Linked bibliography for the SEP article "Temporal Logic" by Valentin Goranko and Antje Rumberg

This is an automatically generated and experimental page

If everything goes well, this page should display the bibliography of the aforementioned article as it appears in the Stanford Encyclopedia of Philosophy, but with links added to PhilPapers records and Google Scholar for your convenience. Some bibliographies are not going to be represented correctly or fully up to date. In general, bibliographies of recent works are going to be much better linked than bibliographies of primary literature and older works. Entries with PhilPapers records have links on their titles. A green link indicates that the item is available online at least partially.

This experiment has been authorized by the editors of the Stanford Encyclopedia of Philosophy. The original article and bibliography can be found here.

  • Allen, J.F., 1983, “Maintaining Knowledge about Temporal Intervals”, Communications of the ACM, 26(11): 832–843. (Scholar)
  • –––, 1984, “Towards a General Theory of Action and Time”, Artificial Intelligence, 23: 123–154. (Scholar)
  • Allen, J.F., and G. Ferguson, 1994, “Actions and Events in Interval Temporal Logic”, Journal of Logic and Computation, 4(5): 531–579. (Scholar)
  • Allen, J.F., and P. Hayes, 1989, “Moments and Points in an Interval-Based Temporal Logic”, Computational Intelligence, 5(4): 225–238. (Scholar)
  • Alur, R., and T. Henzinger, 1992, “Logics and Models of Real-Time: A Survey”, in Real-Time: Theory in Practice, Proceedings of the REX Workshop 1991 (Lecture Notes in Computer Science: Volume 600), Berlin: Springer, pp. 74–106. (Scholar)
  • –––, 1993, “Real-Time Logics: Complexity and Expressiveness”, Information and Computation, 104: 35–77. (Scholar)
  • –––, 1994, “A Really Temporal Logic”, Journal of the ACM, 41: 181–204. (Scholar)
  • Alur, R., T. Henzinger, and O. Kupferman, 2002, “Alternating-Time Temporal Logic”, Journal of the ACM, 49(5): 672–713. (Scholar)
  • Andréka, H., V. Goranko, S. Mikulas, I. Németi, and I. Sain, 1995, “Effective First-Order Temporal Logics of Programs”, in Bolc and Szalas (1995), pp. 51–129. (Scholar)
  • Andréka, H., J. Madarász, and I. Németi, 2007, “Logic of Space-Time and Relativity Theory”, in M. Aiello, J. van Benthem, and I. Pratt-Hartmann (eds.), Handbook of Spatial Logics, Dordrecht: Springer, pp. 607–711. (Scholar)
  • Areces, C., and B. ten Cate, 2006, “Hybrid Logics”, in Blackburn et al. (2006), pp. 821–868. (Scholar)
  • Aristotle, Organon, II - On Interpretation, Chapter 9. See   https://archive.org/stream/AristotleOrganon/AristotleOrganoncollectedWorks.
  • Artale, A., and E. Franconi, 2000, “A Survey of Temporal Extensions of Description Logics”, Annals of Mathematics and Artificial Intelligence, 30: 171–210. (Scholar)
  • Baader, F., and C. Lutz, 2006, “Description Logic”, in Blackburn et al. (2006), pp. 757–819. (Scholar)
  • Baier, C., and J.P. Katoen, 2008, Principles of Model Checking, Cambridge, Massachusetts: MIT Press. (Scholar)
  • Balbiani, P., V. Goranko, and G. Sciavicco, 2011, “Two-Sorted Point-Interval Temporal Logics”, in Proceedings of the 7th International Workshop on Methods for Modalities (Electronic Notes in Theoretical Computer Science: Volume 278), pp. 31–45. (Scholar)
  • Belnap, N., 1992, “Branching Space-Time”, Synthese, 92(3): 385–434. (Scholar)
  • Belnap, N., and M. Green, 1994, “Indeterminism and the Thin Red Line”, Philosophical Perspectives, 8: 365–388. (Scholar)
  • Belnap, N., and T. Müller, 2014a, “CIFOL: Case-Intensional First Order Logic (I): Toward a Theory of Sorts”, Journal of Philosophical Logic, 43(2–3): 393–437. (Scholar)
  • –––, 2014b, “BH-CIFOL: Case-Intensional First Order Logic (II): Branching Histories”, Journal of Philosophical Logic, 43(5): 835–866. (Scholar)
  • Belnap, N., and M. Perloff, 1988, “Seeing to it that: A Canonical Form for Agentives”, Theoria, 54: 175–199, reprinted with corrections in H. E. Kyberg et al. (eds.), Knowledge Representation and Defeasible Reasoning, Dordrecht: Kluwer, 1990, pp. 167–190. (Scholar)
  • Belnap, N., M. Perloff, and M. Xu, 2001, Facing the Future: Agents and Choices in Our Indeterminist World, Oxford: Oxford University Press. (Scholar)
  • Ben-Ari, M., A. Pnueli, and Z. Manna, 1983, “The Temporal Logic of Branching Time”, Acta Informatica, 20(3): 207–226. (Scholar)
  • van Benthem, J., 1983, The Logic of Time, Dordrecht, Boston, and London: Kluwer Academic Publishers. [Second edition: 1991.] (Scholar)
  • –––, 1995, “Temporal Logic”, in D.M. Gabbay, C.J. Hogger, and J.A. Robinson (eds.), Handbook of Logic in Artificial Intelligence and Logic Programming (Volume 4), Oxford: Clarendon Press, pp. 241–350. (Scholar)
  • van Benthem, J., and E. Pacuit, 2006, “The Tree of Knowledge in Action: Towards a Common Perspective”, in Advances in Modal Logic (Volume 6), London: College Publications, pp. 87–106. (Scholar)
  • Blackburn, P., 2006, “Arthur Prior and Hybrid Logic”, Synthese, 150: 329–372. (Scholar)
  • Blackburn, P., J. van Benthem, and F. Wolter, 2006, Handbook of Modal Logics, Amsterdam: Elsevier. (Scholar)
  • Blackburn, P., P. Hasle, and P. Øhrstrøm (eds.), 2019, Logic and Philosophy of Time: Further Themes from Prior (Volume 2), Aalborg: Aalborg University Press. (Scholar)
  • Blackburn, P., and M. Tzakova, 1999, “Hybrid Languages and Temporal Logic”, Logic Journal of the IGPL, 7: 27–54. (Scholar)
  • Bolc, L., and A. Szalas (eds.), 1995, Time and Logic: A Computational Approach, London: UCL Press. (Scholar)
  • Börger, E., E. Grädel, and Y. Gurevich, 1997, The Classical Decision Problem, Berlin, Heidelberg: Springer. (Scholar)
  • Boyd, S., 2014, “Defending History: Temporal Reasoning in Genesis 2:7–3:8”, Answers Research Journal, 7: 215–237. (Scholar)
  • Bresolin, D., V. Goranko, A. Montanari, and G. Sciavicco, 2009, “Propositional Interval Neighborhood Logics: Expressiveness, Decidability, and Undecidable Extensions”, Annals of Pure and Applied Logic, 161(3): 289–304. (Scholar)
  • Bresolin, D., D. Della Monica, V. Goranko, A. Montanari, and G. Sciavicco, 2013, “Metric Propositional Neighborhood Logics on Natural Numbers”, Software and Systems Modeling, 12(2): 245–264. (Scholar)
  • Broersen, J., 2011, “Deontic Epistemic Stit Logic Distinguishing Modes of Mens Rea”, Journal of Applied Logic, 9: 137–152. (Scholar)
  • Broersen, J., A. Herzig, and N. Troquard, 2006, “A STIT-Extension of ATL”, in Proceedings of JELIA 2006 (Lecture Notes in Artificial Intelligence: Volume 4160), Berlin: Springer, pp. 69–81. (Scholar)
  • Brown, M., and V. Goranko, 1999, “An Extended Branching-Time Ockhamist Temporal Logic”, Journal of Logic, Language and Information, 8(2): 143–166. (Scholar)
  • Bull, R., 1970, “An Approach to Tense Logic”, Theoria, 36: 282–300. (Scholar)
  • Burgess, J., 1978, “The Unreal Future”, Theoria, 44(3): 157–179. (Scholar)
  • –––, 1979, “Logic and Time”, Journal of Symbolic Logic, 44: 566–582. (Scholar)
  • –––, 1980, “Decidability for Branching Time”, Studia Logica, 39: 203–218. (Scholar)
  • –––, 1982a, “Axioms for Tense Logic I: ‘Since’ and ‘Until’”, Notre Dame Journal of Formal Logic, 23: 367–374. (Scholar)
  • –––, 1982b, “Axioms for Tense Logic II: Time Periods”, Notre Dame Journal of Formal Logic, 23: 375–383. (Scholar)
  • –––, 1984, “Basic Tense Logic”, in D.M. Gabbay, and F. Guenthner (eds.), Handbook of Philosophical Logic (Volume 2), Dordrecht: Reidel, pp. 89–133. [New edition in Gabbay and Guenthner (2002), pp. 1–42.] (Scholar)
  • Burgess, J., and Y. Gurevich, 1985, “The Decision Problem for Linear Temporal Logic”, Notre Dame Journal of Formal Logic, 26(2): 115–128. (Scholar)
  • Ciuni, R., and A. Zanardo, 2010, “Completeness of a Branching-Time Logic with Possible Choices”, Studia Logica, 96: 393–420. (Scholar)
  • Cocchiarella, N., 2002, “Philosophical Perspectives on Quantification in Tense and Modal Logic”, in Gabbay and Guenthner (2002), pp. 235–276. (Scholar)
  • Correia, F., and F. Iacona (eds.), 2013, Around the Tree: Semantic and Metaphysical Issues Concerning Branching and the Open Future (Synthese Library: Volume 361), Dordrecht: Springer. (Scholar)
  • Dean, T., and D.V. McDermott, 1987, “Temporal Data Base Management”, Artificial Intelligence, 32:1–55. (Scholar)
  • Della Monica, D., V. Goranko, A. Montanari, and G. Sciavicco, 2011, “Interval Temporal Logics: A Journey”, Bulletin of the European Association for Theoretical Computer Science, 105: 73–99. (Scholar)
  • Demri, S., V. Goranko, and M. Lange, 2016, Temporal Logics in Computer Science, Cambridge: Cambridge University Press. (Scholar)
  • Dowty, D., 1979, Word Meaning and Montague Grammar, Dordrecht: Reidel. (Scholar)
  • Dyke, H., 2013, “Time and Tense”, in Dyke and Bardon (2013), pp. 328–344. (Scholar)
  • Dyke, H., and A. Bardon (eds.), 2013, A Companion to the Philosophy of Time (Blackwell Companions to Philosophy), Oxford: Wiley-Blackwell. (Scholar)
  • Emerson, E.A., 1990, “Temporal and Modal Logics”, in J. van Leeuwen (ed.), Handbook of Theoretical Computer Science (Volume B: Formal Models and Semantics), Amsterdam: Elsevier, pp. 995–1072. (Scholar)
  • Emerson, E.A., and E.C. Clarke, 1982, “Using Branching Time Temporal Logic to Synthesise Synchronisation Skeletons”, Science of Computer Programming, 2: 241–266. (Scholar)
  • Emerson, E.A., and J. Halpern, 1985, “Decision Procedures and Expressiveness in the Temporal Logic of Branching Time”, Journal of Computer and Systems Science, 30: 1–24. (Scholar)
  • Emerson, E.A., and A. Sistla, 1984, “Deciding Full Branching Time Logic”, Information and Control, 61: 175–201. (Scholar)
  • Euzenat, J., and A. Montanari, 2005, “Time Granularity”, in Fisher et al. (2005), pp. 59–118. (Scholar)
  • Ewald, W., 1986, “Intuitionistic Tense and Modal Logic”, Journal of Symbolic Logic, 51(1): 166–179. (Scholar)
  • Fagin, R., J. Halpern, Y. Moses, and M. Vardi, 1995, Reasoning about Knowledge, Boston: MIT Press. (Scholar)
  • Finger, M., and D.M. Gabbay, 1992, “Adding a Temporal Dimension to a Logic System”, Journal of Logic, Language and Information, 1(3): 203–233. (Scholar)
  • –––, 1996, “Combining Temporal Logic Systems”, Notre Dame Journal of Formal Logic, 37(2): 204–232. (Scholar)
  • Finger, M., D.M. Gabbay, and M. Reynolds, 2002, “Advanced Tense Logic”, in Gabbay and Guenthner (2002), pp. 43–204. (Scholar)
  • Fisher, M., 2008, “Temporal Representation and Reasoning”, in F. van Harmelen, V. Lifschitz, and B. Porter (eds.), Handbook of Knowledge Representation, Amsterdam: Elsevier, pp. 513–550. (Scholar)
  • –––, 2011, An Introduction to Practical Formal Methods Using Temporal Logic, New York: Wiley. (Scholar)
  • Fisher, M., D.M. Gabbay, and L. Vila, 2005, Handbook of Temporal Reasoning in Artificial Intelligence, Amsterdam: Elsevier. (Scholar)
  • Fisher, M., and M. Wooldridge, 2005, “Temporal Reasoning in Agent-Based Systems”, in Fisher et al. (2005), pp. 469–495. (Scholar)
  • Fitting, M., and R. Mendelsohn, 1998, First Order Modal Logic, Dordrecht: Kluwer. (Scholar)
  • French, T., 2001, “Decidability of Quantified Propositional Branching Time Logics”, Advances in AI (Lecture Notes in Computer Science: Volume 2256), Berlin: Springer, pp. 165–176. (Scholar)
  • French, T., and M. Reynolds, 2003, “A Sound and Complete Proof System for QPTL”, in Balbiani et al. (eds.), Advances in Modal Logic (Volume 4), London: College Publication, pp. 127–148. (Scholar)
  • Gabbay, D.M., and F. Guenthner (eds.), 2002, Handbook of Philosophical Logic (Volume 7), Second Edition, Dordrecht: Kluwer. (Scholar)
  • Gabbay, D.M., I. Hodkinson, and M. Reynolds, 1994, Temporal Logic: Mathematical Foundations and Computational Aspects (Volume 1), Oxford: Clarendon Press. (Scholar)
  • Gabbay, D., A. Kurucz, F. Wolter, and M. Zakharyaschev, 2003, Many-Dimensional Modal Logics: Theory and Applications, Amsterdam: Elsevier. (Scholar)
  • Gabbay, D.M., A. Pnueli, S. Shelah, and J. Stavi, 1980, “On the Temporal Basis of Fairness”, in Proceedings of the 7th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pp. 163–173. (Scholar)
  • Gabbay, D.M., M. Reynolds, and M. Finger, 2000, Temporal Logic: Mathematical Foundations and Computational Aspects (Volume 2), Oxford: Oxford University Press. (Scholar)
  • Gabelaia, D., R. Kontchakov, A. Kurucz, F. Wolter, and M. Zakharyaschev, 2005, “Combining Spatial and Temporal Logics: Expressiveness vs. Complexity”, Journal of Artificial Intelligence Research, 23: 167–243. (Scholar)
  • Galton, A.P., 1984, The Logic of Aspect, Oxford: Clarendon Press. (Scholar)
  • –––, 1990, “A Critical Examination of Allen’s Theory of Action and Time”, Artificial Intelligence, 42: 159–188. (Scholar)
  • –––, 1987, Temporal Logics and their Applications, London: Academic Press. (Scholar)
  • –––, 1995, “Time and Change for AI”, in D.M. Gabbay, C.J. Hogger, and J.A. Robinson, Handbook of Logic in Artificial Intelligence and Logic Programming (Volume 4), Oxford: Clarendon Press, pp. 175–240. (Scholar)
  • –––, 1996, “Time and Continuity in Philosophy, Mathematics, and Artificial Intelligence”, Kodikas/Code, 19 (1–2): 101–119. (Scholar)
  • –––, 2008, “Temporal Logic”, in E.N. Zalta (ed.), The Stanford Encyclopedia of Philosophy (Fall 2008 Edition). (Scholar)
  • Garson, J., 1984, “Quantification in Modal Logic”, in D.M. Gabbay, and F. Guenthner (eds.), Handbook of Philosophical Logic, Dordrecht: Reidel, pp. 249–307. (Scholar)
  • Goldblatt, R., 1980, “Diodorean Modality in Minkowski Spacetime”, Studia Logica, 39: 219–236. [Reprinted in Mathematics of Modality (CSLI Lecture Notes 43), Stanford: CSLI Publications, 1993.] (Scholar)
  • –––, 1992, Logics of Time and Computation (CSLI Lecture Notes 7), Second Edition, Stanford: CSLI Publications. (Scholar)
  • Goranko, V., 1996, “Hierarchies of Modal and Temporal Logics with Reference Pointers”, Journal of Logic, Language and Information, 5(1): 1–24. (Scholar)
  • Goranko, V., and G. van Drimmelen, 2006, “Complete Axiomatization and Decidablity of the Alternating-Time Temporal Logic”, Theoretical Computer Science, 353: 93–117. (Scholar)
  • Goranko, V., A. Montanari, and G. Sciavicco, 2003, “Propositional Interval Neighborhood Logics”, Journal of Universal Computer Science, 9(9): 1137–1167. (Scholar)
  • –––, 2004, “A Road Map of Propositional Interval Temporal Logics and Duration Calculi”, Journal of Applied Non-Classical Logics (Special Issue on Interval Temporal Logics and Duration Calculi), 14(1–2): 11–56. (Scholar)
  • Goranko, V., and D. Shkatov, 2010, “Tableau-Based Decision Procedures for Logics of Strategic Ability in Multi-Agent Systems”, ACM Transactions of Computational Logic, 11(1): 3–51. (Scholar)
  • Goré, R., 1999, “Tableau Methods for Modal and Temporal Logics”, in M. D’Agostino, D.M. Gabbay, R. Hahnle, and J. Posegga (eds.), Handbook of Tableau Methods, Dordrecht: Kluwer, pp. 297–396. (Scholar)
  • Grädel, E., and M. Otto, 1999, “On Logics With Two Variables”, Theoretical Computer Science, 224(1–2), pp. 73–113. (Scholar)
  • Gurevich, Y., and S. Shelah, 1985, “The Decision Problem for Branching Time Logic”, Journal of Symbolic Logic, 50: 668–681. (Scholar)
  • Halpern, J., and Y. Shoham, 1986. “A Propositional Modal Logic of Time Intervals”, in Proceedings of the 2nd IEEE Symposium on Logic in Computer Science, pp. 279–292. [Reprinted in Journal of the ACM, 38(4): 935–962, 1991.] (Scholar)
  • Halpern, J., and M. Vardi, 1989, “The Complexity of Reasoning about Knowledge and Time I: Lower Bounds”, Journal of Computer and System Sciences, 38(1): 195–237. (Scholar)
  • Hamblin, C.L., 1972, “Instants and Intervals”, in J.T. Fraser, F. Haber, and G. Müller (eds.), The Study of Time, Berlin/Heidelberg: Springer, pp. 324–331. (Scholar)
  • Hansen, M.R., and C. Zhou, 1997, “Duration Calculus: Logical Foundations”, Formal Aspects of Computing, 9: 283–330. (Scholar)
  • Hart, S., and M. Sharir, 1986, “Probabilistic Propositional Temporal Logics”, Information and Control, 70(2–3): 97–155. (Scholar)
  • Hasle, P., P. Blackburn, and P. Øhrstrøm (eds.), 2017, Logic and Philosophy of Time: Themes from Prior (Volume 1), Aalborg: Aalborg University Press. (Scholar)
  • Hodkinson, I., and M. Reynolds, 2006, “Temporal Logic”, in Blackburn et al. (2006), pp. 655–720. (Scholar)
  • Hodkinson, I., F. Wolter, and M. Zakharyaschev, 2000, “Decidable Fragments of First-Order Temporal Logics”, Annals of Pure and Applied Logic, 106(1–3): 85–134. (Scholar)
  • –––, 2001, “Monodic Fragments of First-Order Temporal Logics: 2000-2001 A.D.”, in Logic for Programming, Artificial Intelligence, and Reasoning, Proceedings of the 8th International Conference LPAR 2001, Springer, pp. 1–23. (Scholar)
  • –––, 2002, “Decidable and Undecidable Fragments of First-Order Branching Temporal Logics”, in Proceedings of the 17th Annual IEEE Symposium on Logic in Computer Science, IEEE Computer Society Press, pp. 393–402. (Scholar)
  • Humberstone, I.L., 1979, “Interval Semantics for Tense Logic: Some Remarks”, Journal of Philosophical Logic, 8: 171–196. (Scholar)
  • Ingthorsson, R.D., 2016, McTaggart’s Paradox, New York: Routledge. (Scholar)
  • Kamide, N., and H. Wansing, 2010, “Combining Linear-Time Temporal Logic with Constructiveness and Paraconsistency”, Journal of Applied Logic, 6: 33–61. (Scholar)
  • –––, 2011, “A Paraconsistent Linear-Time Temporal Logic”, Fundamenta Informaticae, 106: 1–23. (Scholar)
  • Kamp, J., 1968, Tense Logic and the Theory of Linear Order, PhD Thesis, University of California, Los Angeles. (Scholar)
  • –––, 1971, “Formal Properties of ‘Now’”, Theoria, 37: 227–273. (Scholar)
  • –––, 1979, “Events, Instants and Temporal Reference”, in R. Bäuerle, U. Egli, and A. von Stechow (eds.), Semantics from Different Points of View, Berlin: Springer, pp. 376–417. (Scholar)
  • Kesten, Y., and A. Pnueli, 2002, “Complete Proof System for QPTL”. Journal of Logic and Computation, 12(5): 701–745. (Scholar)
  • Kontchakov, R., A. Kurucz, F. Wolter, and M. Zakharyaschev, 2007, “Spatial Logic + Temporal Logic = ?”, in M. Aiello, J. van Benthem, and I. Pratt-Hartmann (eds.), Handbook of Spatial Logics, Berlin: Springer, pp. 497–564. (Scholar)
  • Kontchakov, R., C. Lutz, F. Wolter, and M. Zakharyaschev, 2004, “Temporalising Tableaux”, Studia Logica, 76(1): 91–134. (Scholar)
  • Konur, S., 2013, “A Survey on Temporal Logics for Specifying and Verifying Real-Time Systems”, Frontiers of Computer Science, 7(3): 370–403. (Scholar)
  • Koymans, R., 1990, “Specifying Real-Time Properties with Metric Temporal Logic”, Real-Time Systems, 2(4): 55–299. (Scholar)
  • Kowalski, R.A., and M.J. Sergot, 1986, “A Logic-Based Calculus of Events”, New Generation Computing, 4: 67–95. (Scholar)
  • Kröger, F., and S. Merz, 2008, Temporal Logic and State Systems (EATCS Texts in Theoretical Computer Science Series), Berlin: Springer. (Scholar)
  • Kuhn, S.T., and P. Portner, 2002, “Tense and Time”, in Gabbay and Guenthner (2002), pp. 277–346. (Scholar)
  • Ladkin, P., 1987, The Logic of Time Representation, PhD Thesis, University of California, Berkeley. (Scholar)
  • van Lambalgen, M., and F. Hamm, 2005, The Proper Treatment of Events, Malden: Blackwell. (Scholar)
  • Lamport, L., 1994, “The Temporal Logic of Actions”, ACM Transactions on Programming Languages and Systems, 16(3): 872–923. (Scholar)
  • Lindström, S., and K. Segerberg, 2006, “Modal Logic and Philosophy”, in Blackburn et al. (2006), pp. 1149–1214 (Scholar)
  • Linsky, B., and E. Zalta, 1994, “In Defense of the Simplest Quantified Modal Logic”, Philosophical Perspectives, 8: 431–458. (Scholar)
  • Lorini, E., 2013, “Temporal STIT Logic and Its Application to Normative Reasoning”, Journal of Applied Non-Classical Logics, 23(4): 372–399. (Scholar)
  • Lutz, K., F. Wolter, and M. Zakharyaschev, 2008, “Temporal Description Logics: A Survey”, Proceedings of TIME 2008, pp. 3–14. (Scholar)
  • Ma, J., and B. Knight, 2001, “Reified Temporal Logics: An Overview”, Artificial Intelligence Review, 15(3): 189–217. (Scholar)
  • MacFarlane, J., 2003, “Future Contingents and Relative Truth”, The Philosophical Quarterly, 53(212): 321–336. (Scholar)
  • –––, 2014, Assessment Sensitivity: Relative Truth and Its Applications, Oxford: Oxford University Press. (Scholar)
  • Manna, Z., and A. Pnueli, 1992, The Temporal Logic of Reactive and Concurrent Systems (Specification: Volume 1), Springer: New York. (Scholar)
  • Mani, I., J. Pustejovsky, and R. Gaizauskas, 2005, The Language of Time: A Reader, Oxford: Oxford University Press. (Scholar)
  • Marx, M., and M. Reynolds, 1999, “Undecidability of Compass Logic”, Journal of Logic and Computation, 9(6): 897–914. (Scholar)
  • McArthur, R., 1976, Tense Logic, Synthese Library, Springer. (Scholar)
  • McCarthy, J., and P.J. Hayes, 1969, “Some Philosophical Problems from the Standpoint of Artificial Intelligence”, in D. Michie, and B. Meltzer (eds.), Machine Intelligence 4, Edinburgh: Edinburgh University Press, pp. 463–502. (Scholar)
  • McDermott, D., 1982, “A Temporal Logic for Reasoning about Processes and Plans”, Cognitive Science, 6: 101–155. (Scholar)
  • McTaggart, E.J., 1908, “The Unreality of Time”, Mind, 17(68): 457–472. (Scholar)
  • Merz, S., 1992, “Decidability and Incompleteness Results for First-Order Temporal Logics of Linear Time”, Journal of Applied Non-Classical Logic, 2(2): 139–156. (Scholar)
  • ter Meulen, A., 2005, “Temporal Reasoning in Natural Language”, in Fisher et al. (2005), pp. 559–585. (Scholar)
  • Meyer, U., 2013, The Nature of Time, Oxford: Oxford University Press. (Scholar)
  • Montanari, A., 1996, Metric and Layered Temporal Logic for Time Granularity, PhD Thesis (Institute for Logic, Language, and Computation Dissertation Series, Volume: 1996–02), University of Amsterdam. (Scholar)
  • Montanari, A., and A. Policriti, 1996, “Decidability Results for Metric and Layered Temporal Logics”, Notre Dame Journal Formal Logic, 37(2): 260–282. (Scholar)
  • Moss, S.L., and H.J. Tiede, 2006, “Applications of Modal Logic in Linguistics”, in Blackburn et al. (2006), pp. 1003–1076. (Scholar)
  • Moszkowski, B., 1983, Reasoning about Digital Circuits, PhD Thesis (Technical Report STAN-CS-83–970), Department of Computer Science, Stanford University. (Scholar)
  • Müller, T., 2011, “Tense or Temporal Logic”, in R. Pettigrew (ed.), The Continuum Companion to Philosophical Logic, London: Continuum, pp. 324–350. (Scholar)
  • –––, 2013, “A Generalized Manifold Topology for Branching Space-Times”, Philosophy of Science, 80: 1089–1100. (Scholar)
  • ––– (ed.), 2014, Nuel Belnap on Indeterminism and Free Action (Outstanding Contributions to Logic: Volume 2), Springer. (Scholar)
  • Nishimura, H., 1979, “Is the Semantics of Branching Structures Adequate for Non-Metric Ockhamist Tense Logics?”, Journal of Philosophical Logic, 8: 477–478. (Scholar)
  • Ogihara, T., 2007, “Tense and Aspect in Truth-Conditional Semantics”, Lingua, 117:392–418. (Scholar)
  • –––, 2011, “Tense”, in C. Maienborn, K. von Heusinger, and P. Portner (eds.), Semantics: An International Handbook of Natural Language Meaning, de Gruyter, pp. 1463–1484. (Scholar)
  • Øhrstrøm, P., 2009, “In Defense of the Thin Red Line: A Case for Ockhamism”, Humana Mente, 8: 17–32. (Scholar)
  • –––, 2019, “A Critical Discussion of Prior’s Philosophical and Tense-Logical Analysis of the Ideas of Indeterminism and Human Freedom”, Synthese, 196(1): 69–85. (Scholar)
  • Øhrstrøm, P., and P. Hasle, 1995, Temporal Logic: From Ancient Ideas to Artificial Intelligence, Dordrecht: Kluwer Academic Publishers. (Scholar)
  • –––, 2006, “Modern Temporal Logic: The Philosophical Background”, in Handbook of the History of Logic (Volume 7), pp. 447–498. (Scholar)
  • –––, 2019, “The Significance of the Contributions of A.N. Prior and Jerzy Łoś in the Early History of Modern Temporal Logic”, in Blackburn et al. (2019), pp. 31–40. (Scholar)

Generated Wed Aug 12 23:09:36 2020