Linked bibliography for the SEP article "Temporal Logic" by Valentin Goranko and Antje Rumberg
This is an automatically generated and experimental page
If everything goes well, this page should display the bibliography of the aforementioned article as it appears in the Stanford Encyclopedia of Philosophy, but with links added to PhilPapers records and Google Scholar for your convenience. Some bibliographies are not going to be represented correctly or fully up to date. In general, bibliographies of recent works are going to be much better linked than bibliographies of primary literature and older works. Entries with PhilPapers records have links on their titles. A green link indicates that the item is available online at least partially.
This experiment has been authorized by the editors of the Stanford Encyclopedia of Philosophy. The original article and bibliography can be found here.
- Albretsen, J., P. Hasle, and P. Øhrstrøm (eds.),
2016, Special Issue on the Philosophy and Logic of A.N.
Prior, Synthese, 193(11). (Scholar)
- Allen, J.F., 1983, “Maintaining Knowledge about Temporal
Intervals”, Communications of the ACM, 26(11):
832–843. (Scholar)
- –––, 1984, “Towards a General Theory of Action and Time”, Artificial Intelligence, 23: 123–154. (Scholar)
- Allen, J.F., and G. Ferguson, 1994, “Actions and Events in
Interval Temporal Logic”, Journal of Logic and
Computation, 4(5): 531–579. (Scholar)
- Allen, J.F., and P. Hayes, 1989, “Moments and Points in an
Interval-Based Temporal Logic”, Computational
Intelligence, 5(4): 225–238. (Scholar)
- Alur, R., and T. Henzinger, 1992, “Logics and Models of
Real-Time: A Survey”, in Real-Time: Theory in Practice,
Proceedings of the REX Workshop 1991 (Lecture Notes in Computer
Science: Volume 600), Berlin: Springer, pp. 74–106. (Scholar)
- –––, 1993, “Real-Time Logics: Complexity
and Expressiveness”, Information and Computation, 104:
35–77. (Scholar)
- –––, 1994, “A Really Temporal
Logic”, Journal of the ACM, 41: 181–204. (Scholar)
- Alur, R., T. Henzinger, and O. Kupferman, 2002,
“Alternating-Time Temporal Logic”, Journal of the
ACM, 49(5): 672–713. (Scholar)
- Andréka, H., V. Goranko, S. Mikulas, I. Németi, and
I. Sain, 1995, “Effective First-Order Temporal Logics of
Programs”, in Bolc and Szalas (1995), pp. 51–129. (Scholar)
- Andréka, H., J. Madarász, and I. Németi,
2007, “Logic of Space-Time and Relativity Theory”, in M.
Aiello, J. van Benthem, and I. Pratt-Hartmann (eds.), Handbook of
Spatial Logics, Dordrecht: Springer, pp. 607–711. (Scholar)
- Areces, C., and B. ten Cate, 2007, “Hybrid Logics”, in
Blackburn et al. (2007), pp. 821–868. (Scholar)
- Aristotle, Organon, II — On Interpretation, Chapter 9.
See
https://archive.org/stream/AristotleOrganon/AristotleOrganoncollectedWorks.
- Artale, A., and E. Franconi, 2000, “A Survey of Temporal
Extensions of Description Logics”, Annals of Mathematics and
Artificial Intelligence, 30: 171–210. (Scholar)
- Baader, F., and C. Lutz, 2007, “Description Logic”, in
Blackburn et al. (2007), pp. 757–819. (Scholar)
- Baier, C., and J.P. Katoen, 2008, Principles of Model
Checking, Cambridge, Massachusetts: MIT Press. (Scholar)
- Balbiani, P., V. Goranko, and G. Sciavicco, 2011,
“Two-Sorted Point-Interval Temporal Logics”, in
Proceedings of the 7th International Workshop on Methods for
Modalities (Electronic Notes in Theoretical Computer Science:
Volume 278), pp. 31–45. (Scholar)
- Belnap, N., 1992, “Branching Space-Time”, Synthese, 92(3): 385–434. (Scholar)
- –––, 2012, “Newtonian Determinism to Branching Space-Time Indeterminism in Two Moves”, Synthese, 188: 5–21. (Scholar)
- Belnap, N., and M. Green, 1994, “Indeterminism and the Thin Red Line”, Philosophical Perspectives, 8: 365–388. (Scholar)
- Belnap, N., and T. Müller, 2014a, “CIFOL: Case-Intensional First Order Logic (I): Toward a Theory of Sorts”, Journal of Philosophical Logic, 43(2–3): 393–437. (Scholar)
- –––, 2014b, “BH-CIFOL: Case-Intensional First Order Logic (II): Branching Histories”, Journal of Philosophical Logic, 43(5): 835–866. (Scholar)
- Belnap, N., T. Müller, and T. Placek, 2022, Branching Space-Times: Theory and Applications, Oxford: Oxford University Press. (Scholar)
- Belnap, N., and M. Perloff, 1988, “Seeing to it that: A Canonical Form for Agentives”, Theoria, 54: 175–199, reprinted with corrections in H. E. Kyberg et al. (eds.), Knowledge Representation and Defeasible Reasoning, Dordrecht: Kluwer, 1990, pp. 167–190. (Scholar)
- Belnap, N., M. Perloff, and M. Xu, 2001, Facing the Future: Agents and Choices in Our Indeterminist World, Oxford: Oxford University Press. (Scholar)
- Ben-Ari, M., A. Pnueli, and Z. Manna, 1983, “The Temporal
Logic of Branching Time”, Acta Informatica, 20(3):
207–226. (Scholar)
- van Benthem, J., 1983, The Logic of Time, Dordrecht, Boston, and London: Kluwer Academic Publishers. [Second edition: 1991.] (Scholar)
- –––, 1984, “Tense Logic and Time”, Notre Dame Journal of Formal Logic, 25(1): 1–16. (Scholar)
- –––, 1995, “Temporal Logic”, in D.M.
Gabbay, C.J. Hogger, and J.A. Robinson (eds.), Handbook of Logic
in Artificial Intelligence and Logic Programming (Volume 4),
Oxford: Clarendon Press, pp. 241–350. (Scholar)
- –––, 2001, “Correspondence Theory”,
in D.M. Gabbay, and F. Guenther (eds.), Handbook of Philosophical
Logic (Volume 3), Second Edition, Dordrecht: Kluwer, pp.
325–408. (Scholar)
- van Benthem, J., and E. Pacuit, 2006, “The Tree of Knowledge
in Action: Towards a Common Perspective”, in Advances in
Modal Logic (Volume 6), London: College Publications, pp.
87–106. (Scholar)
- Blackburn, P., 1993, “Nominal Tense Logic”, Notre Dame Journal of Formal Logic, 34: 56–83. (Scholar)
- –––, 2006, “Arthur Prior and Hybrid Logic”, Synthese, 150: 329–372. (Scholar)
- Blackburn, P., J. van Benthem, and F. Wolter, 2007, Handbook of Modal Logic, Amsterdam: Elsevier. (Scholar)
- Blackburn, P., P. Hasle, and P. Øhrstrøm (eds.), 2019, Logic and Philosophy of Time: Further Themes from Prior (Volume 2), Aalborg: Aalborg University Press. (Scholar)
- Blackburn, P., and K. Jørgensen , 2016, “Reichenbach, Prior, and Hybrid Tense Logic”, Synthese, 193(11): 3677–3689. (Scholar)
- Blackburn, P., M. de Rijke, and Y. Venema, 2001, Modal Logic, Cambridge: Cambridge University Press. (Scholar)
- Blackburn, P., and J. Seligman, 1995, “Hybrid Languages”, Journal of Logic, Language and Information, 4: 251–272. (Scholar)
- Blackburn, P., and M. Tzakova, 1999, “Hybrid Languages and Temporal Logic”, Logic Journal of the IGPL, 7: 27–54. (Scholar)
- Bolc, L., and A. Szalas (eds.), 1995, Time and Logic: A Computational Approach, London: UCL Press. (Scholar)
- Börger, E., E. Grädel, and Y. Gurevich, 1997, The Classical Decision Problem, Berlin, Heidelberg: Springer. (Scholar)
- Boyd, S., 2014, “Defending History: Temporal Reasoning in
Genesis 2:7–3:8”, Answers Research Journal, 7:
215–237. (Scholar)
- Bresolin, D., V. Goranko, A. Montanari, and G. Sciavicco, 2009, “Propositional Interval Neighborhood Logics: Expressiveness, Decidability, and Undecidable Extensions”, Annals of Pure and Applied Logic, 161(3): 289–304. (Scholar)
- Bresolin, D., D. Della Monica, V. Goranko, A. Montanari, and G.
Sciavicco, 2013, “Metric Propositional Neighborhood Logics on
Natural Numbers”, Software and Systems Modeling, 12(2):
245–264. (Scholar)
- Broersen, J., 2011, “Deontic Epistemic Stit Logic
Distinguishing Modes of Mens Rea”, Journal of Applied
Logic, 9: 137–152. (Scholar)
- –––, 2019, “Agents Necessitating Effects in Newtonian Time and Space: From Power and Opportunity to Effectivity”, Synthese, 196: 31–68. (Scholar)
- Broersen, J., A. Herzig, and N. Troquard, 2006, “A
STIT-Extension of ATL”, in Proceedings of JELIA 2006
(Lecture Notes in Artificial Intelligence: Volume 4160), Berlin:
Springer, pp. 69–81. (Scholar)
- Bull, R., 1970, “An Approach to Tense Logic”, Theoria, 36: 282–300. (Scholar)
- Burgess, J., 1978, “The Unreal Future”, Theoria, 44(3): 157–179. (Scholar)
- –––, 1979, “Logic and Time”, Journal of Symbolic Logic, 44: 566–582. (Scholar)
- –––, 1980, “Decidability for Branching Time”, Studia Logica, 39: 203–218. (Scholar)
- –––, 1982a, “Axioms for Tense Logic I:
‘Since’ and ‘Until’”, Notre Dame
Journal of Formal Logic, 23: 367–374. (Scholar)
- –––, 1982b, “Axioms for Tense Logic II:
Time Periods”, Notre Dame Journal of Formal Logic, 23:
375–383. (Scholar)
- –––, 1984, “Basic Tense Logic”, in
D.M. Gabbay, and F. Guenthner (eds.), Handbook of Philosophical
Logic (Volume 2), Dordrecht: Reidel, pp. 89–133. [New
edition in Gabbay and Guenthner (2002), pp. 1–42.] (Scholar)
- –––, 2009, Philosophical Logic, Princeton: Princeton University Press. (Scholar)
- Burgess, J., and Y. Gurevich, 1985, “The Decision Problem
for Linear Temporal Logic”, Notre Dame Journal of Formal
Logic, 26(2): 115–128. (Scholar)
- Ciuni, R., and A. Zanardo, 2010, “Completeness of a Branching-Time Logic with Possible Choices”, Studia Logica, 96: 393–420. (Scholar)
- Cocchiarella, N., 2002, “Philosophical Perspectives on
Quantification in Tense and Modal Logic”, in Gabbay and
Guenthner (2002), pp. 235–276. (Scholar)
- Correia, F., and F. Iacona (eds.), 2013, Around the Tree:
Semantic and Metaphysical Issues Concerning Branching and the Open
Future (Synthese Library: Volume 361), Dordrecht: Springer. (Scholar)
- Correia, F., and S. Rosenkranz, 2018, Nothing to Come: A Defense of the Growing Block Theory of Time (Synthese Library: Volume 395), Dordrecht: Springer. (Scholar)
- Dean, T., and D.V. McDermott, 1987, “Temporal Data Base Management”, Artificial Intelligence, 32:1–55. (Scholar)
- Della Monica, D., V. Goranko, A. Montanari, and G. Sciavicco,
2011, “Interval Temporal Logics: A Journey”, Bulletin
of the European Association for Theoretical Computer Science,
105: 73–99. (Scholar)
- Demri, S., V. Goranko, and M. Lange, 2016, Temporal Logics in
Computer Science, Cambridge: Cambridge University Press. (Scholar)
- Dowty, D., 1979, Word Meaning and Montague Grammar,
Dordrecht: Reidel. (Scholar)
- Dyke, H., 2013, “Time and Tense”, in Dyke and Bardon (2013), pp. 328–344. (Scholar)
- Dyke, H., and A. Bardon (eds.), 2013, A Companion to the Philosophy of Time (Blackwell Companions to Philosophy), Oxford: Wiley-Blackwell. (Scholar)
- Emerson, E.A., 1990, “Temporal and Modal Logics”, in
J. van Leeuwen (ed.), Handbook of Theoretical Computer
Science (Volume B: Formal Models and Semantics), Amsterdam:
Elsevier, pp. 995–1072. (Scholar)
- Emerson, E.A., and E.C. Clarke, 1982, “Using Branching Time
Temporal Logic to Synthesise Synchronisation Skeletons”,
Science of Computer Programming, 2: 241–266. (Scholar)
- Emerson, E.A., and J. Halpern, 1985, “Decision Procedures
and Expressiveness in the Temporal Logic of Branching Time”,
Journal of Computer and Systems Science, 30: 1–24. (Scholar)
- Emerson, E.A., and A. Sistla, 1984, “Deciding Full Branching
Time Logic”, Information and Control, 61:
175–201. (Scholar)
- Euzenat, J., and A. Montanari, 2005, “Time
Granularity”, in Fisher et al. (2005), pp. 59–118. (Scholar)
- Ewald, W., 1986, “Intuitionistic Tense and Modal Logic”, Journal of Symbolic Logic, 51(1): 166–179. (Scholar)
- Fagin, R., J. Halpern, Y. Moses, and M. Vardi, 1995, Reasoning
about Knowledge, Boston: MIT Press. (Scholar)
- Finger, M., and D.M. Gabbay, 1992, “Adding a Temporal Dimension to a Logic System”, Journal of Logic, Language and Information, 1(3): 203–233. (Scholar)
- –––, 1996, “Combining Temporal Logic Systems”, Notre Dame Journal of Formal Logic, 37(2): 204–232. (Scholar)
- Finger, M., D.M. Gabbay, and M. Reynolds, 2002, “Advanced
Tense Logic”, in Gabbay and Guenthner (2002), pp.
43–204. (Scholar)
- Fisher, M., 2008, “Temporal Representation and
Reasoning”, in F. van Harmelen, V. Lifschitz, and B. Porter
(eds.), Handbook of Knowledge Representation, Amsterdam:
Elsevier, pp. 513–550. (Scholar)
- –––, 2011, An Introduction to Practical
Formal Methods Using Temporal Logic, New York: Wiley. (Scholar)
- Fisher, M., D.M. Gabbay, and L. Vila, 2005, Handbook of
Temporal Reasoning in Artificial Intelligence, Amsterdam:
Elsevier. (Scholar)
- Fisher, M., and M. Wooldridge, 2005, “Temporal Reasoning in
Agent-Based Systems”, in Fisher et al. (2005), pp.
469–495. (Scholar)
- Fitting, M., and R. Mendelsohn, 2023, First-Order Modal
Logic (Second edition), Springer. (Scholar)
- French, T., 2001, “Decidability of Quantified Propositional
Branching Time Logics”, Advances in AI (Lecture Notes
in Computer Science: Volume 2256), Berlin: Springer, pp.
165–176. (Scholar)
- French, T., and M. Reynolds, 2003, “A Sound and Complete
Proof System for QPTL”, in Balbiani et al. (eds.), Advances
in Modal Logic (Volume 4), London: College Publication, pp.
127–148. (Scholar)
- Fritz, P., 2024 (forthcoming), Propositional Quantifiers, Cambridge Elements in Philosophy and Logic, Cambridge: Cambridge University Press. (Scholar)
- Gabbay, D.M., and F. Guenthner (eds.), 2002, Handbook of
Philosophical Logic (Volume 7), Second Edition, Dordrecht:
Kluwer. (Scholar)
- Gabbay, D.M., I. Hodkinson, and M. Reynolds, 1994, Temporal Logic: Mathematical Foundations and Computational Aspects (Volume 1), Oxford: Clarendon Press. (Scholar)
- Gabbay, D., A. Kurucz, F. Wolter, and M. Zakharyaschev, 2003, Many-Dimensional Modal Logics: Theory and Applications, Amsterdam: Elsevier. (Scholar)
- Gabbay, D.M., A. Pnueli, S. Shelah, and J. Stavi, 1980, “On
the Temporal Basis of Fairness”, in Proceedings of the 7th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pp. 163–173. (Scholar)
- Gabbay, D.M., M. Reynolds, and M. Finger, 2000, Temporal
Logic: Mathematical Foundations and Computational Aspects (Volume
2), Oxford: Oxford University Press. (Scholar)
- Gabbay, D.M., D. Skvortsov, and V. Shehtman, 2009,
Quantification in Nonclassical Logic (Studies in Logic and the
Foundations of Mathematics, Volume 153), Elsevier. (Scholar)
- Gabelaia, D., R. Kontchakov, A. Kurucz, F. Wolter, and M.
Zakharyaschev, 2005, “Combining Spatial and Temporal Logics:
Expressiveness vs. Complexity”, Journal of Artificial
Intelligence Research, 23: 167–243. (Scholar)
- Galton, A.P., 1984, The Logic of Aspect, Oxford: Clarendon Press. (Scholar)
- –––, 1987, Temporal Logics and their
Applications, London: Academic Press. (Scholar)
- –––, 1990, “A Critical Examination of
Allen’s Theory of Action and Time”, Artificial
Intelligence, 42: 159–188. (Scholar)
- –––, 1995, “Time and Change for AI”,
in D.M. Gabbay, C.J. Hogger, and J.A. Robinson, Handbook of Logic
in Artificial Intelligence and Logic Programming (Volume 4),
Oxford: Clarendon Press, pp. 175–240. (Scholar)
- –––, 1996, “Time and Continuity in
Philosophy, Mathematics, and Artificial Intelligence”,
Kodikas/Code, 19 (1–2): 101–119. (Scholar)
- –––, 2005, “Eventualities”, in
Fisher et al. (2005), pp. 25–58. (Scholar)
- –––, 2008, “Temporal Logic”, in E.N. Zalta (ed.), The Stanford Encyclopedia of Philosophy (Fall 2008 Edition), URL = <https://plato.stanford.edu/archives/fall2008/entries/logic-temporal/>. (Scholar)
- Gargov, G., and V. Goranko, 1993, “Modal Logic with Names”, Journal of Philosophical Logic, 22: 607–636. (Scholar)
- Garson, J., 1984, “Quantification in Modal Logic”, in
D.M. Gabbay, and F. Guenthner (eds.), Handbook of Philosophical
Logic, Dordrecht: Reidel, pp. 249–307. (Scholar)
- Goldblatt, R., 1980, “Diodorean Modality in Minkowski Spacetime”, Studia Logica, 39: 219–236. [Reprinted in Mathematics of Modality (CSLI Lecture Notes 43), Stanford: CSLI Publications, 1993.] (Scholar)
- –––, 1992, Logics of Time and Computation (CSLI Lecture Notes 7), Second Edition, Stanford: CSLI Publications. (Scholar)
- Goranko, V., 1996, “Hierarchies of Modal and Temporal Logics with Reference Pointers”, Journal of Logic, Language and Information, 5(1): 1–24. (Scholar)
- –––, 2023, Temporal Logics, Cambridge
Elements in Philosophy and Logic, Cambridge: Cambridge University
Press. (Scholar)
- Goranko, V., and G. van Drimmelen, 2006, “Complete
Axiomatization and Decidablity of the Alternating-Time Temporal
Logic”, Theoretical Computer Science, 353:
93–117. (Scholar)
- Goranko, V., A. Montanari, and G. Sciavicco, 2003,
“Propositional Interval Neighborhood Logics”, Journal
of Universal Computer Science, 9(9): 1137–1167. (Scholar)
- –––, 2004, “A Road Map of Propositional
Interval Temporal Logics and Duration Calculi”, Journal of
Applied Non-Classical Logics (Special Issue on Interval Temporal
Logics and Duration Calculi), 14(1–2): 11–56. (Scholar)
- Goranko, V., and D. Shkatov, 2010, “Tableau-Based Decision
Procedures for Logics of Strategic Ability in Multi-Agent
Systems”, ACM Transactions of Computational Logic,
11(1): 3–51. (Scholar)
- Goré, R., 1999, “Tableau Methods for Modal and
Temporal Logics”, in M. D’Agostino, D.M. Gabbay, R.
Hahnle, and J. Posegga (eds.), Handbook of Tableau Methods,
Dordrecht: Kluwer, pp. 297–396. (Scholar)
- Grädel, E., and M. Otto, 1999, “On Logics With Two
Variables”, Theoretical Computer Science,
224(1–2), pp. 73–113. (Scholar)
- Gurevich, Y., and S. Shelah, 1985a, “The Decision Problem for Branching Time Logic”, Journal of Symbolic Logic, 50: 668–681. (Scholar)
- –––, 1985b, “To the Decision Problem for Branching Time Logic”, in P. Weingartner, and G. Dold (eds.), Foundations of Logic and Linguistics: Problems and their Solutions, Plenum, pp. 181–198. (Scholar)
- Halpern, J., and Y. Shoham, 1986. “A Propositional Modal
Logic of Time Intervals”, in Proceedings of the 2nd IEEE
Symposium on Logic in Computer Science, pp. 279–292.
[Reprinted in Journal of the ACM, 38(4): 935–962,
1991.] (Scholar)
- Halpern, J., and M. Vardi, 1989, “The Complexity of
Reasoning about Knowledge and Time I: Lower Bounds”, Journal
of Computer and System Sciences, 38(1): 195–237. (Scholar)
- Hamblin, C.L., 1972, “Instants and Intervals”, in J.T. Fraser, F. Haber, and G. Müller (eds.), The Study of Time, Berlin/Heidelberg: Springer, pp. 324–331. (Scholar)
- Hansen, M.R., and C. Zhou, 1997, “Duration Calculus: Logical
Foundations”, Formal Aspects of Computing, 9:
283–330. (Scholar)
- Hart, S., and M. Sharir, 1986, “Probabilistic Propositional
Temporal Logics”, Information and Control,
70(2–3): 97–155. (Scholar)
- Hasle, P., P. Blackburn, and P. Øhrstrøm (eds.), 2017, Logic and Philosophy of Time: Themes from Prior (Volume 1), Aalborg: Aalborg University Press. (Scholar)
- Hasle, P., D. Jakobsen, and P. Øhrstrøm (eds.),
2020, Logic and Philosophy of Time: The Metaphysics of Time
(Volume 4), Aalborg: Aalborg University Press. (Scholar)
- Hodkinson, I., and M. Reynolds, 2007, “Temporal
Logic”, in Blackburn et al. (2007), pp. 655–720. (Scholar)
- Hodkinson, I., F. Wolter, and M. Zakharyaschev, 2000, “Decidable Fragments of First-Order Temporal Logics”, Annals of Pure and Applied Logic, 106(1–3): 85–134. (Scholar)
- –––, 2001, “Monodic Fragments of
First-Order Temporal Logics: 2000-2001 A.D.”, in Logic for
Programming, Artificial Intelligence, and Reasoning, Proceedings
of the 8th International Conference LPAR 2001, Springer, pp.
1–23. (Scholar)
- –––, 2002, “Decidable and Undecidable
Fragments of First-Order Branching Temporal Logics”, in
Proceedings of the 17th Annual IEEE Symposium on Logic in Computer
Science, IEEE Computer Society Press, pp. 393–402. (Scholar)
- Humberstone, I.L., 1979, “Interval Semantics for Tense Logic: Some Remarks”, Journal of Philosophical Logic, 8: 171–196. (Scholar)
- Ingthorsson, R.D., 2016, McTaggart’s Paradox, New
York: Routledge. (Scholar)
- Jakobsen, D., P. Øhrstrøm, M. Prior, and A. Rini
(eds.), 2020, Logic and Philosophy of Time: Three Little Essays.
Arthur Prior in 1931 (Volume 3), Aalborg: Aalborg University
Press. (Scholar)
- Kamide, N., and H. Wansing, 2010, “Combining Linear-Time Temporal Logic with Constructiveness and Paraconsistency”, Journal of Applied Logic, 6: 33–61. (Scholar)
- –––, 2011, “A Paraconsistent Linear-Time
Temporal Logic”, Fundamenta Informaticae, 106:
1–23. (Scholar)
- Kamp, J., 1968, Tense Logic and the Theory of Linear Order, PhD Thesis, University of California, Los Angeles. (Scholar)
- –––, 1971, “Formal Properties of
‘Now’”, Theoria, 37: 227–273. (Scholar)
- –––, 1979, “Events, Instants and Temporal
Reference”, in R. Bäuerle, U. Egli, and A. von Stechow
(eds.), Semantics from Different Points of View, Berlin:
Springer, pp. 376–417. (Scholar)
- Kesten, Y., and A. Pnueli, 2002, “Complete Proof System for
QPTL”. Journal of Logic and Computation, 12(5):
701–745. (Scholar)
- Kofod, J., 2020, “Arthur Prior’s Early Thoughts on
Physics and Cosmology”, in Jakobsen et al. (2020), pp.
73–97. (Scholar)
- Kontchakov, R., A. Kurucz, F. Wolter, and M. Zakharyaschev, 2007,
“Spatial Logic + Temporal Logic = ?”, in M. Aiello, J. van
Benthem, and I. Pratt-Hartmann (eds.), Handbook of Spatial
Logics, Berlin: Springer, pp. 497–564. (Scholar)
- Kontchakov, R., C. Lutz, F. Wolter, and M. Zakharyaschev, 2004, “Temporalising Tableaux”, Studia Logica, 76(1): 91–134. (Scholar)
- Konur, S., 2013, “A Survey on Temporal Logics for Specifying
and Verifying Real-Time Systems”, Frontiers of Computer
Science, 7(3): 370–403. (Scholar)
- Koymans, R., 1990, “Specifying Real-Time Properties with
Metric Temporal Logic”, Real-Time Systems, 2(4):
55–299. (Scholar)
- Kowalski, R.A., and M.J. Sergot, 1986, “A Logic-Based
Calculus of Events”, New Generation Computing, 4:
67–95. (Scholar)
- Kröger, F., and S. Merz, 2008, Temporal Logic and State
Systems (EATCS Texts in Theoretical Computer Science Series),
Berlin: Springer. (Scholar)
- Kuhn, S.T., and P. Portner, 2002, “Tense and Time”, in
Gabbay and Guenthner (2002), pp. 277–346. (Scholar)
- Ladkin, P., 1987, The Logic of Time Representation, PhD Thesis, University of California, Berkeley. (Scholar)
- van Lambalgen, M., and F. Hamm, 2005, The Proper Treatment of Events, Malden: Blackwell. (Scholar)
- Lamport, L., 1994, “The Temporal Logic of Actions”,
ACM Transactions on Programming Languages and Systems, 16(3):
872–923. (Scholar)
- Lindström, S., and K. Segerberg, 2007, “Modal Logic and Philosophy”, in Blackburn et al. (2007), pp. 1149–1214 (Scholar)
- Linsky, B., and E. Zalta, 1994, “In Defense of the Simplest
Quantified Modal Logic”, Philosophical Perspectives, 8:
431–458. (Scholar)
- Lorini, E., 2013, “Temporal STIT Logic and Its Application to Normative Reasoning”, Journal of Applied Non-Classical Logics, 23(4): 372–399. (Scholar)
- Lutz, K., F. Wolter, and M. Zakharyaschev, 2008, “Temporal
Description Logics: A Survey”, Proceedings of TIME
2008, pp. 3–14. (Scholar)
- Ma, J., and B. Knight, 2001, “Reified Temporal Logics: An
Overview”, Artificial Intelligence Review, 15(3):
189–217. (Scholar)
- MacFarlane, J., 2003, “Future Contingents and Relative Truth”, The Philosophical Quarterly, 53(212): 321–336. (Scholar)
- –––, 2014, Assessment Sensitivity: Relative Truth and Its Applications, Oxford: Oxford University Press. (Scholar)
- Manna, Z., and A. Pnueli, 1992, The Temporal Logic of Reactive and Concurrent Systems (Specification: Volume 1), Springer: New York. (Scholar)
- Mani, I., J. Pustejovsky, and R. Gaizauskas, 2005, The Language of Time: A Reader, Oxford: Oxford University Press. (Scholar)
- Marx, M., and M. Reynolds, 1999, “Undecidability of Compass
Logic”, Journal of Logic and Computation, 9(6):
897–914. (Scholar)
- McArthur, R., 1976, Tense Logic, Synthese Library, Springer. (Scholar)
- McCarthy, J., and P.J. Hayes, 1969, “Some Philosophical Problems from the Standpoint of Artificial Intelligence”, in D. Michie, and B. Meltzer (eds.), Machine Intelligence 4, Edinburgh: Edinburgh University Press, pp. 463–502. (Scholar)
- McDermott, D., 1982, “A Temporal Logic for Reasoning about Processes and Plans”, Cognitive Science, 6: 101–155. (Scholar)
- McTaggart, E.J., 1908, “The Unreality of Time”, Mind, 17(68): 457–472. (Scholar)
- Merz, S., 1992, “Decidability and Incompleteness Results for First-Order Temporal Logics of Linear Time”, Journal of Applied Non-Classical Logic, 2(2): 139–156. (Scholar)
- ter Meulen, A., 2005, “Temporal Reasoning in Natural
Language”, in Fisher et al. (2005), pp. 559–585. (Scholar)
- Meyer, U., 2013, The Nature of Time, Oxford: Oxford University Press. (Scholar)
- Montanari, A., 1996, Metric and Layered Temporal Logic for
Time Granularity, PhD Thesis (Institute for Logic, Language, and
Computation Dissertation Series, Volume: 1996–02), University of
Amsterdam. (Scholar)
- Montanari, A., and A. Policriti, 1996, “Decidability Results for Metric and Layered Temporal Logics”, Notre Dame Journal Formal Logic, 37(2): 260–282. (Scholar)
- Moss, S.L., and H.J. Tiede, 2007, “Applications of Modal
Logic in Linguistics”, in Blackburn et al. (2007), pp.
1003–1076. (Scholar)
- Moszkowski, B., 1983, Reasoning about Digital Circuits,
PhD Thesis (Technical Report STAN-CS-83–970), Department of
Computer Science, Stanford University. (Scholar)
- Müller, T., 2011, “Tense or Temporal Logic”, in
R. Pettigrew (ed.), The Continuum Companion to Philosophical
Logic, London: Continuum, pp. 324–350. (Scholar)
- ––– (ed.), 2014, Nuel Belnap on Indeterminism and Free Action (Outstanding Contributions to Logic: Volume 2), Springer. (Scholar)
- Nishimura, H., 1979, “Is the Semantics of Branching Structures Adequate for Non-Metric Ockhamist Tense Logics?”, Journal of Philosophical Logic, 8: 477–478. (Scholar)
- Ogihara, T., 2007, “Tense and Aspect in Truth-Conditional
Semantics”, Lingua, 117:392–418. (Scholar)
- –––, 2011, “Tense”, in C. Maienborn,
K. von Heusinger, and P. Portner (eds.), Semantics: An
International Handbook of Natural Language Meaning, de Gruyter,
pp. 1463–1484. (Scholar)
- Øhrstrøm, P., 2009, “In Defense of the Thin Red Line: A Case for Ockhamism”, Humana Mente, 8: 17–32. (Scholar)
- –––, 2019, “A Critical Discussion of
Prior’s Philosophical and Tense-Logical Analysis of the Ideas of
Indeterminism and Human Freedom”, Synthese, 196(1):
69–85. (Scholar)
- Øhrstrøm, P., and M. Gonzalez, 2022,
“Prior’s Big Y and the Idea of Branching Time”,
History and Philosophy of Logic, online first. (Scholar)
- Øhrstrøm, P., and P. Hasle, 1995, Temporal Logic: From Ancient Ideas to Artificial Intelligence, Dordrecht: Kluwer Academic Publishers. (Scholar)
- –––, 2006, “Modern Temporal Logic: The
Philosophical Background”, in Handbook of the History of
Logic (Volume 7), pp. 447–498. (Scholar)
- –––, 2019, “The Significance of the
Contributions of A.N. Prior and Jerzy Łoś in the Early
History of Modern Temporal Logic”, in Blackburn et al. (2019),
pp. 31–40. (Scholar)
- Pani, A.K., and G.P. Bhattacharjee, 2001, “Temporal
Representation and Reasoning in Artificial Intelligence: A
Review”, Mathematical and Computer Modelling, 34:
55–80. (Scholar)
- Parsons, T., 1990, Events in the Semantics of English: A Study in Subatomic Semantics, Cambridge: MIT Press. (Scholar)
- Partee, B., 1973, “Some Structural Analogies between Tenses and Pronouns in English”, The Journal of Philosophy, 70(18): 601–609. (Scholar)
- Passy, S., and T. Tinchev, 1985. “Quantifiers in Combinatory
PDL: Completeness, Definability, Incompleteness”, in
Fundamentals of Computation Theory FCT 85 (Lecture Notes in
Computer Science: Volume 199), Berlin: Springer, pp.
512–519. (Scholar)
- Pinto, J., and R. Reiter, 1995, “Reasoning about Time in the
Situation Calculus”, Annals of Mathematics and Artificial
Intelligence, 14(2–4): 251–268. (Scholar)
- Ploug, T., and P. Øhrstrøm, 2012, “Branching Time, Indeterminism, and Tense Logic: Unveiling the Prior-Kripke Letters”, Synthese, 188(3): 367–379. (Scholar)
- Pnueli, A., 1977, “The Temporal Logic of Programs”,
Proceedings of the 18th IEEE Symposium on Foundations of Computer
Science, pp. 46–67. (Scholar)
- Prior, A.N., 1957, Time and Modality, Oxford: Oxford University Press. (Scholar)
- –––, 1959, “Thank Goodness that’s
over”, Philosophy, 34(128): 12–17. (Scholar)
- –––, 1967, Past, Present and Future, Oxford: Oxford University Press. (Scholar)
- –––, 1968, Papers on Time and Tense, Oxford: Oxford University Press. [New edition: P. Hasle et al. (eds.), Oxford: Oxford University Press, 2003.] (Scholar)
- –––, 1968, “‘Now’”, Noûs, 2(2): 101–119. (Scholar)
- Reichenbach, H., 1947, Elements of Symbolic Logic, New
York: Macmillan. (Scholar)
- Reichgelt H., and L. Vila, 2005, “Temporal Qualification in
Artificial Intelligence”, in Fisher et al. (2005), pp.
167–194. (Scholar)
- Rescher, N., and A. Urquhart, 1971, Temporal Logic, Berlin: Springer. (Scholar)
- Reynolds, M., 1994, “Axiomatizing U and S over Integer
Time”, in D.M. Gabbay, and H.J. Ohlbach (eds.), Temporal
Logic, Proceedings of the First International Conference ICTL
1994 (Lecture Notes in Artificial Intelligence: Volume 828),
Berlin/Heidelberg: Springer, pp. 117–132. (Scholar)
- –––, 1996, “Axiomatising First-Order Temporal Logic: Until and Since over Linear Time”, Studia Logica, 57(2–3): 279–302. (Scholar)
- –––, 2001, “An Axiomatization of Full Computation Tree Logic”, Journal of Symbolic Logic, 66: 1011–1057. (Scholar)
- –––, 2002, “Axioms for Branching
Time”. Journal of Logic and Computation, 12(4):
679–697. (Scholar)
- –––, 2003, “An Axiomatization of
Prior’s Ockhamist Logic of Historical Necessity”, in
Balbiani et al. (eds.), Advances in Modal Logic (Volume 4),
London: College Publications, pp. 355–370. (Scholar)
- –––, 2005, “An Axiomatization of
PCTL*”, Information and Computation, 201(1):
72–119. (Scholar)
- –––, 2007, “A Tableau for Bundled
CTL”, Journal of Logic and Computation, 17(1):
117–132. (Scholar)
- –––, 2010, “The Complexity of Temporal Logic over the Reals”, Annals of Pure and Applied Logic, 161(8): 1063–1096. (Scholar)
- –––, 2011, “A Tableau-Based Decision
Procedure for CTL*”, Formal Aspects of Computing,
23(6): 739–779. (Scholar)
- –––, 2014, “A Tableau for Temporal Logic over the Reals”, in Goré et al. (eds.), Advances in Modal Logic (Volume 10), London: College Publications, pp. 439–458. (Scholar)
- Röper, P., 1980, “Intervals and Tenses”, Journal of Philosophical Logic, 9: 451–469. (Scholar)
- Rumberg, A., 2016, “Transition Semantics for Branching Time”, Journal of Logic, Language and Information, 25(1): 77–108. (Scholar)
- –––, 2019, “Actuality and Possibility in
Branching Time: The Roots of Transition Semantics”, in Blackburn
et al. (2019), pp. 145–161. (Scholar)
- Rumberg, A., and A. Zanardo, 2019, “First-Order Definability of Transition Structures”, Journal of Logic, Language and Information, 28(3): 459–488. (Scholar)
- Segerberg, K., 1970, “Modal Logics with Linear Alternative Relations”, Theoria, 36: 301–322. (Scholar)
- –––, 1992, “Getting Started: Beginnings in the Logic of Action”, Studia Logica, 51: 347–378. (Scholar)
- Shoham, Y., 1987, “Temporal Logic in AI: Semantical and Ontological Considerations”, Artificial Intelligence, 33: 89–104. (Scholar)
- Steedman, M., 1997, “Temporality”, in J. van Benthem,
and A. ter Meulen (eds.), Handbook of Logic and Language,
Amsterdam: Elsevier, pp. 925–969. (Scholar)
- Stirling, C., 1992, “Modal and Temporal Logics”, in Handbook of Logic in Computer Science (Computational Structures: Volume 2), Oxford, Clarendon Press, pp. 477–563. (Scholar)
- Thomason, R.H., 1970, “Indeterminist Time and Truth-Value Gaps”, Theoria, 36(3): 264–281. (Scholar)
- –––, 1984, “Combinations of Tense and
Modality”, in D.M. Gabbay, and F. Guenther (eds.), Handbook
of Philosophical Logic (Extensions of Classical Logic: Volume 2),
Dordrecht: Reidel, pp. 135–165. [New edition in Gabbay and
Guenthner (2002), pp. 205–234.] (Scholar)
- Tkaczyk, M., and T. Jarmużek, 2019, “Jerzy Łoś Positional Calculus and the Origin of Temporal Logic”, Logic and Logical Philosophy, (28): 259–276. (Scholar)
- Uckelman, S.L., and J. Uckelman, 2007, “Modal and Temporal Logics for Abstract Space-Time Structures”, in Studies in History and Philosophy of Science (Part B: Studies in History and Philosophy of Modern Physics), 38(3): 673–681. (Scholar)
- Vardi, M., 2007, “Automata-Theoretic Techniques for Temporal
Reasoning”, in Blackburn et al. (2007), pp. 971–989. (Scholar)
- Vardi, M., and P. Wolper, 1994, “Reasoning about Infinite
Computations”, Information and Computation, 115:
1–37. (Scholar)
- Venema, Y., 1990, “Expressiveness and Completeness of an Interval Tense Logic”, Notre Dame Journal of Formal Logic, 31: 529–547. (Scholar)
- –––, 1991, “A Modal Logic for Chopping
Intervals”, Journal of Logic and Computation, 1(4):
453–476. (Scholar)
- –––, 1993, “Completeness via Completeness:
Since and Until”, in M. de Rijke (ed.), Diamonds and
Defaults, Dordrecht: Kluwer, pp. 279–286. (Scholar)
- –––, 2001, “Temporal Logic”, in L. Goble (ed.), Blackwell Guide to Philosophical Logic, Oxford: Blackwell Publishers. (Scholar)
- Vila, L., 1994, “A Survey on Temporal Reasoning in
Artificial Intelligence”, AI Communications, 7:
4–28. (Scholar)
- –––, 2005, “Formal Theories of Time and
Temporal Incidence”, in Fisher et al. (2005), pp.
1–24. (Scholar)
- Wölfl, S., 1999, “Combinations of Tense and Modality for Predicate Logic”, Journal of Philosophical Logic, 28: 371–398. (Scholar)
- Wolper, P., 1985, “The Tableau Method for Temporal Logic: An Overview”, Logique et Analyse, 28(110–111): 119–136. (Scholar)
- Wolter F., and M. Zakharyaschev, 2000, “Temporalizing
Description Logics”, in D.M. Gabbay, and M. de Rijke (eds.),
Frontiers of Combining Systems II, New York: Wiley, pp.
379–401. (Scholar)
- –––, 2002, “Axiomatizing the Monodic Fragment of First-Order Temporal Logic”, Annals of Pure and Applied Logic, 118(1–2): 133–145. (Scholar)
- Xu, M., 1988, “On some U,S-Tense Logics”, Journal of Philosophical Logic, 17: 181–202. (Scholar)
- Zanardo, A., 1985, “A Finite Axiomatization of the Set of Strongly Valid Ockhamist Formulas”, Journal of Philosophical Logic, 14: 447–468. (Scholar)
- –––, 1990, “Axiomatization of
‘Peircean’ Branching-Time Logic”, Studia
Logica, 49: 183–195. (Scholar)
- –––, 1991, “A Complete Deductive System for Since-Until Branching Time Logic”, Journal of Philosophical Logic, 20: 131–148. (Scholar)
- –––, 1996, “Branching-Time Logic with Quantification over Branches: The Point of View of Modal Logic”, Journal of Symbolic Logic, 61: 1–39. (Scholar)
- –––, 1998, “Undivided and Indistinguishable Histories in Branching-Time Logics”, Journal of Logic, Language and Information, 7(3): 297–315. (Scholar)
- Zanardo, A., B. Barcellan, and M. Reynolds, 1999, “Non-Definability of the Class of Complete Bundled Trees”, Logic Journal of the IGPL (Special Issue on Temporal Logic), 7(1): 125–136. (Scholar)