Linked bibliography for the SEP article "Fuzzy Logic" by Petr Cintula, Christian G. Fermüller and Carles Noguera
This is an automatically generated and experimental page
If everything goes well, this page should display the bibliography of the aforementioned article as it appears in the Stanford Encyclopedia of Philosophy, but with links added to PhilPapers records and Google Scholar for your convenience. Some bibliographies are not going to be represented correctly or fully up to date. In general, bibliographies of recent works are going to be much better linked than bibliographies of primary literature and older works. Entries with PhilPapers records have links on their titles. A green link indicates that the item is available online at least partially.
This experiment has been authorized by the editors of the Stanford Encyclopedia of Philosophy. The original article and bibliography can be found here.
Supplementary document:
Bibliography Sorted by Topic
- Aguzzoli, Stefano, Simone Bova, and Brunella Gerla, 2011,
“Free algebras and functional representation for fuzzy
logics”, in Cintula, Petr, Petr Hájek, and Carles Noguera
(eds.), Handbook of Mathematical Fuzzy Logic, Volume 2,
(Mathematical Logic and Foundations, Volume 38), London: College
Publications, pages 713–791. (Scholar)
- Avron, Arnon, 1991, “Hypersequents, Logical Consequence and
Intermediate Logics for Concurrency”, Annals of Mathematics
and Artificial Intelligence, 4(3–4): 225–248.
doi:10.1007/bf01531058 (Scholar)
- Baaz, Matthias, 1996, “Infinite-Valued Gödel Logic with
0–1-Projections and Relativisations”, in Hájek,
Petr (ed.), Gödel’96: Logical Foundations of
Mathematics, Computer Science, and Physics, (Lecture Notes in
Logic, Volume 6), Brno: Springer, pages 23–33. (Scholar)
- Baaz, Matthias, Petr Hájek, Franco Montagna, and Helmut
Veith, 2002, “Complexity of T-Tautologies”, Annals of
Pure and Applied Logic, 113(1–3): 3–11. (Scholar)
- Baaz, Matthias and Norbert Preining, 2011,
“Gödel–Dummett Logics”, in Cintula, Petr, Petr
Hájek, and Carles Noguera (eds.), Handbook of Mathematical
Fuzzy Logic, Volume 2, (Mathematical Logic and Foundations,
Volume 38), London: College Publications, pages 585–625. (Scholar)
- Badia, Guillermo and Carles Noguera, 2021, “Lindström theorems in graded model theory”, Annals of Pure and Applied Logic, 172(3): 102916. doi: 10.1016/j.apal.2020.102916 (Scholar)
- –––, 2021, “A General Omitting Types
Theorem in Mathematical Fuzzy Logic”, IEEE Transactions on
Fuzzy Systems, 29(6): 1386–1394. doi:
10.1109/tfuzz.2020.2975146 (Scholar)
- Běhounek, Libor, 2009, “Fuzzy Logics Interpreted as
Logics of Resources”, in Peliš, Michal (ed.), The
Logica Yearbook 2008, London: College Publications, pages
9–21. (Scholar)
- –––, 2014, “In Which Sense Is Fuzzy Logic
a Logic For Vagueness?”, in Łukasiewicz, Thomas, Rafael
Peñaloza, and Anni-Yasmin Turhan (eds.), PRUV 2014: Logics
for Reasoning About Preferences, Uncertainty, and Vagueness,
(CEUR Workshop Proceedings, Volume 1205), Dresden: CEUR. (Scholar)
- Běhounek, Libor and Petr Cintula, 2005, “Fuzzy Class
Theory”, Fuzzy Sets and Systems, 154(1):
34–55. (Scholar)
- –––, 2006, “Fuzzy Logics as the Logics of
Chains”, Fuzzy Sets and Systems, 157(5):
604–610. (Scholar)
- Běhounek, Libor and Zuzana Haniková, 2014, “Set
Theory and Arithmetic in Fuzzy Logic”, in Montagna, Franco
(ed.), Petr Hájek on Mathematical Fuzzy Logic,
(Outstanding Contributions to Logic, Volume 6), Cham: Springer, pages
63–89. (Scholar)
- Bělohlávek, Radim, Joseph W. Dauben, and George J. Klir, 2017, Fuzzy Logic and Mathematics: A Historical Perspective, Oxford: Oxford University Press. doi:10.1093/oso/9780190200015.001.0001 (Scholar)
- Bělohlávek, Radim and Vilém Vychodil, 2005,
Fuzzy Equational Logic, (Studies in Fuzziness and Soft
Computing, Volume 186), Berlin and Heidelberg: Springer. (Scholar)
- Bobillo, Fernando, Marco Cerami, Francesc Esteva, Àngel
García-Cerdaña, Rafael Peñaloza, and Umberto
Straccia, 2015, “Fuzzy Description Logics”, in Cintula,
Petr, Christian G. Fermüller, and Carles Noguera (eds.),
Handbook of Mathematical Fuzzy Logic, Volume 3, (Mathematical
Logic and Foundations, Volume 58), London: College Publications, pages
1105–1181. (Scholar)
- Bou, Félix, Francesc Esteva, Lluís Godo, and Ricardo
Oscar Rodríguez, 2011, “On the Minimum Many-Valued Modal
Logic Over a Finite Residuated Lattice”, Journal of Logic
and Computation, 21(5): 739–790. (Scholar)
- Busaniche, Manuela and Franco Montagna, 2011,
“Hájek’s Logic BL and BL-Algebras”, in
Cintula, Petr, Petr Hájek, and Carles Noguera (eds.),
Handbook of Mathematical Fuzzy Logic, Volume 1, (Mathematical
Logic and Foundations, Volume 37), London: College Publications, pages
355–447.
- Ciabattoni, Agata, Nikolaos Galatos, and Kazushige Terui, 2012, “Algebraic Proof Theory for Substructural Logics: Cut-Elimination and Completions”, Annals of Pure and Applied Logic, 163(3): 266–290. (Scholar)
- Caicedo, Xavier, George Metcalfe, Ricardo Oscar Rodríguez,
and Jonas Rogger, 2017, “Decidability of order-based modal
logics”, Journal of Computer and System Sciences, 88:
53–74. doi:10.1016/j.jcss.2017.03.012 (Scholar)
- Caicedo, Xavier and Ricardo Oscar Rodríguez, 2010, “Standard Gödel Modal Logics”, Studia Logica, 94(2): 189–214. (Scholar)
- –––, 2015, “Bi-modal Gödel logic over
[0, 1]-valued Kripke frames”, Journal of Logic and
Computation, 25(1): 37–55. doi: 10.1093/logcom/exs036 (Scholar)
- Cicalese, Ferdinando and Franco Montagna, 2015,
“Ulam–Rényi Game Based Semantics For Fuzzy
Logics”, in Cintula, Petr, Christian G. Fermüller, and
Carles Noguera (eds.), Handbook of Mathematical Fuzzy Logic,
Volume 3, (Mathematical Logic and Foundations, Volume 58), London:
College Publications, pages 1029–1062. (Scholar)
- Cignoli, Roberto, Itala M. D’Ottaviano, and Daniele Mundici,
1999, Algebraic Foundations of Many-Valued Reasoning, (Trends
in Logic, Volume 7), Dordrecht: Kluwer. (Scholar)
- Cintula, Petr, 2006, “Weakly Implicative (Fuzzy) Logics I: Basic Properties”, Archive for Mathematical Logic, 45(6): 673–704. (Scholar)
- Cintula, Petr, Denisa Diaconescu, and George Metcalfe, 2019,
“Skolemization and Herbrand theorems for lattice-valued
logics”, Theoretical Computer Science, 768:
54–75. doi: 10.1016/j.tcs.2019.02.007 (Scholar)
- Cintula, Petr, Francesc Esteva, Joan Gispert, Lluís Godo, Franco Montagna, and Carles Noguera, 2009, “Distinguished Algebraic Semantics for T-norm Based Fuzzy Logics: Methods and Algebraic Equivalencies”, Annals of Pure and Applied Logic, 160(1): 53–81. (Scholar)
- Cintula, Petr, Christian G. Fermüller, and Carles Noguera
(eds.), 2015, Handbook of Mathematical Fuzzy Logic, volume 3,
(Studies in Logic, Volume 58), London: College Publications. (Scholar)
- Cintula, Petr, Petr Hájek, and Carles Noguera (eds.),
2011a, Handbook of Mathematical Fuzzy Logic, volume 1
(Studies in Logic, Volume 37), London: College Publications. (Scholar)
- ––– (eds.), 2011b, Handbook of Mathematical
Fuzzy Logic, volume 2 (Studies in Logic, Volume 38), London:
College Publications. (Scholar)
- Cintula, Petr, Rostislav Horčík, Carles Noguera, 2013, “Non-Associative Substructural Logics and their Semilinear Extensions: Axiomatization and Completeness Properties”, The Review of Symbolic Logic, 6(3): 394–423. doi:10.1017/s1755020313000099 (Scholar)
- –––, 2014, “The Quest for the Basic Fuzzy
Logic”, in Montagna, Franco (ed.), Petr Hájek on
Mathematical Fuzzy Logic, (Outstanding Contributions to Logic,
Volume 6), Cham: Springer, pages 245–290.
doi:10.1007/978-3-319-06233-4_12 (Scholar)
- Cintula, Petr, Paula Menchón, and Carles Noguera, 2019,
“Toward a general frame semantics for modal many-valued
logics”, Soft Computing, 23(7): 2233–2241. doi:
10.1007/s00500-018-3369-5 (Scholar)
- Cintula, Petr and Carles Noguera, 2011, “A General Framework
for Mathematical Fuzzy Logic”, in Cintula, Petr, Petr
Hájek, and Carles Noguera (eds.), Handbook of Mathematical
Fuzzy Logic, Volume 1, (Mathematical Logic and Foundations,
Volume 37), London: College Publications, pages 103–207. (Scholar)
- Cintula, Petr and George Metcalfe, 2009, “Structural Completeness in Fuzzy Logics”, Notre Dame Journal of Formal Logic, 50(2): 153–183. (Scholar)
- Dellunde, Pilar, 2012, “Preserving Mappings in Fuzzy
Predicate Logics”, Journal of Logic and Computation,
22(6): 1367–1389. (Scholar)
- Dellunde, Pilar, Àngel García-Cerdaña, and
Carles Noguera, 2018, “Back-and-forth systems for fuzzy
first-order models”, Fuzzy Sets and Systems, 345:
83–98. (Scholar)
- Di Nola, Antonio and Giangiacomo Gerla, 1986, “Fuzzy Models of First-Order Languages”, Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, 32(19–24): 331–340. (Scholar)
- Dummett, Michael, 1959, “A Propositional Calculus with Denumerable Matrix”, Journal of Symbolic Logic, 24(2): 97–106. doi:10.2307/2964753 (Scholar)
- Esteva, Francesc, Joan Gispert, Lluís Godo, and Carles
Noguera, 2007, “Adding Truth-Constants to Logics of Continuous
T-norms: Axiomatization and Completeness Results”, Fuzzy
Sets and Systems, 158(6): 597–618.
doi:10.1016/j.fss.2006.11.010 (Scholar)
- Esteva, Francesc and Lluís Godo, 2001, “Monoidal
T-norm Based Logic: Towards a Logic for Left-Continuous
T-norms”, Fuzzy Sets and Systems, 124(3):
271–288. doi:10.1016/s0165-0114(01)00098-7 (Scholar)
- Esteva, Francesc, Lluís Godo, and Àngel
García-Cerdaña, 2003, “On the Hierarchy of T-norm
Based Residuated Fuzzy Logics”, in Fitting, Melvin and Ewa
Orłowska (eds.), Beyond Two: Theory and Applications of
Multiple-Valued Logic, (Studies in Fuzziness and Soft Computing,
Volume 114), Heidelberg: Springer, pages 251–272. (Scholar)
- Esteva, Francesc, Lluís Godo, Petr Hájek, and Mirko Navara, 2000, “Residuated Fuzzy Logics with an Involutive Negation”, Archive for Mathematical Logic, 39(2): 103–124. doi:10.1007/s001530050006 (Scholar)
- Esteva, Francesc, Lluís Godo, and Enrico Marchioni, 2011,
“Fuzzy Logics with Enriched Language”, in Cintula, Petr,
Petr Hájek, and Carles Noguera (eds.), Handbook of
Mathematical Fuzzy Logic, Volume 2, (Mathematical Logic and
Foundations, Volume 38), London: College Publications, pages
627–711. (Scholar)
- Esteva, Francesc, Lluís Godo, and Franco Montagna, 2001, “The \(L\Pi\) and \(L\Pi\frac12\) Logics: Two Complete Fuzzy Systems Joining Łukasiewicz and Product Logics”, Archive for Mathematical Logic, 40(1): 39–67. doi:10.1007/s001530050173 (Scholar)
- –––, 2003, “Axiomatization of Any
Residuated Fuzzy Logic Defined by a Continuous T-norm”, in Taner
Bilgiç, Bernard De Baets, and Okyay Kaynak (eds.), Fuzzy
Sets and Systems: IFSA 2003, (Lecture Notes in Computer Science,
Volume 2715), Berlin/Heidelberg: Springer, pages 172–179.
doi:10.1007/3-540-44967-1_20 (Scholar)
- Fedel, Martina, Hykel Hosni, and Franco Montagna, 2011, “A
Logical Characterization of Coherence for Imprecise
Probabilities”, International Journal of Approximate
Reasoning, 52(8): 1147–1170, doi:
10.1016/j.ijar.2011.06.004. (Scholar)
- Fermüller, Christian G., 2015, “Semantic Games for
Fuzzy Logics”, Cintula, Petr, Christian G. Fermüller, and
Carles Noguera (eds.), 2015, Handbook of Mathematical Fuzzy
Logic, volume 3, (Studies in Logic, Volume 58), London: College
Publications, pages 969–1028. (Scholar)
- Fermüller, Christian G. and George Metcalfe, 2009, “Giles’s Game and Proof Theory for Łukasiewicz Logic”, Studia Logica, 92(1): 27–61. doi:10.1007/s11225-009-9185-2 (Scholar)
- Fermüller, Christian G. and Christoph Roschger, 2014, “Randomized Game Semantics for Semi-Fuzzy Quantifiers”, Logic Journal of the Interest Group of Pure and Applied Logic, 22(3): 413–439. doi:10.1093/jigpal/jzt049 (Scholar)
- Flaminio, Tommaso, Lluís Godo, and Enrico Marchioni, 2011,
“Reasoning About Uncertainty of Fuzzy Events: An
Overview”, in Cintula, Petr, Christian G. Fermüller,
Lluís Godo, and Petr Hájek(eds.), Understanding
Vagueness: Logical, Philosophical, and Linguistic Perspectives,
(Studies in Logic, Volume 36), London: College Publications, pages
367–400. (Scholar)
- Flaminio, Tommaso and Tomáš Kroupa, 2015,
“States of MV-Algebras”, in Cintula, Petr, Christian G.
Fermüller, and Carles Noguera (eds.), Handbook of
Mathematical Fuzzy Logic, Volume 3, (Mathematical Logic and
Foundations, Volume 58), London: College Publications, pages
1183–1236. (Scholar)
- Font, Josep Maria, 2016, Abstract Algebraic Logic: An
Introductory Textbook, (Mathematical Logic and Foundations,
Volume 60), London: College Publications. (Scholar)
- Galatos, Nikolaos, Peter Jipsen, Tomasz Kowalski, and Hiroakira Ono, 2007, Residuated Lattices: An Algebraic Glimpse at Substructural Logics, (Studies in Logic and the Foundations of Mathematics, Volume 151), Amsterdam: Elsevier. (Scholar)
- García-Cerdaña, Àngel, Eva Armengol, and
Francesc Esteva, 2010, “Fuzzy Description Logics and T-norm
Based Fuzzy Logics”, International Journal of Approximate
Reasoning, 51(6): 632–655. (Scholar)
- Gehrke, Mai, Carol L. Walker, and Elbert A. Walker, 1997, “A
Mathematical Setting for Fuzzy Logics”, International
Journal of Uncertainty, Fuzziness, and Knowledge-Based Systems,
5(3): 223–238. doi:10.1142/s021848859700021x (Scholar)
- Gerla, Giangiacomo, 2001, Fuzzy Logic—Mathematical Tool
for Approximate Reasoning, (Trends in Logic, Volume 11), New
York: Kluwer and Plenum Press. (Scholar)
- Giles, Robin, 1974, “A Non-Classical Logic for Physics”, Studia Logica, 33(4): 397–415. doi:10.1007/bf02123379 (Scholar)
- Gödel, Kurt, 1932, “Zum intuitionistischen Aussagenkalkül”, Anzeiger Akademie Der Wissenschaften Wien, 69: 65–66. (Scholar)
- Godo, Lluís, Francesc Esteva, and Petr Hájek, 2000,
“Reasoning About Probability Using Fuzzy Logic”,
Neural Network World, 10(5): 811–823. (Scholar)
- Goguen, Joseph A., 1969, “The Logic of Inexact Concepts”, Synthese, 19(3–4): 325–373. (Scholar)
- Gottwald, Siegfried, 2001, A Treatise On Many-Valued Logics, (Studies in Logic and Computation, Volume 9), Baldock: Research Studies Press Ltd. (Scholar)
- Hájek, Petr, 1998, Metamathematics of Fuzzy Logic, (Trends in Logic, Volume 4), Dordrecht: Kluwer. (Scholar)
- –––, 2001, “On Very True”, Fuzzy
Sets and Systems, 124(3): 329–333. (Scholar)
- –––, 2005, “Making Fuzzy Description Logic
More General”, Fuzzy Sets and Systems, 154(1):
1–15. (Scholar)
- Hájek, Petr and Petr Cintula, 2006, “On Theories and Models in Fuzzy Predicate Logics”, Journal of Symbolic Logic, 71(3): 863–880. (Scholar)
- Hájek, Petr and Zuzana Haniková, 2003, “A
Development of Set Theory in Fuzzy Logic”, in Fitting, Melvin
and Ewa Orłowska (eds.), Beyond Two: Theory and Applications
of Multiple-Valued Logic, (Studies in Fuzziness and Soft
Computing, Volume 114), Heidelberg: Springer, pages
273–285. (Scholar)
- Hájek, Petr, Franco Montagna, Carles Noguera, 2011,
“Arithmetical Complexity of First-Order Fuzzy Logics”, in
Cintula, Petr, Petr Hájek, and Carles Noguera(eds.),
Handbook of Mathematical Fuzzy Logic, Volume 2, (Mathematical
Logic and Foundations, Volume 38), London: College Publications, pages
853–908. (Scholar)
- Hájek, Petr and Vilém Novák, 2003, “The
Sorites Paradox and Fuzzy Logic”, International Journal of
General Systems, 32(4): 373–383.
doi:10.1080/0308107031000152522 (Scholar)
- Hájek, Petr, Jeff Paris, and John C. Shepherdson, 2000, “The Liar Paradox and Fuzzy Logic”, Journal of Symbolic Logic, 65(1): 339–346. (Scholar)
- Haniková, Zuzana, 2011, “Computational Complexity of
Propositional Fuzzy Logics”, in Cintula, Petr, Petr
Hájek, and Carles Noguera (eds.), Handbook of Mathematical
Fuzzy Logic, Volume 2, (Mathematical Logic and Foundations,
Volume 38), London: College Publications, pages 793–851. (Scholar)
- –––, 2014, “Varieties Generated by
Standard BL-Algebras”, Order, 31(1): 15–33.
doi:10.1007/s11083-013-9285-5 (Scholar)
- Hansoul, Georges and Bruno Teheux, 2013, “Extending
Łukasiewicz Logics with a Modality: Algebraic Approach to
Relational Semantics”, Studia Logica, 101(3):
505–545, doi: 10.1007/s11225-012-9396-9. (Scholar)
- Hay, Louise Schmir, 1963, “Axiomatization of the Infinite-Valued Predicate Calculus”, Journal of Symbolic Logic, 28(1): 77–86. doi:10.2307/2271339 (Scholar)
- Hisdal, Ellen, 1988, “Are Grades of Membership
Probabilities?” Fuzzy Sets and Systems, 25(3):
325–348. doi:10.1016/0165-0114(88)90018-8 (Scholar)
- Horčík, Rostislav, 2011, “Algebraic Semantics:
Semilinear FL-Algebras”, in Cintula, Petr, Petr Hájek,
and Carles Noguera (eds.), Handbook of Mathematical Fuzzy
Logic, Volume 1, (Mathematical Logic and Foundations, Volume 37),
London: College Publications, pages 283–353. (Scholar)
- Horn, Alfred, 1969, “Logic with Truth Values in a Linearly Ordered Heyting Algebra”, The Journal of Symbolic Logic, 34(3): 395–408. (Scholar)
- Jenei, Sándor and Franco Montagna, 2002, “A Proof of Standard Completeness for Esteva and Godo’s Logic MTL”, Studia Logica, 70(2): 183–192. doi:10.1023/a:1015122331293 (Scholar)
- Jeřábek, Emil, 2010, “Bases of Admissible Rules
of Łukasiewicz Logic”, Journal of Logic and
Computation, 20(6): 1149–1163. (Scholar)
- –––, 2003, “A Proof of Standard
Completeness for Non-Commutative Monoidal T-norm Logic”,
Neural Network World, 13(5): 481–489. (Scholar)
- Klement, Erich Peter, Radko Mesiar, and Endre Pap, 2000, Triangular Norms, (Trends in Logic, Volume 8), Dordrecht: Kluwer. (Scholar)
- Lawry, Jonathan, 1998, “A Voting Mechanism for Fuzzy
Logic”, International Journal of Approximate Reasoning,
19(3–4): 315–333. doi:10.1016/s0888-613x(98)10013-0 (Scholar)
- Leştean, Ioana and Antonio Di Nola, 2011,
“Łukasiewicz Logic and MV-Algebras”, in Cintula,
Petr, Petr Hájek, and Carles Noguera (eds.), Handbook of
Mathematical Fuzzy Logic, Volume 2, (Mathematical Logic and
Foundations, Volume 38), London: College Publications, pages
469–583. (Scholar)
- Ling, Cho-Hsin, 1965, “Representation of Associative
Functions”, Publicationes Mathematicae Debrecen, 12:
189–212. (Scholar)
- Łukasiewicz, Jan, 1920, “O Logice
Trójwartościowej”, Ruch Filozoficzny, 5:
170–171. English translation, “On Three-Valued
Logic”, in McCall, Storrs (ed.), 1967, Polish Logic
1920–1939, Oxford: Clarendon Press, pages 16–18,
and in Jan Łukasiewicz, 1970, Selected Works, Borkowski,
Ludwik (ed.), Amsterdam: North-Holland, pages 87–88. (Scholar)
- Łukasiewicz, Jan and Alfred Tarski, 1930,
“Untersuchungen über den Aussagenkalkül”,
Comptes Rendus Des Séances de La Société Des
Sciences et Des Lettres de Varsovie, Cl. III, 23(iii):
30–50. (Scholar)
- Marra, Vincenzo and Luca Spada, 2013, “Duality, Projectivity, and Unification in Łukasiewicz Logic and MV-Algebras”, Annals of Pure and Applied Logic, 164(3): 192–210. (Scholar)
- McNaughton, Robert, 1951, “A Theorem About Infinite-Valued Sentential Logic”, Journal of Symbolic Logic, 16(1): 1–13. doi:10.2307/2268660 (Scholar)
- Metcalfe, George, 2011, “Proof Theory for Mathematical Fuzzy
Logic”, Cintula, Petr, Petr Hájek, and Carles Noguera
(eds.), 2011a, Handbook of Mathematical Fuzzy Logic, volume 1
(Studies in Logic, Volume 37), London: College Publications, pages
209–282. (Scholar)
- Metcalfe, George and Franco Montagna, 2007, “Substructural Fuzzy Logics”, Journal of Symbolic Logic, 72(3): 834–864. doi:10.2178/jsl/1191333844 (Scholar)
- Metcalfe, George, Nicola Olivetti, and Dov M. Gabbay, 2008, Proof Theory for Fuzzy Logics, (Applied Logic Series, Volume 36), Dordrecht: Springer Netherlands. (Scholar)
- Montagna, Franco, 2001, “Three Complexity Problems in Quantified Fuzzy Logic”, Studia Logica, 68(1): 143–152. doi:10.1023/a:1011958407631 (Scholar)
- Montagna, Franco and Carles Noguera, 2010, “Arithmetical
Complexity of First-Order Predicate Fuzzy Logics Over Distinguished
Semantics”, Journal of Logic and Computation, 20(2):
399–424. doi:10.1093/logcom/exp052 (Scholar)
- Montagna, Franco, Carles Noguera, and Rostislav
Horčík, 2006, “On Weakly Cancellative Fuzzy
Logics”, Journal of Logic and Computation, 16(4):
423–450. (Scholar)
- Montagna, Franco and Hiroakira Ono, “Kripke Semantics,
Undecidability and Standard Completeness for Esteva and Godo’s
Logic MTL\(\forall\)”, Studia Logica, 71(2):
227–245. (Scholar)
- Mostert, Paul S. and Allen L. Shields, 1957, “On the
Structure of Semigroups on a Compact Manifold with Boundary”,
The Annals of Mathematics, Second Series, 65(1):
117–143. doi:10.2307/1969668 (Scholar)
- Mundici, Daniele, 1987, “Satisfiability in Many-Valued
Sentential Logic is NP-Complete”, Theoretical Computer
Science, 52(1–2): 145–153. (Scholar)
- –––, 1992, “The Logic of Ulam’s Game
with Lies”, in Bicchieri, Cristina and Maria Luisa Dalla Chiara
(eds.), Knowledge, Belief, and Strategic Interaction
(Castiglioncello, 1989), Cambridge: Cambridge
University Press, 275–284. (Scholar)
- –––, 2011, Advanced Łukasiewicz
Calculus and MV-Algebras, (Trends in Logic, Volume 35), New York:
Springer. (Scholar)
- Novák, Vilém, 2004, “On Fuzzy Type
Theory”, Fuzzy Sets and Systems, 149(2):
235–273. (Scholar)
- –––, 2015, “Fuzzy Logic with Evaluated
Syntax”, in Cintula, Petr, Christian G. Fermüller, and
Carles Noguera (eds.), Handbook of Mathematical Fuzzy Logic,
Volume 3, (Mathematical Logic and Foundations, Volume 58), London:
College Publications, pages 1063–1104. (Scholar)
- Novák, Vilém, Irina Perfilieva, and Jiří
Močkoř, 2000, Mathematical Principles of Fuzzy
Logic, Dordrecht: Kluwer. (Scholar)
- Nguyen, Hung T. and Elbert A. Walker, 2005, A First Course in
Fuzzy Logic (third edition), Chapman and Hall/CRC. (Scholar)
- Paris, Jeff, 1997, “A Semantics for Fuzzy Logic”,
Soft Computing, 1(3): 143–147.
doi:10.1007/s005000050015 (Scholar)
- –––, 2000, “Semantics for Fuzzy Logic
Supporting Truth Functionality”, in Vilém Novák
and Irina Perfilieva (eds.), Discovering the World with Fuzzy
Logic, (Studies in Fuzziness and Soft Computing. Volume 57),
Heidelberg: Springer, pages 82–104. (Scholar)
- Pavelka, Jan, 1979, “On Fuzzy Logic I, II, and III”,
Zeitschrift für Mathematische Logik und Grundlagen der
Mathematik, 25: 45–52, 119–134, and
447–464. (Scholar)
- Ragaz, Matthias Emil, 1981, Arithmetische Klassifikation von
Formelmengen der unendlichwertigen Logik (PhD thesis), Swiss
Federal Institute of Technology, Zürich.
doi:10.3929/ethz-a-000226207 (Scholar)
- Rodríguez, Ricardo Oscar and Amanda Vidal, 2021, “Axiomatization of Crisp Gödel Modal Logic”, Studia Logica, 109(2): 367–395. doi: 10.1007/s11225-020-09910-5 (Scholar)
- Ross, Timothy J., 2016, Fuzzy Logic with Engineering
Applications (fourth edition), Hoboken, NJ: Wiley. (Scholar)
- Ruspini, Enrique H., 1991, “On the Semantics of Fuzzy
Logic”, International Journal of Approximate Reasoning,
5(1): 45–88. doi:10.1016/0888-613x(91)90006-8 (Scholar)
- Scarpellini, Bruno, 1962, “Die Nichtaxiomatisierbarkeit des unendlichwertigen Prädikatenkalküls von Łukasiewicz”, Journal of Symbolic Logic, 27(2): 159–170. doi:10.2307/2964111 (Scholar)
- Smith, Nicholas J.J., 2005, “Vagueness as Closeness”, Australasian Journal of Philosophy, 83(2): 157–183. doi:10.1080/00048400500110826 (Scholar)
- –––, 2008, Vagueness and Degrees of Truth, Oxford: Oxford University Press. (Scholar)
- –––, 2015, “Fuzzy Logics in Theories of Vagueness”, in Cintula, Petr, Christian G. Fermüller, and Carles Noguera (eds.), Handbook of Mathematical Fuzzy Logic, Volume 3, (Mathematical Logic and Foundations, Volume 58), London: College Publications, pages 1237–1281. (Scholar)
- Straccia, Umberto, 1998, “A Fuzzy Description Logic”,
in Mostow, Jack and Chuck Rich (eds.), Proceedings of the 15th
National Conference on Artificial Intelligence (AAAI 1998), Menlo
Park: AAAI Press, pages 594–599. (Scholar)
- Teheux, Bruno, 2016, “Modal definability based on Łukasiewicz validity relations”, Studia Logica, 104(2): 343–363. doi: 10.1007/s11225-015-9643-y (Scholar)
- Takeuti, Gaisi and Satako Titani, 1984, “Intuitionistic Fuzzy Logic and Intuitionistic Fuzzy Set Theory”, Journal of Symbolic Logic, 49(3): 851–866. (Scholar)
- –––, 1992, “Fuzzy Logic and Fuzzy Set Theory”, Archive for Mathematical Logic, 32(1): 1–32. (Scholar)
- Vetterlein, Thomas, 2015, “Algebraic Semantics: The
Structure of Residuated Chains”, in Cintula, Petr, Christian G.
Fermüller, and Carles Noguera (eds.), Handbook of
Mathematical Fuzzy Logic, Volume 3, (Mathematical Logic and
Foundations, Volume 58), London: College Publications, pages
929–967. (Scholar)
- Vidal, Amanda, 2021, “On transitive modal many-valued
logics”, Fuzzy Sets and Systems, 407: 97–114.
doi: 10.1016/j.fss.2020.01.011 (Scholar)
- Vidal, Amanda, Francesc Esteva, and Lluís Godo, 2017,
“On modal extensions of Product fuzzy logic”, Journal
of Logic and Computation, 27(1): 299–336. doi:
10.1093/logcom/exv046 (Scholar)
- Zadeh, Lotfi A., 1965, “Fuzzy Sets”, Information
and Control, 8(3): 338–353.
doi:10.1016/s0019-9958(65)90241-x (Scholar)
- –––, 1975, “Fuzzy logic and approximate reasoning”, Synthese, 30: 407–428. doi: 10.1007/bf00485052 (Scholar)