte du principe du tiers exclu”, Revue de Métaphysique et de Morale, 31(3) 435–470.
  • –––, 1926, “Logique formelle et logique empirique”, Revue de Métaphysique et de Morale, 33(1): 65–75. (Scholar)
  • Weyl, Hermann, 1921, “Über die neue Grundlagenkrise der Mathematik”, Mathematische Zeitschrift, 10(1–2): 39–79. English translation in Mancosu 1998: 86–118. doi:10.1007/bf02102305 (Scholar)
  • Whitehead, Alfred North, 1906, The Axioms of Projective Geometry, Cambridge: Cambridge University Press. (Scholar)
  • Whitehead, Alfred North and Bertrand Russell, 1910, Principia Mathematica, vol. 1, Cambridge: Cambridge University Press. (Scholar)

Generated Sun Aug 7 18:36:56 2022