Linked bibliography for the SEP article "Provability Logic" by Rineke (L.C.) Verbrugge
This is an automatically generated and experimental page
If everything goes well, this page should display the bibliography of the aforementioned article as it appears in the Stanford Encyclopedia of Philosophy, but with links added to PhilPapers records and Google Scholar for your convenience. Some bibliographies are not going to be represented correctly or fully up to date. In general, bibliographies of recent works are going to be much better linked than bibliographies of primary literature and older works. Entries with PhilPapers records have links on their titles. A green link indicates that the item is available online at least partially.
This experiment has been authorized by the editors of the Stanford Encyclopedia of Philosophy. The original article and bibliography can be found here.
General references on provability logic
- Artemov, S.N., 2006, “Modal Logic in Mathematics,” in
P. Blackburn, et al. (eds.), Handbook of Modal Logic,
Amsterdam: Elsevier, pp. 927–970. (Scholar)
- Artemov, S.N. and L.D. Beklemishev, 2004, “Provability
Logic,” in Handbook of Philosophical Logic, Second
Edition, D. Gabbay and F. Guenthner, eds., Volume 13, Dordrecht:
Kluwer, pp. 229–403. (Scholar)
- Boolos, G., 1979, The Unprovability of Consistency: An Essay in Modal Logic, Cambridge: Cambridge University Press. (Scholar)
- –––, 1993, The Logic of Provability, New York and Cambridge: Cambridge University Press. (Scholar)
- de Jongh, D.H.J. and G. Japaridze, 1998, “The Logic of Provability,” in Handbook of Proof Theory, Buss, S.R. (ed.), Amsterdam: North-Holland, pp. 475-546. (Scholar)
- Lindström, P., 1996, “Provability Logic—A Short Introduction,” Theoria, 52(1–2): 19–61. (Scholar)
- Segerberg, K., 1971, An Essay in Classical Modal Logic, Uppsala: Filosofiska Föreningen och Filosofiska Institutionen vid Uppsala Universitet. (Scholar)
- Švejdar, V., 2000, “On Provability Logic,” Nordic Journal of Philosophy, 4: 95–116. (Scholar)
- Smoryński, C., 1984, “Modal Logic and
Self-Reference,” in D.M. Gabbay and F. Guenthner (eds.),
Handbook of Philosophical Logic (Volume II: Extensions of
Classical Logic), Dordrecht: Springer, pp. 441–495. (Scholar)
- Smoryński, C., 1985, Self-Reference and Modal Logic, New York: Springer-Verlag. (Scholar)
- Verbrugge, R. 1996, “Provability” in The
Encyclopedia of Philosophy (Supplement), D.M. Borchert (ed.), New
York: Simon and Schuster MacMillan, pp. 476–478. (Scholar)
- Visser, A., 1998, “Provability Logic,” in
Routledge Encyclopedia of Philosophy, W. Craig (ed.), London:
Routledge, pp. 793–797. (Scholar)
History
- van Benthem, J.F.A.K., 1978, “Four Paradoxes,” Journal of Philosophical Logic, 7(1): 49–72. (Scholar)
- Boolos, G. and G. Sambin, 1991, “Provability: The Emergence of a Mathematical Modality,” Studia Logica, 50(1): 1–23. (Scholar)
- Gödel, K., 1933, “Eine Interpretation des
intuitionistischen Aussagenkalküls,” Ergebnisse eines
Mathematischen Kolloquiums, 4: 39–40; translation “An
Interpretation of the Intuitionistic Propositional Calculus,” in
K. Gödel, Collected Works, S. Feferman et al. (eds.),
Oxford and New York: Oxford University Press, Volume 1, 1986, pp.
300–302. (Scholar)
- –––, 1931, “Über Formal Unentscheidbare Sätze der Principia Mathematica und Verwandter Systeme I,” Monatshefte für Mathematik und Physik, 38: 173–198. (Scholar)
- Halbach, V., and A. Visser, 2014, “The Henkin
Sentence,” in M. Mazano, I. Sain, and E. Alonso (eds.), The
Life and Work of Leon Henkin: Essays on His Contributions,
Dordrecht: Springer International Publishing, pp. 249–263. (Scholar)
- Henkin, L., 1952, “A Problem Concerning Provability,”
Journal of Symbolic Logic, 17: 160. (Scholar)
- –––, 1954, “Review of G. Kreisel: On a
Problem of Leon Henkin’s,” Journal of Symbolic
Logic, 19(3): 219–220. (Scholar)
- Hilbert, D. and P. Bernays, 1939, Grundlagen der
Mathematik, volume 2, Berlin/Heidelberg/New York:
Springer-Verlag. (Scholar)
- de Jongh, D.H.J., forthcoming, “Notes on my Scientific
Life,” in N. Bezhanishvili, R. Iemhoff and F. Yang (eds.),
Dick de Jongh on Intuitionistic and Provability Logic, Cham:
Springer. (Scholar)
- Kreisel, G., 1953, “On a Problem of Leon
Henkin’s,” Indagationes Mathematicae, 15:
405–406. (Scholar)
- Lewis, C.I., 1912, “Implication and the Algebra of Logic,” Mind, 21: 522–531. (Scholar)
- Löb, M.H., 1955, “Solution of a Problem of Leon Henkin,” Journal of Symbolic Logic, 20: 115–118. (Scholar)
- Macintyre, A.J. and H. Simmons, 1973, “Gödel’s
Diagonalization Technique and Related Properties of Theories,”
Colloquium Mathematicum, 28: 165–180.
- Magari, R., 1975a, “The Diagonalizable Algebras,”
Bollettino della Unione Mathematica Italiana, 12:
117–125. (Scholar)
- –––, 1975b, “Representation and Duality Theory for Diagonalizable Algebras,” Studia Logica, 34(4): 305–313. (Scholar)
- Smiley, T.J., 1963, “The Logical Basis of Ethics,”
Acta Philosophica Fennica, 16: 237–246. (Scholar)
- Smoryński, C., 1991, “The Development of
Self-reference: Löb’s Theorem,” in T. Drucker (ed.),
Perspectives on the History of Mathematical Logic, Basel:
Birkhäuser, pp. 110–133. (Scholar)
Cut-elimination for provability logic
- Avron, A., 1984, “On Modal Systems Having Arithmetical Interpretations,” The Journal of Symbolic Logic, 49(3): 935–942. (Scholar)
- Bílková, M., 2016, “Uniform Interpolation in
Provability Logics,” in J. van Eijck, R. Iemhoff, and J.J.
Joosten (eds.), Liber Amicorum Alberti: A Tribute to Albert
Visser, London: College Publications, pp. 57–90. (Scholar)
- Goré, R. and R. Ramanayake, 2008, “Valentini’s
Cut-Elimination for Provability Logic Resolved,” in Advances
in Modal Logic (Volume 7), C. Areces and R. Goldblatt (eds.),
London: College Publications, pp. 67–86. (Scholar)
- Goré, R. and R. Ramanayake, 2012, “Valentini’s
Cut-Elimination for Provability Logic Resolved,” Review of
Symbolic Logic, 5(2): 212–238. (Scholar)
- Goré, R., Ramanayake, R., and Shillito, I., 2021,
“Cut-Elimination for Provability Logic by Terminating
Proof-Search: Formalised and Deconstructed Using Coq,” in
Automated Reasoning with Analytic Tableaux and Related Methods:
30th International Conference, TABLEAUX 2021, Cham: Springer
International Publishing, pp. 299–313. (Scholar)
- Maksimova, L.L., 1989a, “A Continuum of Normal Extensions of
Modal Provability Logic with the Interpolation Property,”
Sibirskii Matematicheskii Zhurnal, 30(6): 122–131. (Scholar)
- Maksimova, L.L., 1989b, “Definability Theorems in Normal Extensions of the Probability Logic,” Studia Logica, 48(4): 495–507. (Scholar)
- Negri, S., 2005, “Proof Analysis in Modal Logic,” Journal of Philosophical Logic, 50: 507–544. (Scholar)
- Negri, S., 2014, “Proofs and Countermodels in Non-classical Logics,” Logica Universalis, 8(1): 25–60. (Scholar)
- Poggiolesi, F., 2009, “A Purely Syntactic and Cut-free Sequent Calculus for the Modal Logic of Provability,” The Review of Symbolic Logic, 2(4): 593–611. (Scholar)
- Rautenberg, W., 1983, “Modal Tableau Calculi and Interpolation,” Journal of Philosophical Logic, 12(4): 403–423. (Scholar)
- Sambin, G., and S. Valentini, 1982, “The Modal Logic of Provability. The Sequential Approach,” Journal of Philosophical Logic, 11(3): 311–342. (Scholar) (Scholar)
- Shamkanov, D.S., 2011, “Interpolation Properties for
Provability Logics GL and GLP,” Proceedings of the Steklov
Institute of Mathematics, 274(1): 303–316. (Scholar)
- –––, 2014, “Circular Proofs for the
Gödel-Löb Provability Logic,” Mathematical
Notes, 96(4): 575–585. (Scholar)
- –––, 2020, “Non-well-founded Derivations in the Gödel-Löb Provability Logic,” Review of Symbolic Logic, 13(4): 776–796. (Scholar)
- Smoryński, C., 1978, “Beth’s Theorem and
Self-referential Sentences,” Studies in Logic and the
Foundations of Mathematics, 96: 253–261. (Scholar)
- Valentini, S., 1983, “The Modal Logic of Provability: Cut-Elimination,” Journal of Philosophical Logic, 12: 471–476. (Scholar)
The fixed point theorem
- van Benthem, J., forthcoming, “An Abstract Look at the
Fixed-Point Theorem for Provability Logic,” in N. Bezhanishvili,
R. Iemhoff and F. Yang (eds.), Dick de Jongh on Intuitionistic and
Provability Logic, Cham: Springer. (Scholar)
- de Jongh, D.H.J., and F. Montagna, 1988, “Provable Fixed Points,” Zeitschrift fur mathematische Logik und Grundlagen der Mathematik, 34(3): 229–250. (Scholar)
- Lindström, P., 2006, “Note on Some Fixed Point Constructions in Provability Logic,” Journal of Philosophical Logic, 35(3): 225–230. (Scholar)
- Reidhaar-Olson, L., 1990, “A New Proof of the Fixed-point Theorem of Provability Logic,” Notre Dame Journal of Formal Logic, 31(1): 37–43. (Scholar)
- Sambin, G., 1976, “An Effective Fixed Point Theorem in Intuitionistic Diagonalizable Algebras (The Algebraization of the Theories Which Express Theor, IX),” Studia Logica 35: 345–361. (Scholar)
- Sambin, G., and S. Valentini, 1982, “The Modal Logic of Provability. The Sequential Approach,” Journal of Philosophical Logic, 11(3): 311–342. (Scholar)
Possible worlds semantics and topological semantics
- Abashidze, M., 1985, “Ordinal Completeness of the
Gödel-Löb Modal System,” (in Russian) in
Intensional Logics and the Logical Structure of Theories,
Tbilisi: Metsniereba, pp. 49–73. (Scholar)
- Aiello, M., I. Pratt-Hartmann and J. van Benthem (eds.), 2007, Handbook of Spatial Logics, Berlin: Springer-Verlag. (Scholar)
- Beklemishev, L.D. 2009, “Ordinal Completeness of Bimodal
Provability Logic GLB,” In International Tbilisi Symposium
on Logic, Language, and Computation, Berlin: Springer-Verlag, pp.
1–15. (Scholar)
- Beklemishev, L.D., G. Bezhanishvili, and T. Icard, 2009, “On Topological Models of GLP,” in R. Schindler (ed.), Ways of Proof Theory (Ontos Mathematical Logic: Volume 2), Frankfurt: Ontos Verlag, pp. 133–153. (Scholar)
- van Benthem, J.F.A.K., 1979, “Syntactic Aspects of Modal Incompleteness Theorems,” Theoria, 45(2): 63–77. (Scholar)
- Blass, A., 1990, “Infinitary Combinatorics and Modal Logic,” Journal of Symbolic Logic, 55(2): 761–778. (Scholar)
- Esakia, L., 1981, “Diagonal Constructions, Löb’s
Formula and Cantor’s Scattered Spaces,” (in Russian), in
Studies in Logic and Semantics, Z. Mikeladze (ed.), Tbilisi:
Metsniereba, pp. 128–143. (Scholar)
- –––, 2003, “Intuitionistic Logic and Modality via Topology,” Annals of Pure and Applied Logic, 127: 155–170. (Scholar)
- Goré, R., 2009, “Machine Checking Proof Theory: An
Application of Logic to Logic,” In ICLA ’09:
Proceedings of the 3rd Indian Conference on Logic and Its
Applications, Berlin: Springer-Verlag, pp. 23–35. (Scholar)
- Hakli, R. and S. Negri, 2012, “Does the Deduction Theorem Fail for Modal Logic?,” Synthese 187(3): 849–867. (Scholar)
- Holliday, W.H. and Litak, T., 2019, “Complete Additivity and Modal Incompleteness,” The Review of Symbolic Logic, 12(3): 487–535. (Scholar)
- Icard, T.F. III, 2011, “A Topological Study of the Closed
Fragment of GLP,” Journal of Logic and Computation,
21(4): 683–696; first published online 2009,
doi:10.1093/logcom/exp043 (Scholar)
- Japaridze, G.K., 1986, The Modal Logical Means of
Investigation of Provability, Thesis in Philosophy (in Russian),
Moscow. (Scholar)
- McKinsey, J.C.C. and A. Tarski, 1944, “The Algebra of Topology,” Annals of Mathematics, 45: 141–191. (Scholar)
- Shillito, I., 2023, New Foundations for the Proof Theory of
Bi-Intuitionistic and Provability Logics Mechanized in Coq, Ph.D.
Thesis, Canberra: The Australian National University. (Scholar)
- Verbrugge, R., 2021, “Zero-One Laws for Provability Logic:
Axiomatizing Validity in Almost All Models and Almost All
Frames,” in L. Libkin (ed.), Proceedings of the 36th Annual
ACM/IEEE Symposium on Logic in Computer Science (LICS), Rome:
IEEE Press. (Scholar)
Provability and Peano Arithmetic
- Davis, M., 1958, Computability and Unsolvability, New York, McGraw-Hill; reprinted with an additional appendix, New York, Dover Publications 1983. (Scholar)
- Feferman, S., 1960, “Arithmetization of Metamathematics in a General Setting,” Fundamenta Mathematicae, 49(1): 35–92. (Scholar)
- Hájek, P. and P. Pudlák, 1993, Metamathematics of First-Order Arithmetic, Berlin: Springer-Verlag. (Scholar)
- Solovay, R.M., 1976, “Provability Interpretations of Modal
Logic,” Israel Journal of Mathematics, 25:
287–304. (Scholar)
The scope of provability logic: boundaries
- Berarducci, A. and R. Verbrugge, 1993, “On the Provability Logic of Bounded Arithmetic,” Annals of Pure and Applied Logic, 61: 75–93. (Scholar)
- Buss, S.R., 1986, Bounded Arithmetic, Naples:
Bibliopolis. (Scholar)
- de Jongh, D.H.J., M. Jumelet and F. Montagna, 1991, “On the
Proof of Solovay’s Theorem,” Studia Logica,
50(1): 51–70. (Scholar)
- Parikh, R., 1971, “Existence and Feasibility in Arithmetic“, The Journal of Symbolic Logic, 36(3): 494–508. (Scholar)
Interpretability logic
- Areces, C., Hoogland, E. and de Jongh, D.H.J., 2001,
“Interpolation, Definability and Fixed-points in
Interpretability Logics“, in M. Zakharyaschev, K. Segerberg, M.
de Rijke and H. Wansing (eds.), Advances in Modal Logic
(Volume 2), Stanford: CSLI Publications, pp. 35–58. (Scholar)
- Berarducci, A., 1990, “The Interpretability Logic of Peano Arithmetic,” Journal of Symbolic Logic, 55: 1059–1089. (Scholar)
- Bílková, M., de Jongh, D. and Joosten, J.J., 2009, “Interpretability in PRA,” Annals of Pure and Applied Logic, 161(2): 128–138. (Scholar)
- de Jongh, D.H.J., and F. Veltman, 1990, “Provability Logics for Relative Interpretability,” in P.P. Petkov (ed.), Mathematical Logic: Proceedings of the Heyting 1988 Summer School in Varna, Bulgaria, Boston: Plenum Press, pp. 31–42. (Scholar)
- de Jongh, D.H.J., and A. Visser, 1991, “Explicit Fixed Points in Interpretability Logic,” Studia Logica, 50(1): 39–49. (Scholar)
- Joosten, J.J., and Visser, A., 2000, “The Interpretability Logic of All Reasonable Arithmetical Theories,” Erkenntnis, 53(1-2): 3–26. (Scholar)
- Joosten, J.J., Mas Rovira, J., Mikec, L., and Vuković, M.,
forthcoming, “An Overview of Verbrugge Semantics, a.k.a.
Generalised Veltman Semantics,” in N. Bezhanishvili, R. Iemhoff
and F. Yang (eds.), Dick de Jongh on Intuitionistic and
Provability Logic, Cham: Springer. (Scholar)
- Mikec, L. and Vuković, M., 2020, “Interpretability
Logics and Generalised Veltman Semantics,” The Journal of
Symbolic Logic, 85(2): 749–772. (Scholar)
- Montagna, F., 1987, “Provability in Finite Subtheories of
PA,” Journal of Symbolic Logic, 52(2):
494–511. (Scholar)
- Shavrukov, V.Yu., 1988, “The Logic of Relative
Interpretability over Peano Arithmetic,” Technical Report No. 5,
Moscow: Steklov Mathematical Institute (in Russian). (Scholar)
- Švejdar, V., 1983, “Modal Analysis of Generalized Rosser Sentences,” Journal of Symbolic Logic, 48: 986–999. (Scholar)
- Visser, A., 1990, “Interpretability Logic,” in P.P.
Petkov (ed.), Mathematical Logic: Proceedings of the Heyting 1988
Summer School in Varna, Bulgaria, Boston: Plenum Press, pp.
175–209. (Scholar)
- –––, 1998, “An Overview of Interpretability Logic,” in M. Kracht et al. (eds.), Advances in Modal Logic (Volume 1), Stanford: CSLI Publications, pp. 307–359. (Scholar)
Propositional quantifiers
- Artemov, S.N. and L.D. Beklemishev, 1993, “On Propositional Quantifiers in Provability Logic,” Notre Dame Journal of Formal Logic, 34: 401–419. (Scholar)
- Shavrukov, V.Yu., 1997, “Undecidability in Diagonalizable Algebras,” Journal of Symbolic Logic, 62: 79–116. (Scholar)
Japaridze’s bimodal and polymodal provability logics
- Beklemishev, L.D., 2004, “Provability Algebras and Proof-Theoretic Ordinals, I,” Annals of Pure and Applied Logic, 128: 103–123. (Scholar)
- –––, 2010a, “Kripke Semantics for Provability Logic GLP,” Annals of Pure and Applied Logic, 161(6): 756–774. (Scholar)
- –––, 2010b, “On the Craig Interpolation
and the Fixed Point Properties of GLP,” in S. Feferman et al.
(eds.), Proofs, Categories and Computations (Tributes, 13),
London: College Publications, pp. 49–60. (Scholar)
- –––, 2011a, “A Simplified Proof of
Arithmetical Completeness Theorem for Provability Logic GLP,”
Proceedings Steklov Institute of Mathematics, 274(1):
25–33. (Scholar)
- –––, 2011b, “Ordinal Completeness of
Bimodal Provability Logic GLB,” in N. Bezhanishvili et al.
(eds.), Logic, Language, and Computation, 8th International
Tbilisi Symposium TbiLLC 2009 (Lecture Notes in Computer Science:
Volume 6618), Heidelberg: Springer, pp. 1–15. (Scholar)
- Beklemishev, L.D., and D. Gabelaia, 2013, “Topological Completeness of the Provability Logic GLP,” Annals of Pure and Applied Logic, 164(12): 1201–1223. (Scholar)
- –––, 2014, “Topological Interpretations of
Provability Logic,“ in G. Bezhanishvili (ed.), Leo Esakia on
Duality in Modal and Intuitionistic Logics (Outstanding
Contributions to Logic: Volume 4), Heidelberg: Springer, pp.
257–290. (Scholar)
- Beklemishev, L.D., J. Joosten and M. Vervoort, 2005, “A
Finitary Treatment of the Closed Fragment of Japaridze’s
Provability Logic,” Journal of Logic and Computation,
15(4): 447–463. (Scholar)
- Fernández-Duque, D. and J.J. Joosten, 2014, “Well-orders on the Transfinite Japaridze Algebra,” Logic Journal of the IGPL, 22 (6): 933–963. (Scholar)
- Fernández-Duque, D. and Joosten, J.J., 2018, “The Omega-Rule Interpretation of Transfinite Provability Logic,” Annals of Pure and Applied Logic, 169(4): 333–371. (Scholar)
- Ignatiev, K.N., 1993, “On Strong Provability Predicates and the Associated Modal Logics,” Journal of Symbolic Logic, 58: 249–290. (Scholar)
- Japaridze, G., 1988, “The Polymodal Provability
Logic,” In Intensional Logics and the Logical Structure of
Theories: Material from the Fourth Soviet-Finnish Symposium on
Logic, Telavi, pp. 16–48. (Scholar)
- Pakhomov, F.N., 2014, “On the Complexity of the Closed
Fragment of Japaridze’s Provability Logic,” Archive
for Mathematical Logic, 53(7-8): 949–967. (Scholar)
- Shamkanov, D., 2020, “Global Neighbourhood Completeness of
the Provability Logic GLP,” in N. Olivetti, R. Verbrugge, S.
Negri, and G. Sandu (eds.), Proceedings Advances in Modal
Logic (Volume 13), London: College Publications, pp.
581–595. (Scholar)
Predicate provability logic
- Artemov, S.N., 1985a, “Nonarithmeticity of Truth Predicate
Logics of Provability,” Doklady Akademii Nauk SSSR,
284: 270–271 (in Russian); English translation in Soviet
Mathematics Doklady, 32: 403–405. (Scholar)
- Borges, A.A. and Joosten, J.J., 2020, “Quantified Reflection
Calculus with One Modality,” in N. Olivetti, R. Verbrugge, S.
Negri, and G. Sandu (eds.), Proceedings Advances in Modal
Logic (Volume 13), London: College Publications, pp.
13–32. (Scholar)
- –––, 2022, “An Escape from Vardanyan’s Theorem,” The Journal of Symbolic Logic, first online 13 May 2022. doi:10.1017/jsl.2022.38 (Scholar)
- Borges, A.A., 2022, “Towards a Coq Formalization of a
Quantified Modal Logic,” in C. Benzmüller and J. Otten
(eds.), Proceedings of the 4th Workshop on Automated Reasoning in
Quantified Non-Classical Logics (ARQNL 2022), CEUR Workshop
Proceedings, pp. 13–27. (Scholar)
- McGee, V. and G. Boolos, 1987, “The Degree of the Set of Sentences of Predicate Provability Logic that are True under Every Interpretation,” Journal of Symbolic Logic, 52: 165–171. (Scholar)
- Montagna, F., 1984, “The Predicate Modal Logic of Provability,” Notre Dame Journal of Formal Logic, 25(2): 179–189. (Scholar)
- Rybakov, M., 2023, “Predicate Counterparts of Modal Logics of Provability: High Undecidability and Kripke Incompleteness,” Logic Journal of the IGPL, first online 28 February 2023. doi:10.1093/jigpal/jzad002 (Scholar)
- Vardanyan, V.A., 1986, “Arithmetic Complexiy of Predicate
Logics of Provability and their Fragments,” Doklady Akademii
Nauk SSSR, 288: 11–14 (in Russian); English translation in
Soviet Mathematics Doklady, 33: 569–572. (Scholar)
- Visser, A. and M. de Jonge, 2006, “No Escape from
Vardanyan’s Theorem,” Archive of Mathematical
Logic, 45(5): 539–554. (Scholar)
Other generalizations
- Aguilera, J.P. and Fernández-Duque, D., 2017, “Strong Completeness of Provability Logic for Ordinal Spaces,” The Journal of Symbolic Logic, 82(2): 608–628. (Scholar)
- Alberucci, L., and A. Facchini, 2009, “On Modal μ-Calculus and Gödel-Löb logic,” Studia Logica, 91: 145–169. (Scholar)
- Ardeshir, M. and Mojtahedi, M., 2018, “The \(Σ_1\)-Provability Logic of HA,” Annals of Pure and Applied Logic, 169(10): 997–1043. (Scholar)
- Artemov, S.N., 1985b,“On Modal Logics Axiomatizing
Provability,” Izvestiya Akadademii Nauk SSSR, Seriya
Matematicheskaya, 49(6): 1123–1154 (in Russian); English
translation in Mathematics of the USSR–Izvestiya,
27(3): 402–429. (Scholar)
- –––, 1994, “Logic of Proofs,” Annals of Pure and Applied Logic, 67(2): 29–59. (Scholar)
- –––, 2001, “Explicit Provability and Constructive Semantics,” Bulletin of Symbolic Logic, 7: 1–36. (Scholar)
- Artemov, S.N. and R. Iemhoff, 2007, “The Basic Intuitionistic Logic of Proofs,” Journal of Symbolic Logic, 72(2): 439–451. (Scholar)
- Artemov, S.N. and F. Montagna, 1994, “On First-order Theories with Provability Operator,” Journal of Symbolic Logic, 59(4): 1139–1153. (Scholar)
- Artemov, S.N. and Nogina, E., 2005, “Introducing
Justification into Epistemic Logic,” Journal of Logic and
Computation, 15(6): 1059–1073. (Scholar)
- Beklemishev, L.D., 1989, “On the Classification of
Propositional Provability Logics,” Izvestiya Akademii Nauk
SSSR, Seriya Matematicheskaya., 53(5): 915–943 (in
Russian); English translation in Mathematics of the
USSR–Izvestiya, 35 (1990) 247–275. (Scholar)
- –––, 1994, “On Bimodal Logics of Provability,” Annals of Pure and Applied Logic, 68: 115–160. (Scholar)
- –––, 1996, “Bimodal Logics for Extensions of Arithmetical Theories,” Journal of Symbolic Logic, 61: 91–124. (Scholar)
- –––, 1999, “Parameter-Free Induction and
Provably Total Computable Functions,” Theoretical Computer
Science, 224: 13–33. (Scholar)
- –––, 2003, “Proof-theoretic Analysis by Iterated Reflection,” Archive for Mathematical Logic, 6(42): 515–552. (Scholar)
- –––, 2005, “Reflection Principles and
Provability Algebras in Formal Arithmetic,” Uspekhi
Matematicheskikh Nauk, 60(2): 3–78. (in Russian); English
translation in: Russian Mathematical Surveys, 60(2):
197–268. (Scholar)
- –––, 2006, “The Worm Principle,” in
Lecture Notes in Logic 27. Logic Colloquium ’02, Z.
Chatzidakis, P. Koepke, and W. Pohlers (eds.), Natick (MA): AK Peters,
pp. 75–95. (Scholar)
- –––, 2012, “Calibrating Provability Logic:
From Modal Logic to Reflection Calculus,” in T. Bolander, T.
Braüner, S. Ghilardi, and L. Moss (eds.), Advances in Modal
Logic (Volume 9), London: College Publications, pp.
89–94. (Scholar)
- –––, 2014, “Positive Provability Logic for Uniform Reflection Principles,” Annals of Pure and Applied Logic, 165 (1): 82–105. (Scholar)
- –––, 2018a, “A Note on Strictly Positive Logics and Word Rewriting Systems,” in S. Odintsov (ed.), Larisa Maksimova on Implication, Interpolation, and Definability (Outstanding Contributions to Logic: Volume 15), Cham: Springer, pp.61–70. (Scholar)
- –––, 2018b, “Reflection Calculus and
Conservativity Spectra “, Russian Mathematical Surveys,
73(4): 569–613. (Scholar)
- Beklemishev, L.D., D. Fernández-Duque, and J.J. Joosten, 2014, “On Provability Logics with Linearly Ordered Modalities,” Studia Logica, 102(3): 541–566. (Scholar)
- Beklemishev, L. D., and Pakhomov, F. N., 2022, “Reflection Algebras and Conservation Results for Theories of Iterated Truth,” Annals of Pure and Applied Logic, 173(5): 103093. (Scholar)
- Beklemishev, L.D., M. Pentus and N. Vereshchagin, 1999, Provability, Complexity, Grammars, American Mathematical Society Translations (Series 2, Volume 192). (Scholar)
- Beklemishev, L.D. and A. Visser, 2006, “Problems in the
Logic of Provability,” in D.M. Gabbay, S.S. Goncharov and M.
Zakharyashev (eds.), Mathematical Problems from Applied Logic I:
Logics for the XXIst Century (International Mathematical Series,
Volume 4), New York: Springer, pp. 77–136. (Scholar)
- van Benthem, J., 2006, “Modal Frame Correspondences and
Fixed-points,” Studia Logica, 83(1-3):
133–155. (Scholar)
- Bernardi, C. and D’Aquino, P., 1988, “Topological
Duality for Diagonalizable Algebras“, Notre Dame Journal of
Formal Logic, 29(3): 345–364. (Scholar)
- Carbone, A. and Montagna, F., 1990, “Much Shorter Proofs: A Bimodal Investigation,” Mathematical Logic Quarterly, 36(1): 47–66. (Scholar)
- Carlson, T., 1986, “Modal Logics with Several Operators and
Provability Interpretations,” Israel Journal of
Mathematics, 54(1): 14–24. (Scholar)
- Dashkov, E.V., 2012, “On the Positive Fragment of the
Polymodal Provability Logic GLP,” Mathematical Notes,
91 (3): 318–333. (Scholar)
- Dyckhoff, R and Negri, S., 2016, A Cut-free Sequent System for
Grzegorczyk Logic, with an Application to the
Gödel–McKinsey–Tarski Embedding, Journal of Logic
and Computation, 26: 169–187. (Scholar)
- Fernández-Duque, D., 2014, “The Polytopologies of Transfinite Provability Logic,“ Archive for Mathematical Logic, 53(3-4): 385–431. (Scholar)
- Fernández-Duque, D. and J.J. Joosten, 2013a, “Hyperations, Veblen Progressions, and Transfinite Iteration of Ordinal Functions,” Annals of Pure and Applied Logic 164 (7-8): 785–801, [available online]. (Scholar)
- Fernández-Duque, D. and J.J. Joosten, 2013b, “Models of Transfinite Provability Logic,” Journal of Symbolic Logic, 78(2): 543–561, [available online]. (Scholar)
- van der Giessen, I., 2023, “Admissible Rules for Six Intuitionistic Modal Logics,” Annals of Pure and Applied Logic, 174(4): 103233. (Scholar)
- van der Giessen, I. and Iemhoff, R., 2021, “Sequent Calculi
for Intuitionistic Gödel–Löb Logic,” Notre
Dame Journal of Formal Logic, 62(2): 221–246. (Scholar)
- Goré, R and Ramanayake, R., 2014, “Cut-elimination for Weak Grzegorczyk Logic Go,” Studia Logica, 102(1): 1–27. (Scholar)
- Guaspari, D. and R.M. Solovay, 1979, “Rosser Sentences,” Annals of Mathematical Logic, 16: 81–99. (Scholar)
- Iemhoff, R., 2000, “A Modal Analysis of some Principles of the Provability Logic of Heyting Arithmetic,” in Advances in Modal Logic (Volume 2), M. Zakharyashev et al. (eds.), Stanford: CSLI Publications, pp. 319–354. (Scholar)
- –––, 2001, “On the Admissible Rules of Intuitionistic Propositional Logic,” Journal of Symbolic Logic, 66: 281–294. (Scholar)
- –––, 2003, “Preservativity Logic: An Analogue of Interpretability Logic for Constructive Theories,” Mathematical Logic Quarterly, 49(3): 1–21. (Scholar)
- Iemhoff, R., de Jongh, D. and Zhou, C., 2005, “Properties of Intuitionistic Provability and Preservativity Logics,” Logic Journal of the IGPL, 13(6): 615–636. (Scholar)
- Joosten, J.J., 2021, “Münchhausen Provability,” The Journal of Symbolic Logic, 86(3): 1006–1034. (Scholar)
- Kuznets, R. and Studer, T., 2019, Logics of Proofs and
Justifications, London: College Publications. (Scholar)
- Lindström, P., 1994, “The Modal Logic of Parikh
Provability,” Filosofiska Meddelanden, Gröna
Serien, Gothenburg: Göteborgs Universitetet. (Scholar)
- Lindström, P., 2006, “On Parikh Provability: An Exercise in Modal Logic,” in H. Lagerlund, S. Lindström, and R. Sliwinski (eds.), Modality Matters: Twenty-Five Essays in Honour of Krister Segerberg, Uppsala: Uppsala Philosophical Studies (Volume 53), pp. 53–287. (Scholar)
- Litak, L., 2007, “The Non-Reflexive Counterpart of
Grz,” Bulletin of the Section of Logic, 36(3–4):
195–208. (Scholar)
- Litak, T. and Visser, A., 2018, “Lewis Meets Brouwer:
Constructive Strict Implication,” Indagationes
Mathematicae, 29(1): 36–90. (Scholar)
- –––, forthcoming, “Lewisian Fixed Points
I: Two Incomparable Constructions,” in N. Bezhanishvili, R.
Iemhoff and F. Yang (eds.), Dick de Jongh on Intuitionistic and
Provability Logic, Cham: Springer. (Scholar)
- Maksimova, L.L., 2014, “The Lyndon Property and Uniform
Interpolation over the Grzegorczyk Logic,” Siberian
Mathematical Journal, 55(1): 118–124. (Scholar)
- Mares, E.D., 2000, “The Incompleteness of RGL,” Studia Logica, 65: 315–322. (Scholar)
- Mojtahedi, M., forthcoming, “The \(Σ_1\)-provability
logic of HA revisited,” in N. Bezhanishvili, R. Iemhoff and F.
Yang (eds.), Dick de Jongh on Intuitionistic and Provability
Logic, Cham: Springer. (Scholar)
- Montagna, F.,1978, “On the algebraization of a
Feferman’s predicate,” Studia Logica, 37(3):
221–236. (Scholar)
- –––, 1979, “On the Diagonalizable Algebra
of Peano Arithmetic,” Bollettino della Unione Matematica
Italiana, B(5), 16: 795–812. (Scholar)
- –––, 1980a, “Interpretations of the First-order Theory of Diagonalizable Algebras in Peano Arithmetic,” Studia Logica, 39: 347–354. (Scholar)
- –––, 1980b, “Undecidability of the First-order Theory of Diagonalizable Algebras, ” Studia Logica, 39: 355–359. (Scholar)
- –––, 1992, “Polynomially and Superexponentially Shorter Proofs in Fragments of Arithmetic,” Journal of Symbolic Logic, 57: 844–863. (Scholar)
- Pakhomov, F.N., 2012, “Undecidability of the Elementary
Theory of the Semilattice of GLP-words,” Sbornik:
Mathematics, 203(8): 1211. (Scholar)
- Pakhomov, F.N., 2015, “On Elementary Theories of Ordinal
Notation Systems Based on Reflection Principles,”
Proceedings of the Steklov Institute of Mathematics, 289:
194–212. (Scholar)
- Savateev, Y., and Shamkanov, D., 2019, “Cut Elimination for
the Weak Modal Grzegorczyk Logic via Non-well-founded Proofs,”
in R. Iemhoff, M. Moortgat, M. and R. de Queiroz (eds.),
Proceedings of WoLLIC 2019, Heidelberg: Springer, pp.
569–583. (Scholar)
- –––, 2021, “Non-well-founded Proofs for the Grzegorczyk Modal Logic,” The Review of Symbolic Logic, 14(1): 22–50. (Scholar)
- Shamkanov, D.S., 2016, “A Realization Theorem for the
Gödel–Löb Provability Logic,” Sbornik:
Mathematics, 207(9): 1344–1360. (Scholar)
- Shapirovsky, I., 2008, “PSPACE-decidability of
Japaridze’s Polymodal Logic,” Advances in Modal
Logic, 7: 289–304. (Scholar)
- Shavrukov, V.Yu., 1993a, “A Note on the Diagonalizable Algebras of PA and ZF,” Annals of Pure and Applied Logic, 61: 161–173. (Scholar)
- –––, 1993b, “Subalgebras of Diagonalizable Algebras of Theories Containing Arithmetic,” Dissertationes Mathematicae, 323. (Scholar)
- –––, 1994, “A Smart Child of Peano’s,” Notre Dame Journal of Formal Logic, 35(2): 161–185. (Scholar)
- Troelstra, A.S., 1973, Metamathematical Investigation of Intuitionistic Arithmetic and Analysis, Berlin: Springer-Verlag. (Scholar)
- Visser, A., 1980, Aspects of Diagonalization and
Provability, Ph.D. Thesis, Utrecht: University of Utrecht. (Scholar)
- –––, 1982, “On the Completeness Principle:
A Study of Provability in Heyting’s Arithmetic and
Extensions,” Annals of Mathematical Logic, 22(3):
263–295. (Scholar)
- –––, 1989, “Peano’s Smart Children:
A Provability Logical Study of Systems with Built-in
Consistency,” Notre Dame Journal of Formal Logic,
30(2): 161–196. (Scholar)
- –––, 1995, “A Course on Bimodal Provability Logic,” Annals of Pure and Applied Logic, 73(1): 109–142. (Scholar)
- –––, 1999, “Rules and Arithmetics,” Notre Dame Journal of Formal Logic, 40(1): 116–140. (Scholar)
- –––, 2002, “Substitutions of \(\Sigma_1\) Sentences: Explorations between Intuitionistic Propositional Logic and Intuitionistic Arithmetic,” Annals of Pure and Applied Logic, 114: 227–271. (Scholar)
- –––, 2005, “Löb’s Logic Meets
the μ-Calculus,” in A. Middeldorp, V. van Oostrom, F. van
Raamsdonk and R. de Vrijer (eds.), Processes, Terms and Cycles:
Steps on the Road to Infinity, Berlin: Springer, pp.
14–25.
- –––, 2008, “Closed Fragments of Provability Logics of Constructive Theories,” Journal of Symbolic Logic, 73: 1081–1096. (Scholar)
- –––, 2016, “The Second Incompleteness
Theorem: Reflections and Ruminations,” in L. Horsten and P.
Welch (eds.), Gödel’s Disjunction: The Scope and Limits
of Mathematical Knowledge, Oxford: Oxford University Press, pp.
67–91. (Scholar)
- –––, 2020, “Another Look at the Second Incompleteness Theorem,” The Review of Symbolic Logic, 13(2): 269–295. (Scholar)
- Visser, A. and Zoethout, J., 2019, “Provability Logic and the Completeness Principle,” Annals of Pure and Applied Logic, 170(6): 718–753. (Scholar)
- Yavorskaya, T., 2001, “Logic of Proofs and Provability,” Annals of Pure and Applied Logic, 113(1-3): 345–372. (Scholar)
- Zambella, D., 1994, “Shavrukov’s Theorem on the
Subalgebras of Diagonalizable Algebras for Theories Containing \(I
\Delta_0 + \exp\),” Notre Dame Journal of Formal Logic,
35: 147–157. (Scholar)
Philosophical significance
- Crocco, G., 2019, “Informal and Absolute Proofs: Some Remarks from a Gödelian Perspective,” Topoi, 38: 561–575. (Scholar)
- Davis, M., 1990, “Is Mathematical Insight Algorithmic?,” Commentary on Roger Penrose, The Emperor’s New Mind, Behavioral and Brain Sciences, 13: 659–660. (Scholar)
- –––, 1993, “How Subtle is
Gödel’s Theorem? More on Roger Penrose” (Commentary
on Roger Penrose, The Emperor’s New Mind), Behavioral and
Brain Sciences, 16: 611–612. (Scholar)
- Egré, P., 2005, “The Knower Paradox in the Light of Provability Interpretations of Modal Logics,” Journal of Logic, Language, and Information, 14(1): 13–48. (Scholar)
- Franzén, T., 2005, Gödel’s Theorem: An
Incomplete Guide to its Use and Abuse, Boca Raton, Florida: CRC
Press.
- Gödel, K., 1946, “Remarks Before the Princeton
Bicentennial Conference on Problems in Mathematics,” reprinted
in S. Feferman et al. (eds.), Kurt Gödel Collected Works,
Volume II: Publications 1938–1975, New York, Oxford: Oxford
University Press, 1990, pp. 150–153. (Scholar)
- Kaplan, D. and R. Montague, 1960, “A Paradox Regained,” Notre Dame Journal of Formal Logic, 1(3): 79–90. (Scholar)
- Kennedy, J., 2014, “Gödel’s 1946 Princeton
Bicentennial Lecture: An Appreciation,” in J. Kennedy (ed.),
Interpreting Gödel: Critical Essays, Cambridge:
Cambridh=ge University Press, pp.109–130.
- Koellner, P., 2016, “Gödel’s Disjunction,”
in L. Horsten and P. Welch (eds.), Gödel’s Disjunction:
The Scope and Limits of Mathematical Knowledge, Oxford: Oxford
University Press, pp. 148–188.
- Kreisel, G., 1967, “Informal Rigour and Completeness Proofs,” in I. Lakatos (ed.), Problems in the Philosophy of Mathematics, Amsterdam: North-Holland, pp. 138–157. (Scholar)
- Leach-Krouse, G.E., 2013, “Conceptions of Absolute
Provability,” Ph.D. Thesis, Note Dame: Notre Dame
University. (Scholar)
- Leach-Krouse, G.E., 2016, “Provability, Mechanism, and the Diagonal Problem,” in L. Horsten and P. Welch (eds.), Gödel’s Disjunction: The Scope and Limits of Mathematical Knowledge, Oxford: Oxford University Press, pp. 211–242. (Scholar)
- Lindström, P, 2001, “Penrose’s New
Argument,” Journal of Philosophical Logic, 30:
241–250. (Scholar)
- Montague, R., 1963, “Syntactical Treatments of Modality, with Corollaries on Reflection Principles and Finite Axiomatizability,” Acta Philosophica Fennica, 16: 153–67. (Scholar)
- Quine, W.V., 1966, “Necessary Truth,” in Quine, W.V., The Ways of Paradox and Other Essays, New York: Random House, pp. 48–56. (Scholar)
- –––, 1953, “Three Grades of Modal Involvement,” in Proceedings of the 11th International Congress of Philosophy, Amsterdam: North-Holland, pp. 65-81; reprinted in W.V. Quine, The Ways of Paradox and Other Essays, New York: Random House, 1966, pp. 156–174. (Scholar)
- de Vos, M., Verbrugge, R., and Kooi, B., 2023, “Solutions to
the Knower Paradox in the Light of Haack’s Criteria,”
Journal of Philosophical Logic, 52: 1101–1132. (Scholar)
- Williamson, T., 2016, “Absolute Provability and Safe
Knowledge of Axioms,” in L. Horsten and P. Welch (eds.),
Gödel’s Disjunction: The Scope and Limits of
Mathematical Knowledge, pp. 243–253. (Scholar)