Linked bibliography for the SEP article "Temporal Logic" by Valentin Goranko and Antony Galton

This is an automatically generated and experimental page

If everything goes well, this page should display the bibliography of the aforementioned article as it appears in the Stanford Encyclopedia of Philosophy, but with links added to PhilPapers records and Google Scholar for your convenience. Some bibliographies are not going to be represented correctly or fully up to date. In general, bibliographies of recent works are going to be much better linked than bibliographies of primary literature and older works. Entries with PhilPapers records have links on their titles. A green link indicates that the item is available online at least partially.

This experiment has been authorized by the editors of the Stanford Encyclopedia of Philosophy. The original article and bibliography can be found here.

  • Allen, J.F., 1983, “Maintaining knowledge about temporal intervals”, Communications of the ACM, 26(11): 832–843. (Scholar)
  • –––, 1984, “Towards a general theory of action and time”, Artificial Intelligence, 23: 123–154. (Scholar)
  • Alur, R. and Henzinger, T., 1992, “Logics and models of real-time: a survey”, in Real-Time: Theory in Practice: Proceedings of the REX Workshop, 1991 (Lecture Notes in Computer Science: Volume 600), Berlin: Springer, 74–106. (Scholar)
  • –––, 1993, “Real-time logics: Complexity and expressiveness”, Information and Computation, 104: 35–77. (Scholar)
  • –––, 1994, “A really temporal logic”, Journal of the ACM, 41: 181–204.
  • Alur, R. Henzinger, T. and Kupferman, O., 2002, “Alternating-time temporal logic”, Journal of the ACM, 49(5): 672–713. (Scholar)
  • Andréka, H., Goranko, V., Mikulas, S. Németi, I. and Sain, I., 1995, “Effective first-order temporal logics of programs”, in Bolc and Szalas (1995), pp. 51–129. (Scholar)
  • Andréka, H., Madar’sz, J. and Németi, I., 2007, “Logic of Space-Time and Relativity Theory”, chapter in M. Aiello, J. van Benthem and I. Pratt-Hartmann (eds), Handbook of Spatial Logics, Dordrecht: Springer 2007, pp. 607–711.
  • Areces, C., and ten Cate, B., 2006, “Hybrid Logics”, in Blackburn et al. (2006), pp. 821–868. (Scholar)
  • Aristotle, Organon, II - On Interpretation, ch.9. See   https://archive.org/stream/AristotleOrganon/AristotleOrganoncollectedWorks.
  • Artale, A. and Franconi, E., 2000, “A survey of temporal extensions of description logics”, Annals of Math. and AI, 30: 171–210.
  • Baader, F. and Lutz, C., 2006, “Description Logic”, chapter in Blackburn et al. (2006), pp. 757–819. (Scholar)
  • Balbiani, P., Goranko, V. and Sciavicco, G., 2011, “Two-sorted Point-Interval Temporal logics”, in Proc. of the 7th International Workshop on Methods for Modalities (M4M7) (Electronic Notes in Theoretical Computer Science: Volume 278), pp. 31–45. (Scholar)
  • Belnap, N. and Green, M., 1994, “Indeterminism and the Thin Red Line”, in Philosophical Perspectives (Volume 8: Logic and Language), Atascadero, CA: Ridgeview, pp. 365–388. (Scholar)
  • Belnap, N. and Perloff, M., 1988, “Seeing to it that: A canonical form for agentives”, Theoria, volume 54, pp. 175–199, reprinted with corrections in H. E. Kyberg et al. (eds.), Knowledge Representation and Defeasible Reasoning, Dordrecht: Kluwer, 1990, pp. 167–190. (Scholar)
  • Belnap, N., Perloff, M., and Xu, M., 2001, Facing the future: Agents and choice in our indeterminist world, Oxford: Oxford University Press. (Scholar)
  • Ben-Ari, M., Pnueli, A. and Manna, Z., 1983, “The temporal logic of branching time”, Acta Informatica, 20(3): 207–226. (Scholar)
  • van Benthem, J., 1983, The Logic of Time, Dordrecht, Boston and London: Kluwer Academic Publishers. [Second edition: 1991.] (Scholar)
  • –––, 1995, “Temporal Logic”, in D.M. Gabbay, C.J. Hogger, and J.A. Robinson (eds.), Handbook of Logic in Artificial Intelligence and Logic Programming (Volume 4), Oxford: Clarendon Press, pp. 241–350. (Scholar)
  • van Benthem, J., and ter Meulen, A., (editors), 1997, Handbook of Logic and Language, Amsterdam: Elsevier. (Scholar)
  • van Benthem, J., and E. Pacuit, 2006, “The Tree of Knowledge in Action: Towards a Common Perspective”, in Advances in Modal Logic (Volume 6), London: College Publications, pp. 87–106. (Scholar)
  • Blackburn, P., 2006, “Arthur Prior and Hybrid Logic”, Synthese, 150: 329–372. (Scholar)
  • Blackburn, P., van Benthem, J, and Wolter, F., 2006, Handbook of Modal Logics, Amsterdam: Elsevier. (Scholar)
  • Bolc, L. and Szalas, A. (eds.), 1995, Time and Logic: A Computational Approach, London: UCL Press. (Scholar)
  • Boyd, S., 2014, “Defending History: Temporal Reasoning in Genesis 2:7–3:8”, Answers Research Journal, 7: 215–237. (Scholar)
  • Bresolin, D., Goranko, V., Montanari, A. and Sciavicco, G., 2009, “Propositional Interval Neighborhood Logics: Expressiveness, Decidability, and Undecidable Extensions”, Annals of Pure and Applied Logic, 161(3): 289–304. (Scholar)
  • Bresolin, D., Della Monica, D., Goranko, V., Montanari, A. and Sciavicco, G., 2013, “Metric propositional neighborhood logics on natural numbers”, Software and Systems Modeling, 12(2): 245–264. (Scholar)
  • Broersen, J., Herzig, A. and Troquard, N., 2006, “A STIT-extension of ATL”, in Proc. of JELIA’2006, LNAI 4160, Berlin: Springer, pp. 69–81.
  • Brown, M., and Goranko, V., 1999, “An extended branching-time Ockhamist temporal logic”, Journal of Logic, Language and Information, 8(2): 143–166. (Scholar)
  • Bull, R., 1970, “An approach to tense logic”, Theoria, 36: 282–300. (Scholar)
  • Burgess, J., 1979, “Logic and time”, Journal of Symbolic Logic, 44: 566–582. (Scholar)
  • Burgess, J., 1980, “Decidability for branching time”, Studia Logica, 39: 203–218. (Scholar)
  • Burgess, J., 1982a, “Axioms for tense logic I: ‘Since’ and ‘Until’”, Notre Dame Journal of Formal Logic, 23: 367–374. (Scholar)
  • Burgess, J., 1982b, “Axioms for tense logic II: Time Periods”, Notre Dame Journal of Formal Logic, 23: 375–383. (Scholar)
  • Burgess, J., 1984, “Basic tense logic”, in Gabbay and Guenthner (eds.), Handbook of Philosophical Logic (Volume 2), Dordrecht: Reidel, pp. 89–133. [New edition in Gabbay and Guenthner (2002), pp. 1–42.] (Scholar)
  • Burgess, J. and Gurevich, Y., 1985, “The decision problem for linear temporal logic”. Notre Dame Journal of Formal Logic, 26(2): 115–128. (Scholar)
  • Ciuni, R., and Zanardo, A., 2010, “Completeness of a Branching-Time Logic with Possible Choices”, Studia Logica, 96: 393–420. (Scholar)
  • Cocchiarella, N., 2002, “Philosophical Perspectives on Quantification in Tense and Modal Logic”, in Gabbay & Guenthner (2002), pp. 235–276. (Scholar)
  • Della Monica, D., Goranko, V., Montanari, A., Sciavicco, G., 2011, “Interval Temporal Logics: A Journey”, Bulletin of the European Association for Theoretical Computer Science, 105: 73–99. (Scholar)
  • Davidson, D., 1967, “The Logical Form of Action Sentences”, in N. Rescher (ed.), The Logic of Decision and Action, Pittsburgh: University of Pittsburgh Press, 1967, pp. 81–95. [Reprinted in D. Davidson, Essays on Actions and Events, Oxford: Clarendon Press, 1990, pp. 105–122.] (Scholar)
  • Dowty, D., 1979, Word Meaning and Montague Grammar, Dordrecht: Reidel. (Scholar)
  • Emerson, E.A. and E. C. Clarke, 1982, “Using branching time temporal logic to synthesise synchronisation skeletons”, Science of Computer Programming, 2: 241–266. (Scholar)
  • Emerson, E.A. and J. Halpern, 1985, “Decision procedures and expressiveness in the temporal logic of branching time”, Journal of Computer and Systems Science, 30: 1–24. (Scholar)
  • Emerson, E.A. and Sistla, A., 1984, “Deciding full branching time logic”, Information and Control, 61: 175–201. (Scholar)
  • Emerson, E.A., 1990, “Temporal and modal logics”, in J. van Leeuwen, (ed.), Handbook of Theoretical Computer Science, volume B: Formal Models and Semantics, Amsterdam: Elsevier, pp. 995–1072. (Scholar)
  • Ewald, W., 1986, “Intuitionistic Tense and Modal Logic”, Journal of Symbolic Logic, 51(1): 166–179. (Scholar)
  • Fagin, R., Halpern, J., Moses, Y., and Vardi, M., 1995, Reasoning about Knowledge, Boston: The MIT Press. (Scholar)
  • Fine, K., 1970, “Propositional quantifiers in modal logic”, Theoria, 36: 336–346. (Scholar)
  • Finger, M. and Gabbay, D., 1992, “Adding a temporal dimension to a logic system”, Journal of Logic, Language and Information, 1(3): 203–233. (Scholar)
  • Finger, M. and Gabbay, D., 1996, “Combining Temporal Logic Systems”, Notre Dame Journal of Formal Logic, 37(2): 204–232. (Scholar)
  • Finger, M. and Gabbay, D. and Reynolds. M., 2002, “Advanced tense logic”, in Gabbay and Guenthner (2002), pp. 43–204. (Scholar)
  • Fisher, M., Gabbay, D., and Vila, L., 2005, Handbook of Temporal Reasoning in Artificial Intelligence, Amsterdam: Elsevier. (Scholar)
  • Fisher, M., 2008, “Temporal Representation and Reasoning”, in F. van Harmelen, V. Lifschitz and B. Porter (eds.), Handbook of Knowledge Representation, Amsterdam: Elsevier, pp. 513–550. (Scholar)
  • Fisher, M., 2011, An Introduction to Practical Formal Methods Using Temporal Logic, Somerset, NJ: Wiley. (Scholar)
  • French, T., 2001, “Decidability of Quantified Propositional Branching Time Logics”, Advances in AI (Lecture Notes in Computer Science: Volume 2256), Berlin: Springer, pp. 165–176. (Scholar)
  • French, T. and Reynolds, M., 2002, “A Sound and Complete Proof System for QPTL”, Advances in Modal Logic, 4: 127–148. (Scholar)
  • Gabbay, D.M. and Guenthner, F. (editors), 2002, Handbook of Philosophical Logic (Volume 7), second edition, Dordrecht: Kluwer. (Scholar)
  • Gabbay, D. M., Hodkinson, I., and Reynolds, M., 1994, Temporal Logic: Mathematical Foundations and Computational Aspects, Volume 1, Oxford: Clarendon Press. (Scholar)
  • Gabbay, D. M., Reynolds, M. and Finger, M., 2000, Temporal Logic: Mathematical Foundations and Computational Aspects (Volume 2), Oxford: Oxford University Press. (Scholar)
  • Gabbay, D., Kurucz, A., Wolter, F., and Zakharyaschev, M., 2003, Many-dimensional modal logics: theory and applications, Amsterdam: Elsevier. (Scholar)
  • Galton, A. P., 1984, The Logic of Aspect, Oxford: Clarendon Press. (Scholar)
  • –––, 1987, Temporal Logics and their Applications, London: Academic Press. (Scholar)
  • –––, 1995, “Time and Change for AI”, in D. M. Gabbay, C. J. Hogger, and J. A. Robinson, Handbook of Logic in Artificial Intelligence and Logic Programming (Volume 4), Oxford: Clarendon Press, pp. 175–240. (Scholar)
  • Garson, J., 1984, “Quantification in modal logic”, in D. M. Gabbay and F. Guenthner (eds.), Handbook of Philosophical Logic, Dordrecht: D. Rediel, pp. 249–307. (Scholar)
  • Goldblatt, R., 1980, “Diodorean Modality in Minkowski Spacetime”, Studia Logica, 39: 219–236. Reprinted in Mathematics of Modality (CSLI Lecture Notes 43), Stanford: CSLI Publications, 1993. (Scholar)
  • –––, 1987, Logics of Time and Computation (CSLI Lecture Notes 7), Stanford: CSLI Publications; second edition, 1992. (Scholar)
  • Goranko, V., 1996, “Hierarchies of modal and temporal logics with reference pointers”, J. of Logic, Language and Information, 5(1): 1–24. (Scholar)
  • Goranko, V., Montanari, A. and Sciavicco, G., 2003, “Propositional Interval Neighborhood Logics”, Journal of Universal Computer Science, 9(9): 1137–1167. (Scholar)
  • –––, 2004, “A Road Map of Propositional Interval Temporal Logics and Duration Calculi”, Journal of Applied Non-classical Logics (Special issue on Interval Temporal Logics and Duration Calculi), 14(1–2): 11–56. (Scholar)
  • Goranko, V. and van Drimmelen, G., 2006, “Complete axiomatization and decidablity of the alternating-time temporal logic”, Theoretical Computer Science, 353: 93–117. (Scholar)
  • Goranko, V. and Shkatov, D., 2010, “Tableau-based decision procedures for logics of strategic ability in multi-agent systems”, ACM Transactions of Computational Logic, 11(1): 3:1–3:51. (Scholar)
  • Goré, R., 1999, “Tableau methods for modal and temporal logics”, in M. D’Agostino, D.M. Gabbay, R. Hahnle, and J. Posegga, (eds), Handbook of Tableau Methods, Dordrecht: Kluwer, pp. 297–396. (Scholar)
  • Gurevich, Y. and Shelah, S. 1985, “The decision problem for branching time logic”, Journal of Symbolic Logic, 50: 668–681. (Scholar)
  • Halpern, J. and Shoham, Y., 1986. “A propositional modal logic of time intervals”, in Proceedings of the 2nd IEEE Symposium on Logic in Computer Science, pp. 279–292; reprinted in Journal of the ACM, 38(4) (1991): 935–962.
  • Halpern, J. and Vardi, M., 1989, “The complexity of reasoning about knowledge and time I: Lower bounds”, Journal of Computer and System Sciences, 38(1): 195–237. (Scholar)
  • Hamblin, C., 1971, “Instants and intervals ”, Studium Generale , 24: 127–134. (Scholar)
  • Hansen, M.R., and Zhou C., 1997, “Duration Calculus: Logical Foundations” Formal Aspects of Computing, 9: 283–330. (Scholar)
  • Hart, S. and Sharir, M., 1986, “Probabilistic Propositional Temporal Logics”, Information and Control, 70(2/3): 97–155. (Scholar)
  • Hodkinson, I., Wolter F., and Zakharyaschev, M., 2000, “Decidable fragment of first-order temporal logics”, Ann. Pure Appl. Logic, 106(1–3): 85–134. (Scholar)
  • Hodkinson, I. and Reynolds, M., 2006, “Temporal Logic”, in Blackburn et al. (2006), pp. 655–720. (Scholar)
  • Humberstone, I.L., 1979, “Interval Semantics for Tense Logic: Some Remarks”, Journal of Philosophical Logic, 8: 171–196. (Scholar)
  • Kamide, N. and Wansing, H., 2010, “Combining linear-time temporal logic with constructiveness and paraconsistency”, Journal of Applied Logic, 6: 33–61. (Scholar)
  • Kamide, N. and Wansing, H., 2011, “A paraconsistent linear-time temporal logic”, Fundamenta Informaticae, 106: 1–23.
  • Kamp, J., 1968. Tense Logic and the Theory of Linear Order, Ph.D. thesis, University of California, Los Angeles. (Scholar)
  • –––, 1971, “Formal properties of ‘Now’”, Theoria, 37: 227–273. (Scholar)
  • Kesten, Y. and Pnueli, A., 2002, “Complete Proof System for QPTL”. Journal of Logic and Computation, 12(5): 701–745. (Scholar)
  • Kontchakov, R., Kurucz, A., Wolter, F. and Zakharyaschev, M., 2007, “Spatial Logic + Temporal Logic = ?”, chapter in M. Aiello, J. van Benthem and I. Pratt-Hartmann (eds), Handbook of Spatial Logics, Berlin: Springer, pp. 497–564. (Scholar)
  • Konur, S., 2013, “A survey on temporal logics for specifying and verifying real-time systems”, Frontiers of Computer Science, 7(3): 370–403.
  • Koymans, R., 1990, “Specifying real-time properties with metric temporal logic”, Real-time Systems, 2(4): 255–299. (Scholar)
  • Kowalski, R. A. and Sergot, M. J., 1986, “A Logic-Based Calculus of Events”, New Generation Computing, 4: 67–95. (Scholar)
  • Kröger, F. and Merz. S., 2008, Temporal Logic and State Systems (EATCS Texts in Theoretical Computer Science Series), Berlin: Springer. (Scholar)
  • Kuhn, S.T. and Portner, P, 2006, “Tense and Time”, in Gabbay and Guenthner (2002), pp. 277–346. (Scholar)
  • Ladkin, P,. 1987, The Logic of Time Representation, Ph.D. thesis, University of California, Berkeley. (Scholar)
  • Lamport, L, 1994, “The temporal logic of actions”, J. ACM Transactions on Prog. Languages and Systems, 16(3): 872–923. (Scholar)
  • Lindström, S. and Segerberg, K., 2006, “Modal logic and philosophy”, chapter in Blackburn et al. (2006), pp. 1149–1214 (Scholar)
  • Lorrini, E., 2013, “Temporal STIT logic and its application to normative reasoning”, Journal of Applied Non-Classical Logics, 23(4): 372–399. (Scholar)
  • Lutz, K., Wolter, F. and Zakharyaschev, M., 2008, “Temporal Description Logics: A Survey”, Proceedings of TIME 2008, pp. 3–14. (Scholar)
  • Manna, Z. and Pnueli, 1992, A. The Temporal Logic of Reactive and Concurrent Systems (Volume 1: Specifications), Springer: New York.
  • Mani, I., Pustejovsky, J., and Gaizauskas, R., 2005, The Language of Time: A Reader, Oxford: Oxford University Press. (Scholar)
  • Marx, M. and Reynolds, M., 1999, “Undecidability of compass logic”, Journal of Logic and Computation, 9(6): 897–914. (Scholar)
  • Massey, G., 1969, “Tense Logic! Why Bother?”, Noûs, 3: 17–32. (Scholar)
  • McCarthy, J. and Hayes, P. J., 1969, “Some Philosophical Problems from the Standpoint of Artificial Intelligence”, in D. Michie and B. Meltzer (eds.), Machine Intelligence 4, Edinburgh UP, pp. 463–502. (Scholar)
  • Mellor, D. H., 1981, Real Time, Cambridge: Cambridge UP; Chapter 6 reprinted with revisions as “The Unreality of Tense”, in R. Le Poidevin and M. MacBeath (eds.), The Philosophy of Time, Oxford: Oxford University Press, 1993. (Scholar)
  • Montanari, A., 1996, Metric and Layered Temporal Logic for Time Granularity (Institute for Logic, Language, and Computation Dissertation Series, Number 1996–02), Amsterdam: University of Amsterdam. (Scholar)
  • Montanari, A. and Policriti, A., 1996, “Decidability Results for Metric and Layered Temporal Logics”, Notre Dame Journal Formal Logic, 37(2): 260–282. (Scholar)
  • Moszkowski, B., 1983, Reasoning about digital circuits, Ph.D. Thesis (Technical Report STAN-CS-83–970), Department of Computer Science, Stanford University. (Scholar)
  • Øhrstrøm, P. and Hasle, P., 1995, Temporal Logic: From Ancient Ideas to Artificial Intelligence, Dordrecht: Kluwer Academic Publishers. (Scholar)
  • Pinto, J. and Reiter, R., 1995, “Reasoning about time in the situation calculus”, Annals of Mathematics and Artificial Intelligence, 14(2–4): 251–268. (Scholar)
  • Pnueli, A., 1977, “The temporal logic of programs”, Proceedings of the 18th IEEE Symposium on Foundations of Computer Science, pp. 46–67. (Scholar)
  • Prior, A. N., 1957, Time and Modality, Oxford: Clarendon Press. (Scholar)
  • –––, 1967, Past, Present and Future, Oxford: Clarendon Press. (Scholar)
  • –––, 1969, Papers on Time and Tense, Oxford: Clarendon Press; new edition, P. Hasle et al. (eds.), Oxford: Oxford University Press, 2003. (Scholar)
  • Reichenbach, H., 1947, Elements of Symbolic Logic, New York: Macmillan. (Scholar)
  • Rescher, N. and Urquhart, A., 1971, Temporal Logic, Berlin: Springer-Verlag. (Scholar)
  • Reynolds, M., 2001, “An axiomatization of Full Computation Tree Logic”, Journal of Symbolic Logic, 66: 1011–1057. (Scholar)
  • –––, 2002, “Axioms for Branching Time”. Journal of Logic and Computation, 12(4): 679–697. (Scholar)
  • –––, 2003, “An Axiomatization of Prior’s Ockhamist Logic of Historical Necessity”, in Balbiani et al. (eds.), Advances in Modal Logic (Volume 4), pp. 355–370, London: College Publications (Scholar)
  • –––, 2005, “An axiomatization of PCTL*”, Information and Computation, 201(1): 72–119. (Scholar)
  • –––, 2007, “A Tableau for Bundled CTL”, Journal of Logic and Computation, 17(1): 117–132. (Scholar)
  • –––, 2010, “The complexity of temporal logic over the reals”, Annals of Pure and Applied Logic, 161(8): 1063–1096. (Scholar)
  • –––, 2011, “A tableau-based decision procedure for CTL*”, Formal Aspects of Computing, 23(6): 739–779.
  • –––, 2014, “A Tableau for Temporal Logic over the Reals”, in Advances in Modal Logic (Volume 10), London: College Publications, pp. 439–458. (Scholar)
  • Richards, B., Bethke, I., van der Does, J., and Oberlander, J., 1989, Temporal Representation and Inference, London: Academic Press. (Scholar)
  • Röper, P., 1980, “Intervals and tenses”, Journal of Philosophical Logic, 9: 451–469. (Scholar)
  • Shanahan, M., 1997, Solving the Frame Problem, Cambridge, MA and London: MIT Press. (Scholar)
  • Segerberg, K., 1970, “Modal logics with linear alternative relations”, Theoria, 36: 301–322. (Scholar)
  • Steedman, M., 1997, “Temporality”, in van Benthem and ter Meulen (1997), pp. 925–969. (Scholar)
  • Stirling, C., 1992, “Modal and temporal logics”, in Handbook of Logic in Computer Science: Volume 2 (Background: Computational Structures), Clarendon Press: Oxford, pp. 477–563. (Scholar)
  • Taylor, B., 1985, Modes of Occurrence: Verbs, Adverbs, and Events (Aristotelian Society Series: Volume 2), Oxford: Basil Blackwell. (Scholar)
  • Thomason, R., 1984, “Combinations of tense and modality”, in Handbook of Philosophical Logic (Volume II: Extensions of Classical Logic), D. Gabbay and F. Guenthner, eds, pp. 135–165. Reidel. New edition in Gabbay and Guenthner (2002), pp. 205–234. (Scholar)
  • Vardi, M., 2006, “Automata-theoretic techniques for temporal reasoning”, in Blackburn et al. (2006), pp. 971–989. (Scholar)
  • Vardi, M. and Wolper, P., 1994, “Reasoning about infinite computations”, Information and Computation, 115: 1–37. (Scholar)
  • Venema, Y., 1990, “Expressiveness and completeness of an interval tense logic”, Notre Dame Journal of Formal Logic, 31: 529–547. (Scholar)
  • –––, 1993, “Completeness via completeness: Since and Until”, in M. de Rijke (ed.), Diamonds and Defaults, Dordrecht: Kluwer, pp. 279–286. (Scholar)
  • –––, 1991, “A modal logic for chopping intervals”, Journal of Logic and Computation, 1(4): 453–476.
  • –––, 2001, “Temporal Logic”, in Lou Goble, ed., Blackwell Guide to Philosophical Logic, Oxford: Blackwell Publishers. (Scholar)
  • Wolper, P., 1985, “The tableau method for temporal logic: An overview”, Logique et Analyse, 110–111: 119–136. (Scholar)
  • Wolter F., and Zakharyaschev, M., 2000, “Temporalizing description logics”, in D. Gabbay and M. de Rijke (eds.), Frontiers of Combining Systems II, Chichester, NY: Research Studies Press/Wiley, pp. 379–401. (Scholar)
  • –––, 2002, “Axiomatizing the monodic fragment of first-order temporal logic”, Annals of Pure and Applied Logic, 118(1–2): 133–145. (Scholar)
  • Xu, M., 1995, “On the basic logic of STIT with a single agent”, Journal of Symbolic Logic, 60: 459–483. (Scholar)
  • –––, 1988, “On some U,S-tense logics”. Journal of Philosophical Logic, 17: 181–202. (Scholar)
  • Zanardo, A., 1985, “A finite axiomatization of the set of strongly valid Ockamist formulas”, Journal of Philosophical Logic, 14: 447–468. (Scholar)
  • –––, 1990, “Axiomatization of ‘Peircean’ branching-time logic”, Studia Logica, 49: 183–195. (Scholar)
  • –––, 1991, A complete deductive system for since-until branching time logic. Journal of Philosophical Logic, 20: 131–148.
  • –––, 1996, “Branching-time logic with quantification over branches: the point of view of modal logic”, Journal of Symbolic Logic, 61: 1–39. (Scholar)
  • Zanardo, A., Barcellan, B., and Reynolds, M., 1999, “Non-Definability of the Class of Complete Bundled Trees”, Logic Journal of the IGPL (Special Issue on Temporal Logic), 7(1): 125–136. (Scholar)

Generated Sun Nov 19 08:18:32 2017