Linked bibliography for the SEP article "The Development of Intuitionistic Logic" by Mark van Atten

This is an automatically generated and experimental page

If everything goes well, this page should display the bibliography of the aforementioned article as it appears in the Stanford Encyclopedia of Philosophy, but with links added to PhilPapers records and Google Scholar for your convenience. Some bibliographies are not going to be represented correctly or fully up to date. In general, bibliographies of recent works are going to be much better linked than bibliographies of primary literature and older works. Entries with PhilPapers records have links on their titles. A green link indicates that the item is available online at least partially.

This experiment has been authorized by the editors of the Stanford Encyclopedia of Philosophy. The original article and bibliography can be found here.

Brouwer's writings are referred to according to the scheme in the bibliography van Dalen 1997a; Gödel's, according to the bibliography in Gödel 1986, Gödel 1990, Gödel 1995 (except for Gödel 1970); Heyting's, according to the bibliography Troelstra et al. 1981 (except for Heyting 1928).

  • Artemov, S., 2001, “Explicit provability and constructive semantics”, Bulletin of Symbolic Logic, 7(1): 1–36. (Scholar)
  • van Atten, M., 2004a, “Review of D. Hesseling, Gnomes in the Fog. The Reception of Brouwer's Intuitionism in the 1920s”, Bulletin of Symbolic Logic, 10(3): 423–427. (Scholar)
  • van Atten, M., 2004b, On Brouwer, Belmont (CA): Wadsworth. (Scholar)
  • van Atten, M., 2005, “The correspondence between Oskar Becker and Arend Heyting”, in Oskar Becker und die Philosophie der Mathematik, V. Peckhaus, ed., München: Wilhelm Fink, 119–142. (Scholar)
  • van Atten, M., in press, “The hypothetical judgement in the history of intuitionistic logic”, forthcoming in Logic, Methodology, and Philosophy of Science XIII: Proceedings of the 2007 International Congress in Beijing, C. Glymour, W. Wang, and D. Westerståhl, eds., London: King's College Publications. (Scholar)
  • van Atten, M., Boldini, P., Bourdeau, M., and Heinzmann, G. (eds.), 2008, One Hundred Years of Intuitionism (1907–2007). The Cerisy Conference, Basel: Birkhäuser. (Scholar)
  • Barzin, M. and Errera, A., 1927, “Sur la logique de M. Brouwer”, Académie Royale de Belgique, Bulletin de la classe des sciences, 13: 56–71. (Scholar)
  • Bazhanov, V.A., 2003, “The scholar and the ‘Wolfhound Era’: The fate of Ivan E. Orlov's ideas in logic, philosophy, and science”, Science in context, 16(4): 535–550. (Scholar)
  • Becker, O., 1927, “Mathematische Existenz. Untersuchungen zur Logik und Ontologie mathematischer Phänomene”, Jahrbuch für Philosophie und phänomenologische Forschung, VIII: 439–809. (Scholar)
  • Becker, O., 1930, “Zur Logik der Modalitäten”, Jahrbuch für Philosophie und phänomenologische Forschung, XI: 497–548. (Scholar)
  • Benacerraf, P. and Putnam, H. (eds.), 1983, Philosophy of Mathematics: Selected Readings, 2nd ed., Cambridge: Cambridge University Press. (Scholar)
  • Bernays, P., 1926, “Axiomatische Untersuchung des Aussagen-Kalküls der “Principia Mathematica””, Mathematische Zeitschrift, 25: 305–320. (Scholar)
  • Bernays, P., 1967, “Hilbert, David”, in The Encyclopedia of Philosophy (vol. 3), P. Edwards, ed., New York: Macmillan. (Scholar)
  • Beth, E., 1956, “Semantic construction of intuitionistic logic”, Med. Nederl. Akad. Wet., Afd. Lett., 19(11): 357–388. (Scholar)
  • Brouwer, L.E.J., 1907, Over de Grondslagen der Wiskunde, Ph.D. thesis, Universiteit van Amsterdam. English translation in Brouwer 1975 pp. 11–101. (Scholar)
  • Brouwer, L.E.J., 1908, “De onbetrouwbaarheid der logische principes”, Tijdschrift voor Wijsbegeerte, 2: 152–158. English translation in Brouwer 1975 pp. 107–111. (Scholar)
  • Brouwer, L.E.J., 1918B, “Begründung der Mengenlehre unabhängig vom logischen Satz vom ausgeschlossenen Dritten. Erster Teil, Allgemeine Mengenlehre”, KNAW Verhandelingen, 5: 1–43. (Scholar)
  • Brouwer, L.E.J., 1919A, “Begründung der Mengenlehre unabhängig vom logischen Satz vom ausgeschlossenen Dritten. Zweiter Teil, Theorie der Punktmengen”, KNAW Verhandelingen, 7: 1–33. (Scholar)
  • Brouwer, L.E.J., 1921A, “Besitzt jede reelle Zahl eine Dezimalbruchentwicklung?”, Mathematische Annalen, 83: 201–210. English translation in Mancosu 1998 pp. 28–35. (Scholar)
  • Brouwer, L.E.J., 1924D1, “Bewijs dat iedere volle functie gelijkmatig continu is”, KNAW verslagen, 33: 189–193. English translation in Mancosu 1998, pp. 36–39.
  • Brouwer, L.E.J., 1924N, “Über die Bedeutung des Satzes vom ausgeschlossenen Dritten in der Mathematik, insbesondere in der Funktionentheorie”, Journal für die reine und angewandte Mathematik, 154: 1–7. English translation in van Heijenoort 1967, pp. 335–341. (Scholar)
  • Brouwer, L.E.J., 1925E, “Intuitionistische Zerlegung mathematischer Grundbegriffe”, Jahresb. D.M.V., 33: 251–256. English translation in Mancosu 1998, pp. 287–289 (sections 2–4),290–292 (section 1). (Scholar)
  • Brouwer, L.E.J., 1926A, “Zur Begründung der intuitionistischen Mathematik, II”, Mathematische Annalen, 95: 453–472. (Scholar)
  • Brouwer, L.E.J., 1927B, “Über Definitionsbereiche von Funktionen”, Mathematische Annalen, 97: 60–75. English translation of sections 1–3 in van Heijenoort 1967, pp. 457–463. (Scholar)
  • Brouwer, L.E.J., 1928A2, “Intuitionistische Betrachtungen über den Formalismus”, KNAW Proceedings, 31: 374–379. English translation in Mancosu 1998, pp. 40–44. (Scholar)
  • Brouwer, L.E.J., 1929A, “Mathematik, Wissenschaft und Sprache”, Monatshefte für Mathematik und Physik, 36: 153–164. English translation in Mancosu 1998 pp.45–53. (Scholar)
  • Brouwer, L.E.J., 1930A, Die Struktur des Kontinuums, Wien: Komitee zur Veranstaltung von Gastvorträgen ausländischer Gelehrter der exakten Wissenschaften. English translation in Mancosu 1998, pp. 54–63. (Scholar)
  • Brouwer, L.E.J., 1933A2, “Willen, weten, spreken”, in De Uitdrukkingswijze der Wetenschap, L.E.J. Brouwer et al., Groningen: Noordhoff, 45–63. English translation in van Stigt 1990, pp. 418–431. (Scholar)
  • Brouwer, L.E.J., 1948A, “Essentieel negatieve eigenschappen”, Indagationes Mathematicae, 10: 322–323. English translation in Brouwer 1975, pp. 478–479. (Scholar)
  • Brouwer, L.E.J., 1949A, “De non-aequivalentie van de constructieve en de negatieve orderelatie in het continuum”, Indagationes Mathematicae, 11: 37–39. English translation in Brouwer 1975, pp. 495–496. (Scholar)
  • Brouwer, L.E.J., 1949B, “Contradictoriteit der elementaire meetkunde”, KNAW Proc., 52: 315–316. English translation in Brouwer 1975, pp. 497–498. (Scholar)
  • Brouwer, L.E.J., 1949C, “Consciousness, philosophy and mathematics”, Proceedings of the 10th International Congress of Philosophy, Amsterdam 1948, 3: 1235–1249. (Scholar)
  • Brouwer, L.E.J., 1952B, “Historical background, principles and methods of intuitionism”, South African Journal of Science, 49: 139–146. (Scholar)
  • Brouwer, L.E.J., 1954A, “Points and spaces”, Canadian Journal of Mathematics, 6: 1–17. (Scholar)
  • Brouwer, L.E.J., 1954F, “An example of contradictority in classical theory of functions”, Indag. Math., 16: 204–205. (Scholar)
  • Brouwer, L.E.J., 1955, “The effect of intuitionism on classical algebra of logic”, Proceedings of the Royal Irish Academy, 57: 113–116. (Scholar)
  • Brouwer, L.E.J., 1975, Collected Works. I: Philosophy and Foundations of Mathematics, ed. A. Heyting, Amsterdam: North-Holland. (Scholar)
  • Brouwer, L.E.J., 1981A, Brouwer's Cambridge Lectures on Intuitionism, Cambridge: Cambridge University Press. (Scholar)
  • van Dalen, D., 1973, “Lectures on intuitionism”, in Cambridge Summer School in Mathematical Logic 1971, H. Rodgers and A. Mathias, eds., Heidelberg: Springer, vol. 337 of Lecture Notes in Mathematics, 1–94. (Scholar)
  • van Dalen, D., 1997, “A bibliography of L.E.J. Brouwer”, Utrecht Logic Group Preprint Series, no.176 [Preprint available online]. Updated version in van Atten et al. 2008, pp. 343–390. (Scholar)
  • van Dalen, D., 1999, Mystic, Geometer, and Intuitionist. The Life of L.E.J. Brouwer. 1: The Dawning Revolution, Oxford: Clarendon Press. (Scholar)
  • van Dalen, D., 2001a, L.E.J. Brouwer 1881–1966. Een Biografie. Het Heldere Licht van de Wiskunde, Amsterdam: Bert Bakker. (Scholar)
  • van Dalen, D., 2001b, L.E.J. Brouwer en de Grondslagen van de Wiskunde, Utrecht: Epsilon. (Scholar)
  • van Dalen, D., 2004, “Kolmogorov and Brouwer on constructive implication and the Ex Falso rule”, Russian Math Surveys, 59: 247–257. (Scholar)
  • van Dalen, D., 2005, Mystic, Geometer, and Intuitionist. The Life of L.E.J. Brouwer. 2: Hope and Disillusion, Oxford: Clarendon Press. (Scholar)
  • van Dalen, D., 2008, “Another look at Brouwer's dissertation”, in van Atten et al. 2008, 3–20. (Scholar)
  • Došen, K., 1992, “The first axiomatization of relevant logic”, Journal of Philosophical Logic, 21: 339–356. (Scholar)
  • Dummett, M., 1973, “The Justification of Deduction”, British Academy, London. Page references to reprint in Dummett 1978, pp. 290–318. (Scholar)
  • Dummett, M., 1978, Truth and Other Enigmas, Cambridge MA: Harvard University Press. (Scholar)
  • Dummett, M., 2000, Elements of Intuitionism, 2nd, rev. ed., Oxford: Clarendon Press. (Scholar)
  • Ewald, W., 1996, From Kant to Hilbert. Readings in the Foundations of Mathematics, 2 vols, Oxford: Oxford University Press. (Scholar)
  • Franchella, M., 1994, “Heyting's contribution to the change in research into the foundations of mathematics”, History and Philosophy of Logic, 15(2): 149–172. (Scholar)
  • Franchella, M., 1995, “L.E.J. Brouwer towards intuitionistic logic”, Historia Mathematica, 22: 304–322. (Scholar)
  • Freudenthal, H., 1936, “Zur intuitionistischen Deutung logischer Formeln”, Compositio Mathematica, 4: 112–116. (Scholar)
  • Gentzen, G., 1934, “Untersuchungen über das logische Schliessen, Mathematische Zeitschrift, 39: 176–210, 405–431. English translation in Gentzen 1969, pp. 68–131. (Scholar)
  • Gentzen, G., 1969, The Collected Papers of Gerhard Gentzen, ed.,trl. M. Szabo, Amsterdam: North-Holland. (Scholar)
  • Glivenko, V., 1928, “Sur la logique de M. Brouwer”, Académie Royale de Belgique, Bulletin de la classe des sciences, 14: 225–228. (Scholar)
  • Glivenko, V., 1929, “Sur quelques points de la logique de M. Brouwer”, Académie Royale de Belgique, Bulletin de la classe des sciences, 5(15): 183–188. English translation in Mancosu 1998, pp. 301–305. (Scholar)
  • Gödel, K., 1932, “Zum intuitionistischen Aussagenkalkül”, Anzeiger der Akademie der Wissenschaften in Wien, 69: 65–66. Also, with English translation, in Gödel 1986, pp. 222–225. (Scholar)
  • Gödel, K., 1932f, “Heyting, Arend: Die intuitionistische Grundlegung der Mathematik”, Zentralblatt für Mathematik und ihre Grenzgebiete, 2: 321–322. Also, with English translation, in Gödel 1986, pp. 246–247. (Scholar)
  • Gödel, K., 1933e, “Zur intuitionistischen Arithmetik und Zahlentheorie”, Ergebnisse eines mathematischen Kolloquiums, 4: 34–38. Also, with English translation, in Gödel 1986, pp. 286–295. (Scholar)
  • Gödel, K., 1933f, “Eine Interpretation des intuitionistischen Aussagenkalküls”, Ergebnisse eines mathematischen Kolloquiums, 4: 39–40. Also, with English translation, in Gödel 1986, pp. 300–303. (Scholar)
  • Gödel, K., 1958, “Über eine bisher noch nicht benutzte Erweiterung des finiten Standpunktes”, Dialectica, 12: 280–287. Also, with English translation, in Gödel 1990, pp. 240–251. (Scholar)
  • Gödel, K., 1970, “On an extension of finitary mathematics which has not yet been used”, Circulated earlier version of Gödel 1972. (Scholar)
  • Gödel, K., 1972, “On an extension of finitary mathematics which has not yet been used”, Revised and expanded translation of Gödel 1958, first published in Gödel 1990, pp. 271–280. (Scholar)
  • Gödel, K., 1986, Collected Works. I: Publications 1929–1936, eds. S. Feferman et al., Oxford: Oxford University Press. (Scholar)
  • Gödel, K., 1990, Collected Works. II: Publications 1938–1974, eds. S. Feferman et al., Oxford: Oxford University Press. (Scholar)
  • Gödel, K., 1995, Collected Works. III: Unpublished Essays and Lectures, eds. S. Feferman et al., Oxford: Oxford University Press. (Scholar)
  • Gödel, K., 2003a, Collected Works. IV: Correspondence A-G, eds. S. Feferman et al., Oxford: Oxford University Press. (Scholar)
  • Gödel, K., 2003b, Collected Works. V: Correspondence H-Z, eds. S. Feferman et al., Oxford: Oxford University Press. (Scholar)
  • van Heijenoort, J. (ed.), 1967, From Frege to Gödel: A Sourcebook in Mathematical Logic, 1879–1931, Cambridge MA: Harvard University Press. (Scholar)
  • Herbrand, J., 1931, “Sur la non-contradiction de l’arithmétique”, Journal für die reine und angewandte Mathematik, 166: 1–8. Also Herbrand 1968, pp. 221–232. English translation in van Heijenoort 1967, pp. 620–628, reprint in Herbrand 1971, pp. 284–297. (Scholar)
  • Herbrand, J., 1968, Écrits logiques (ed. J. van Heijenoort), Paris: Presses Unversitaires de France.
  • Herbrand, J., 1971, Logical Writings (ed. W. Goldfarb), Cambridge, MA: Harvard University Press. (Scholar)
  • Hesseling, D., 2003, Gnomes in the Fog. The Reception of Brouwer's Intuitionism in the 1920s, Basel: Birkhäuser. (Scholar)
  • Heyting, A., 1925, Intuïtionistische axiomatiek der projektieve meetkunde, Ph.D. thesis, Universiteit van Amsterdam. (Scholar)
  • Heyting, A., 1928, [Prize essay on the formalization of intuitionistic logic]. Expanded and revised version published as Heyting 1930, Heyting 1930A, Heyting 1930B. (Scholar)
  • Heyting, A., 1930, “Die formalen Regeln der intuitionistischen Logik I”, Sitzungsberichte der Preussischen Akademie der Wissenschaften, 42–56. English translation in Mancosu 1998, pp. 311–327. (Scholar)
  • Heyting, A., 1930A, “Die formalen Regeln der intuitionistischen Logik II”, Sitzungsberichte der Preussischen Akademie der Wissenschaften, 57–71. (Scholar)
  • Heyting, A., 1930B, “Die formalen Regeln der intuitionistischen Logik III”, Sitzungsberichte der Preussischen Akademie der Wissenschaften, 158–169. (Scholar)
  • Heyting, A., 1930C, “Sur la logique intuitionniste”, Académie Royale de Belgique, Bulletin de la Classe des Sciences, 16: 957–963. English translation in Mancosu 1998, pp. 306–310. (Scholar)
  • Heyting, A., 1931, “Die intuitionistische Grundlegung der Mathematik”, Erkenntnis, 2: 106–115. English translation in Benacerraf and Putnam 1983, pp. 52–61. (Scholar)
  • Heyting, A., 1932, “A propos d’un article de MM. Barzin et Errera”, Enseignement Mathématique, 31: 121–122.
  • Heyting, A., 1932C, “Anwendung der intuitionistischen Logik auf die Definition der Vollständigkeit eines Kalküls”, in Verhandlungen des Internationalen Mathematikerkongresses Zürich 1932, W. Saxer, ed., Zürich: Orell Füssli, vol. 2, 344–345. (Scholar)
  • Heyting, A., 1934, Mathematische Grundlagenforschung, Intuitionismus, Beweistheorie, Berlin: Springer. (Scholar)
  • Heyting, A., 1956, Intuitionism, an Introduction, Amsterdam: North–Holland. (Scholar)
  • Heyting, A., 1958A, “Blick von der intuitionistischen Warte”, Dialectica, 12: 332–345. (Scholar)
  • Heyting, A., 1958C, “Intuitionism in mathematics”, in La philosophie au milieu du vingtiè me siè cle, R. Klibansky, ed., Firenze: La nuova Italia, vol. 1, 101–115. (Scholar)
  • Heyting, A., 1968A, “L.E.J. Brouwer”, in Contemporary Philosophy. A Survey. Vol.1: Logic and Foundations of Mathematics., R. Klibansky, ed., La Nuova Italia editrice, 308–315. (Scholar)
  • Heyting, A., 1974, “Intuitionistic views on the nature of mathematics”, Synthese, 27: 79–91. (Scholar)
  • Heyting, A., 1978, “History of the foundations of mathematics”, Nieuw Archief voor Wiskunde, XXVI(3): 1–21. (Scholar)
  • Hilbert, D., 1900, “Mathematische Probleme. Vortrag, gehalten auf dem internationalen Mathematiker-Kongress zu Paris 1900”, Archiv der Mathematik und Physik (3), 1: 44–63,213–237. English translation in the Bulletin of the American Mathematical Society 8:437 – 479, 1902. (Scholar)
  • Hilbert, D., 1922, “Neubegründung der Mathematik (Erste Mitteilung)”, Abhandlungen aus dem Mathematischen Seminar der Hamburgischen Universität, 1: 157–177. English translation in Mancosu 1998, pp. 198–214. (Scholar)
  • Hilbert, D., 1923, “Die logischen Grundlagen der Mathematik”, Mathematische Annalen, 88: 151–165. English translation in Ewald 1996, pp. 1134–1148. (Scholar)
  • Hilbert, D. and Ackermann, W., 1928, Grundzüge der theoretischen Logik, Berlin: Springer. (Scholar)
  • Joosten, J., 2004, Interpretability formalized, Ph.D. thesis, Utrecht University. Quaestiones Infinitae vol. XLIX, [Available from Universiteit Utrecht/Universiteitsbibliotheek]. (Scholar)
  • Kennedy, J., 2007, “Kurt Gödel”, in The Stanford Encyclopedia of Philosophy, Winter 2007 Edition, Edward N. Zalta (ed.), URL = <https://plato.stanford.edu/archives/win2007/entries/goedel/>. (Scholar)
  • Kleene, S., 1945, “On the interpretation of intuitionistic number theory”, Journal of Symbolic Logic, 50: 109–124. (Scholar)
  • Kleene, S., 1952, Introduction to Metamathematics, Amsterdam: North-Holland. (Scholar)
  • Kleene, S., 1973, “Realisability: a retrospective survey”, in Cambridge Summer School in Mathematical Logic 1971, H. Rodgers and A. Mathias, eds., Heidelberg: Springer, vol. 337 of Lecture Notes in Mathematics, 95–112. (Scholar)
  • Kleene, S. and Vesley, R., 1965, The Foundations of Intuitionistic Mathematics, Especially in Relation to Recursive Functions, Amsterdam: North-Holland. (Scholar)
  • Kolmogorov, A., 1925, “O principe tertium non datur”, Matematiceskij Sbornik, 32: 646–667. English translation in van Heijenoort 1967, pp. 416–437.
  • Kolmogorov, A., 1932, “Zur Deutung der intuitionistischen Logik”, Mathematische Zeitschrift, 35: 58–65. English translation in Mancosu 1998, pp. 328–334. (Scholar)
  • Kolmogorov, A., 1937, “Freudenthal, Hans: Zur intuitionistischen Deutung logischer Formeln. Heyting, A.: Bemerkungen zu dem Aufsatz von Herrn Freudenthal ‘Zur intuitionistischen Deutung logischer Formeln’”, Zentralblatt für Mathematik und ihre Grenzgebiete, 0015.24201 [Photocopy/scan of original available online]. (Scholar)
  • Kreisel, G., 1962, “Foundations of intuitionistic logic”, in Logic, Methodology and Philosophy of Science, Proc. 1960 Int. Congr., E. Nagel, P. Suppes, and A. Tarski, eds., Stanford: Stanford University Press, 198–210. (Scholar)
  • Kreisel, G., 1987, “Gödel's excursions into intuitionistic logic”, in Gödel remembered, P. Weingartner and L. Schmetterer, eds., Napoli: Bibliopolis, 67–179.
  • Kripke, S., 1965, “Semantical analysis of intuitionistic logic I”, in Formal Systems and Recursive Functions, M. Dummett and J. Crossley, eds., Amsterdam: North-Holland, 92–130. (Scholar)
  • Kuiper, J., 2004, Ideas and Explorations. Brouwer's Road to Intuitionism, Ph.D. thesis, Utrecht University. Quaestiones Infinitae vol. XLVI [Available from Universiteit Utrecht/Universiteitsbibliotheek]. (Scholar)
  • Mancosu, P., 1998, From Brouwer to Hilbert. The Debate on the Foundations of Mathematics in the 1920s, Oxford: Oxford University Press. (Scholar)
  • McKinsey, J., 1939, “Proof of the independence of the primitive symbols of Heyting's calculus of propositions”, Journal of Symbolic Logic, 4(4): 155–158. (Scholar)
  • Mints, G., 2006, “Notes on constructive negation”, Synthese, 148: 701–717. (Scholar)
  • Moschovakis, J., 2007, “Intuitionistic Logic”, in The Stanford Encyclopedia of Philosophy, Spring 2007 Edition, Edward N. Zalta (ed.), URL = <https://plato.stanford.edu/archives/spr2007/entries/logic-intuitionistic/>. (Scholar)
  • Myhill, J., 1968, “Notes towards an axiomatization of intuitionistic analysis”, Logique et Analyse, 35: 280–297. (Scholar)
  • Parsons, C., 1967, [Introduction to the translation of sections 1–3 of Brouwer 1927B], in van Heijenoort 1967, pp. 446–457. (Scholar)
  • Pieri, M., 1898, “I principii della geometria di posizione composti in sistema logico deduttivo”, Memorie della Reale Accademia delle Scienze di Torino, series II, 48: 1–62.
  • Posy, C., 1992, “Review: Dirk van Dalen, Intuitionistic Logic; Walter Felscher, Dialogues as a Foundation for Intuitionistic Logic”, Journal of Symbolic Logic, 57(2): 754–756. (Scholar)
  • Russell, B., 1903, The Principles of Mathematics, London: Allen & Unwin. (Scholar)
  • Sato, M., 1997, “Classical Brouwer-Heyting-Kolmogorov interpretation”, RIMS Kokyuroku, 1021: 28–47. (Scholar)
  • Smirnov, V. 1925 [published 1932], “Kolmogorov, A.N.: Über das Prinzip tertium non datur.” Jahrbuch über die Fortschritte der Mathematik 51.0048.01 [Listing in ERAM database]. (Scholar)
  • van Stigt, W., 1990, Brouwer's Intuitionism, Amsterdam: North-Holland. (Scholar)
  • Stone, M., 1937, “Topological representations of distributive lattices and Brouwerian logics”, Časopis pro pěstování matematiky a fysiky, 67: 1–25. (Scholar)
  • Sundholm, G., 1983, “Constructions, proofs and the meaning of logical constants”, Journal of Philosophical Logic, 12: 151–172. (Scholar)
  • Sundholm, G., 2004, “The proof-explanation of logical constants is logically neutral”, Revue Internationale de Philosophie, 58(4): 401–410. (Scholar)
  • Sundholm, G. and van Atten, M., 2008, “The proper explanation of intuitionistic logic: on Brouwer's proof of the Bar Theorem”, in van Atten et al. 2008, 60–77. (Scholar)
  • de Swart, H., 1976, “Another intuitionistic completeness proof”, Journal of Symbolic Logic, 41(3): 644–662. (Scholar)
  • de Swart, H., 1977, “An intuitionistically plausible interpretation of intuitionistic logic”, Journal of Symbolic Logic, 42(4): 564–578. (Scholar)
  • Tarski, A, 1938, “Der Aussagenkalkül und die Topologie”, Fundamentae Mathematicae, 31: 103–134. English translation in Tarski 1956, pp. 421–454. (Scholar)
  • Tarski, A., 1953, “A general method in proofs of undecidability”, in Undecidable theories, A. Tarski, A. Mostowski, and R. Robinson, eds., North- Holland, 3–35.
  • Tarski, A, 1956, Logic, Semantics, Metamathematics. Papers from 1923 to 1938, trl. J. Woodger, Clarendon Press. (Scholar)
  • Troelstra, A., 1977, “Aspects of constructive mathematics”, in Handbook of Mathematical Logic, J. Barwise, ed., Amsterdam: North-Holland, 973–1052. (Scholar)
  • Troelstra, A., 1983, “Logic in the writings of Brouwer and Heyting”, in Atti del Convegne Internazionaledi Storia della Logica. San Gimignano, 4–8 dicembre 1982, V. Abrusci, E. Casari, and M. Mugnai, eds., Bologna: CLUEB, 193–210. (Scholar)
  • Troelstra, A., 1990, “On the early history of intuitionistic logic”, in Mathematical Logic, P. Petkov, ed., New York: Plenum Press, 3–17. (Scholar)
  • Troelstra, A., Niekus, J., and van Riemsdijk, H., 1981, “Bibliography of A. Heyting”, Nieuw Archief voor Wiskunde, 29: 24–35. (Scholar)
  • Troelstra, A. and van Dalen, D., 1988, Constructivism in Mathematics, 2 vols., Amsterdam: North-Holland. (Scholar)
  • Veldman, W., 1976, “An intuitionistic completeness theorem for intuitionistic predicate logic”, Journal of Symbolic Logic, 41(1): 159–166. (Scholar)
  • Veldman, W., 1982, “On the Continuity of Functions in Intuitionistic Real Analysis. Some Remarks on Brouwer's Paper: ‘Ueber Definitionsbereiche von Funktionen’ ”, Tech. Rep. 8210, Mathematisch Instituut, Katholieke Universiteit Nijmegen. (Scholar)
  • Vesley, R., 1980, “Intuitionistic Analysis: the Search for Axiomatization and Understanding”, in The Kleene Symposium, J. Barwise, H. J. Keisler, and K. Kunen, eds., Amsterdam: North-Holland, 317–331. (Scholar)
  • Wajsberg, M., 1938, “Untersuchungen über den Aussagenkalkül von A. Heyting”, Wiadomosci Matematyczne, 46: 45–101. (Scholar)
  • Wang, H., 1987, Reflections on Kurt Gödel, Cambridge MA: MIT Press. (Scholar)
  • Wavre, R., 1924, “Y a-t-il une crise des mathématiques ? A propos de la notion d”existence et d’une application suspecte du principe du tiers exclu”, Revue de métaphysique et de morale, 31: 435–470.
  • Wavre, R., 1926, “Logique formelle et logique empirique”, Revue de Métaphysique et de Morale, 33: 65–75. (Scholar)
  • Weyl, H., 1921, “Über die neue Grundlagenkrise der Mathematik”, Mathematische Zeitschrift, 10: 39–79. English translation in Mancosu 1998, pp. 86–118. (Scholar)
  • Whitehead, A., 1906, The Axioms of Projective Geometry, Cambridge University Press. (Scholar)
  • Whitehead, A. and Russell, B., 1910, Principia Mathematica. Vol. 1, Cambridge: Cambridge University Press. (Scholar)

Generated Sun Jul 16 08:11:20 2017