Linked bibliography for the SEP article "Combining Logics" by Walter Carnielli and Marcelo Esteban Coniglio

This is an automatically generated and experimental page

If everything goes well, this page should display the bibliography of the aforementioned article as it appears in the Stanford Encyclopedia of Philosophy, but with links added to PhilPapers records and Google Scholar for your convenience. Some bibliographies are not going to be represented correctly or fully up to date. In general, bibliographies of recent works are going to be much better linked than bibliographies of primary literature and older works. Entries with PhilPapers records have links on their titles. A green link indicates that the item is available online at least partially.

This experiment has been authorized by the editors of the Stanford Encyclopedia of Philosophy. The original article and bibliography can be found here.

  • Avron, A. and I. Lev, 2001, “Canonical propositional Gentzen-type systems”, in R. Goré, A. Leitsch and T. Nipkow (eds), Proceedings of the 1st International Joint Conference on Automated Reasoning (IJCAR 2001), volume 2083 of Lecture Notes in Artificial Intelligence, Berlin: Springer Verlag, pp. 529–544. (Scholar)
  • –––, 2005, “Non-deterministic multiple-valued structures”, Journal of Logic and Computation, 15(3): 241–261. (Scholar)
  • Baumgardt, D., 1946, “Legendary quotations and lack of references”, Journal of the History of Ideas, 7(1): 99–102. (Scholar)
  • Beziau, J.-Y., 2004, “A paradox in the combination of logics”, in W. Carnielli, F. Dionísio, and P. Mateus (eds), Proceedings of CombLog’04: Workshop on Combination of Logics: Theory and Applications, Lisbon (Portugal), Departamento de Matemática, Instituto Superior Técnico, Lisbon (Portugal), pp. 76–77.
  • Beziau, J.-Y. and M.E. Coniglio, 2005, “Combining conjunction with disjunction”, in B. Prasad (ed.), Proceedings of the 2nd Indian International Conference on Artificial Intelligence (IICAI 2005), Pune, India, IICAI, pp. 1648–1658. [Beziau and Coniglio 2005 available online] (Scholar)
  • –––, 2011, “To Distribute or not to Distribute?” Logic Journal of the IGPL, 19(4): 566–583. (Scholar)
  • Blackburn, P. and M. de Rijke, 1997, “Zooming in, zooming out”, Journal of Logic, Language and Information, 6(1): 5–31. (Scholar)
  • Caleiro, C., W. Carnielli, J. Rasga, and C. Sernadas, 2005, “Fibring of logics as a universal construction”, in Dov M. Gabbay and Franz Guenthner (eds), Handbook of Philosophical Logic (2nd edition), volume 13, Dordrecht: Springer, pp. 123–187. (Scholar)
  • Caleiro, C. and J. Ramos, 2007, “From fibring to cryptofibring: A solution to the collapsing problem”, Logica Universalis, 1(1): 71–92. (Scholar)
  • Caleiro, C., C. Sernadas, and A. Sernadas, 1999, “Parameterisation of logics”, in J. Fiadeiro (ed.), Recent Trends in Algebraic Development Techniques: 13th International Workshop, WADT’98, Lisbon, Portugal, April 2-4, 1998, Selected Papers, volume 1589 of Lecture Notes in Computer Science, Berlin: Springer, pp. 48–62. (Scholar)
  • Carnielli, W., 1990, “Many-valued logics and plausible reasoning”, in Proceedings of the XX International Congress on Many-Valued Logics, University of Charlotte, USA, IEEE Computer Society, pp. 328–335. (Scholar)
  • –––, 2000, “Possible-Translations Semantics for Paraconsistent Logics”, in D. Batens, C. Mortensen, G. Priest, and J.P. Van Bendegem (eds), Frontiers of Paraconsistent Logic: Proceedings of the I World Congress on Paraconsistency, Logic and Computation Series, Hertfordshire: Research Studies Press, pp. 149–163. (Scholar)
  • Carnielli, W., M.E. Coniglio, D. Gabbay, P. Gouveia, and C. Sernadas, 2008, Analysis and Synthesis of Logics, Volume 35 in the Applied Logic Series, Dordrecht: Springer. (Scholar)
  • Carnielli, W., M.E. Coniglio, and J. Marcos, 2007, “Logics of Formal Inconsistency”, in Dov M. Gabbay and Franz Guenthner (eds), Handbook of Philosophical Logic (2nd edition), volume 14, Dordrecht: Springer, pp. 1–93. (Scholar)
  • Carnielli, W. and M.E. Coniglio, 2005, “Splitting logics”, in S. Artemov, H. Barringer, A.S. d’Avila Garcez, L.C. Lamb, and J. Woods (eds), We Will Show Them: Essays in Honour of Dov Gabbay, volume 1, London: College Publications, pp. 389–414. (Scholar)
  • Carnielli, W. and J. Marcos, 2002, “A Taxonomy of C-systems”, in W. Carnielli, M.E. Coniglio, and I. D’Ottaviano, (eds), Paraconsistency: the logical way to the inconsistent. Proceedings of WCP’2000, volume 228 of Lecture Notes in Pure and Applied Mathematics, Boca Raton: CRC Press, pp. 1–94. (Scholar)
  • Coniglio, M.E., 2007, “Recovering a logic from its fragments by meta-fibring”, Logica Universalis, 1(2): 1–39. (Scholar)
  • Coniglio, M.E. and V. Fernández, 2005, “Plain fibring and direct union of logics with matrix semantics”, in B. Prasad (ed.), Proceedings of the 2nd Indian International Conference on Artificial Intelligence (IICAI 2005), Pune, India, IICAI, pp 1590–1608. (Scholar)
  • Coniglio, M.E., A. Sernadas, and C. Sernadas, 2011, “Preservation a logic by fibring of the finite model property”, Journal of Logic and Computation, 21(2): 375–402. (Scholar)
  • Coniglio, M.E. and M. Figallo, 2015, “A Formal Framework for Hypersequent Calculi and their Fibring”, in A. Koslow and A. Buchsbaum (eds), The Road to Universal Logic: Festschrift for 50th Birthday of Jean-Yves Béziau, Volume I. Studies in Universal Logic Series, Basel: Springer, pp. 73–93. (Scholar)
  • Cruz-Filipe, L., A. Sernadas, and C. Sernadas, 2008, “Heterogeneous fibring of deductive systems via abstract proof systems”, Logic Journal of the IGPL, 16(2): 121–153. (Scholar)
  • del Cerro, L.F. and A. Herzig, 1996, “Combining classical and intuitionistic logic, or: Intuitionistic implication as a conditional”, in F. Baader and K. Schulz (eds), Frontiers of Combining Systems: Proceedings of the 1st International Workshop, Munich (Germany), Applied Logic, Dordrecht: Kluwer Academic Publishers, pp. 93–102. (Scholar)
  • Diaconescu, R. and K. Futatsugi, 2002, “Logical foundations of CafeOBJ”, Theoretical Computer Science, 285: 289–318. (Scholar)
  • Epstein, R., 1995, The Semantic Foundations of Logic, Oxford: Oxford University Press, 2nd edition. Volume 1: Propositional logics, with the assistance and collaboration of W. Carnielli, I. D’Ottaviano, S. Krajewski, and R. Maddux. (Scholar)
  • Fajardo, R.A.S. and M. Finger, 2003, “Non-normal modalisation”, in Ph. Balbiani, N.-Y. Suzuki, F. Wolter and M. Zakharyaschev (eds), Advances in Modal Logic, Volume 4, London: King's College Publications, pp. 83–95. (Scholar)
  • Fernández, V.L. and M.E. Coniglio, 2007, “Fibring in the Leibniz Hierarchy”, Logic Journal of the IGPL, 15(5–6): 475–501. (Scholar)
  • Fine, K. and G. Schurz, 1996, “Transfer theorems for multimodal logics”, in J. Copeland (ed.), Logic and Reality: Essays on the Legacy of Arthur Prior, Oxford: Oxford University Press, pp. 169–213. (Scholar)
  • Finger, M. and D. Gabbay, 1992, “Adding a temporal dimension to a logic system”, Journal of Logic, Language and Information, 1(3): 203–233. (Scholar)
  • –––, 1996, “Combining temporal logic systems”, Notre Dame Journal of Formal Logic, 37(2): 204–232. (Scholar)
  • Finger, M. and M.A. Weiss, 2002, “The unrestricted combination of temporal logic systems”, Logic Journal of the IGPL, 10(2): 165–189. (Scholar)
  • Fitting, M., 1969, “Logics with several modal operators”, Theoria, 35: 259–266. (Scholar)
  • Gabbay, D., 1996a, “Fibred semantics and the weaving of logics: Part 1”, Journal of Symbolic Logic, 61(4): 1057–1120. (Scholar)
  • –––, 1996b, “An overview of fibred semantics and the combination of logics”, in F. Baader and K.U. Schulz (eds), Frontiers of Combining Systems: Proceedings of the 1st International Workshop FroCos’96, Munich (Germany), volume 3 of Applied Logic, Dordrecht: Kluwer Academic Publishers, pp. 1–55. (Scholar)
  • –––, 1999, Fibring Logics, volume 38 of Oxford Logic Guides, New York: Oxford University Press. (Scholar)
  • Goguen, J. and R. Burstall, 1984, “Introducing institutions”, in Logics of Programs (Carnegie-Mellon University, June 1983), volume 164 of Lecture Notes in Computer Science, Berlin: Springer, pp. 221–256. (Scholar)
  • –––, 1986, “A study in the foundations of programming methodology: specifications, institutions, charters and parchments”, in Category Theory and Computer Programming, volume 240 of Lecture Notes in Computer Science, Berlin: Springer, pp. 313–333.
  • –––, 1992, “Institutions: Abstract model theory for specification and programming”, Journal of the ACM, 39(1): 95–146. (Scholar)
  • Governatori, G., V. Padmanabhan, and A. Sattar, 2002, “On Fibring Semantics for BDI Logics”, in S. Flesca, S. Greco, N. Leone and G. Ianni (eds), Logics in Artificial Intelligence: European Conference - JELIA 2002, Volume 2424 of Lecture Notes in Computer Science, Berlin: Springer, pp. 198–209. (Scholar)
  • Hume, D., 2000 [1740], David Hume: A Treatise of Human Nature, D.F. Norton and M.J. Norton (eds), Oxford: Oxford University Press. (Scholar)
  • Jánossy, A., Á. Kurucz, and Á. E. Eiben, 1996, “Combining Algebraizable Logics”, Notre Dame Journal of Formal Logic, 37(2): 366–380. (Scholar)
  • Karmo, T., 1988, “Some valid (but no sound) arguments trivially span the ‘Is’-‘Ought’ gap”, Mind, 97: 252–257. (Scholar)
  • Kracht, M., 2004, “Review of Fibring Logics, by Dov Gabbay, Oxford Logic Guides, vol. 38, Oxford University Press, 1998”, The Bulletin of Symbolic Logic, 10(2): 209–211. (Scholar)
  • Kracht, M. and O. Kutz, 2002, “The semantics of modal predicate logic I: Counterpart-frames”, in F. Wolter, H. Wansing, M. de Rijke, and M. Zakharyaschev (eds), Advances in Modal Logic, Volume 3 of Studies in Logic, Language and Information, Stanford, CA: CSLI Publications. (Scholar)
  • Kracht, M. and F. Wolter, 1991, “Properties of Independently Axiomatizable Bimodal Logics”, Journal of Symbolic Logic, 56: 1469–1485. (Scholar)
  • –––, 1997, “Simulation and Transfer Results in Modal Logic - A Survey”, Studia Logica, 59: 149–177. (Scholar)
  • –––, 1999, “Normal monomodal logics can simulate all others”, Journal of Symbolic Logic, 64: 99–138. (Scholar)
  • Marcelino, S., C. Caleiro, and P. Baltazar, 2015, “Deciding theoremhood in fibred logics without shared connectives”, in A. Koslow and A. Buchsbaum (eds), The Road to Universal Logic: Festschrift for 50th Birthday of Jean-Yves Béziau, Volume II. Studies in Universal Logic, series, Basel: Springer, pp. 387–406. (Scholar)
  • Marcos, J., 1999, “Semânticas de Traduções Possíveis (Possible-Translations Semantics, in Portuguese)”, Master’s thesis, IFCH-UNICAMP, Campinas, Brazil. Marcos 1999 available online (Scholar)
  • –––, 2008, “Possible-translations semantics for some weak classically-based paraconsistent logics”, Journal of Applied Non-Classical Logics, 18(1): 7–28. (Scholar)
  • Mossakowski, T., 1996, “Using limits of parchments to systematically construct institutions of partial algebras”, in M. Haveraaen, O. Owe, and O.-J. Dahl (eds), Recent Trends in Data Type Specifications, volume 1130 of Lecture Notes in Computer Science, Berlin: Springer, pp. 379–393. (Scholar)
  • Prior, A.N., 1960, “The autonomy of ethics”, Australasian Journal of Philosophy, 38: 199–206. (Scholar)
  • Rasga, J., K. Roggia, and C. Sernadas, 2010, “Fusion of sequent modal logic systems labelled with truth values”, Logic Journal of the IGPL, 18(6): 893–920. (Scholar)
  • Rasga, J., A. Sernadas, and C. Sernadas, 2012, “Importing logics”, Studia Logica, 100(3): 545–581. (Scholar)
  • –––, 2013, “Importing logics: Soundness and completeness preservation”, Studia Logica, 101(1): 117–155. (Scholar)
  • –––, 2014, “Fibring as biporting subsumes asymmetric combinations”, Studia Logica, 102(5): 1041–1071. (Scholar)
  • Schurz, G., 1991, “How far can Hume’s is-ought-thesis be generalized? An investigation in alethic-deontic modal predicate logic”, Journal of Philosophical Logic, 20: 37–95. (Scholar)
  • –––, 1997, The Is-Ought Problem: An Investigation in Philosophical Logic, Dordrecht: Kluwer (Scholar)
  • –––, 2011, “Combinations and completeness transfer for quantified modal logics”, Logic Journal of the IGPL, 19(4): 598–616. (Scholar)
  • Segerberg, K., 1973, “Two-dimensional modal logic”, Journal of Philosophical Logic, 2(1): 77–96. (Scholar)
  • Šehtman, V., 1978, “Two-dimensional modal logics”, Akademiya Nauk SSSR. Matematicheskie Zametki, 23(5): 759–772. (Scholar)
  • Sernadas, A., C. Sernadas, and C. Caleiro, 1999, “Fibring of logics as a categorial construction”, Journal of Logic and Computation, 9(2): 149–179. (Scholar)
  • Sernadas, A., C. Sernadas, and J. Rasga, 2011, “On combined connectives”, Logica Universalis, 5(2): 205–224. (Scholar)
  • –––, 2012, “On meet-combination of logics”, Journal of Logic and Computation, 22(6): 1453–1470. (Scholar)
  • Sernadas, A., C. Sernadas, J. Rasga, and M.E. Coniglio, 2009a “A graph-theoretic account of logics”, Journal of Logic and Computation, 19(6): 1281–1320.
  • –––, 2009b, “On graph-theoretic Fibring of logics”, Journal of Logic and Computation, 19(6): 1321–1357. (Scholar)
  • Sernadas, A., C. Sernadas, J. Rasga, and P. Mateus, 2011, “Non-deterministic combination of connectives”, in J.-Y. Béziau and M.E. Coniglio (eds), Logic without Frontiers: Festschrift for Walter Alexandre Carnielli on the Occasion of his 60th Birthday, volume 17 of Tribute Series, London: College Publications, pp. 321–338. (Scholar)
  • Sernadas, A., C. Sernadas, and A. Zanardo, 2002a, “Fibring modal first-order logics: Completeness preservation”, Logic Journal of the IGPL, 10(4): 413–451. (Scholar)
  • Sernadas, C., J. Rasga, and W. Carnielli, 2002b, “Modulated fibring and the collapsing problem”, Journal of Symbolic Logic, 67(4): 1541–1569. (Scholar)
  • Sernadas, C., J. Rasga, and A. Sernadas, 2013, “Preservation of Craig interpolation by the product of matrix logics”, Journal of Applied Logic, 11(3): 328–349. (Scholar)
  • Stuhlmann-Laeisz, R., 1983, Das Sein-Sollen-Problem. Eine modallogische Studie (problemata 96), Stuttgart: Frommann-Holzboog. (Scholar)
  • Tarlecki, A., 2000, “Towards heterogeneous specifications”, in D. Gabbay and M.D. Rijke (eds), Frontiers of Combining Systems 2, Research Studies Press/Wiley. (Scholar)
  • Thomason, R., 1984, “Combinations of tense and modality”, in Dov M. Gabbay and Franz Guenthner (eds), Handbook of Philosophical Logic, volume 2, Dordrecht: D. Reidel, pp. 135–165. (Scholar)
  • van Benthem, J., 2006, “Epistemic logic and epistemology: the state of their affairs”, Philosophical Studies, 128(1): 49–76. (Scholar)
  • van Benthem, J., G. Bezhanishvili, B. ten Cate, and D. Sarenac, 2006, “Multimodal Logics of Products of Topologies”, Studia Logica, 84(3): 369–392. (Scholar)
  • Zanardo, A., A. Sernadas, and C. Sernadas, 2001, “Fibring: Completeness preservation”, Journal of Symbolic Logic, 66(1): 414–439. (Scholar)

Generated Sun May 21 08:05:24 2017