Linked bibliography for the SEP article "Philosophy of Mathematics" by Leon Horsten
This is an automatically generated and experimental page
If everything goes well, this page should display the bibliography of the aforementioned article as it appears in the Stanford Encyclopedia of Philosophy, but with links added to PhilPapers records and Google Scholar for your convenience. Some bibliographies are not going to be represented correctly or fully up to date. In general, bibliographies of recent works are going to be much better linked than bibliographies of primary literature and older works. Entries with PhilPapers records have links on their titles. A green link indicates that the item is available online at least partially.
This experiment has been authorized by the editors of the Stanford Encyclopedia of Philosophy. The original article and bibliography can be found here.
- Antonutti Marfori, M., 2010. ‘Informal Rigour and
Mathematical Practice’, Studia Logica, 102:
567–576. (Scholar)
- Appel, K., Haken, W. & Koch, J., 1977. ‘Every Planar Map
is Four Colorable’, Illinois Journal of Mathematics,
21: 429–567. (Scholar)
- Avigad, J., 2021. ‘Reliability of Mathematical
Inference’, Synthese, 198: 7377–7399. (Scholar)
- Azzouni, J., 2004. ‘The Derivation-Indicator View of Mathematical Practice’, Philosophia Mathematica, 12: 81-105. (Scholar)
- Balaguer, M., 1998. Platonism and Anti-Platonism in Mathematics, Oxford: Oxford University Press. (Scholar)
- Benacerraf, P., 1965. ‘What Numbers Could Not Be’, in Benacerraf & Putnam 1983, pp. 272–294. (Scholar)
- –––, 1967. ‘God, the Devil, and Gödel’, The Monist, 51: 9–32. (Scholar)
- –––, 1973. ‘Mathematical Truth’, in Benacerraf & Putnam 1983, 403–420. (Scholar)
- Benacerraf, P. & Putnam, H. (eds.), 1983. Philosophy of Mathematics: Selected Readings, Cambridge: Cambridge University Press, 2nd edition. (Scholar)
- Bernays, P., 1935. ‘On Platonism in Mathematics’, in
Benacerraf & Putnam 1983, pp. 258–271. (Scholar)
- Boolos, G., 1971. ‘The Iterative Conception of Set’, in Boolos 1998, pp. 13–29. (Scholar)
- –––, 1975. ‘On Second-Order Logic’, in Boolos 1998, pp. 37–53. (Scholar)
- –––, 1985. ‘Nominalist Platonism’, in Boolos 1998, pp. 73–87. (Scholar)
- –––, 1987. ‘The Consistency of
Frege’s Foundations of Arithmetic’, in Boolos 1998, pp.
183–201. (Scholar)
- –––, 1998. Logic, Logic, and Logic, Cambridge: Harvard University Press. (Scholar)
- Bueno, O. , 2011. ‘Relativism in Set Theory and
Mathematics’, in S. Hales (ed.), A Companion to
Relativism, Oxford: Wiley-Blackwell, pp. 553–568. (Scholar)
- Burge, T., 1998. ‘Computer Proofs, A Priori Knowledge, and Other Minds’, Noûs, 32: 1–37. (Scholar)
- –––, 2013. Cognition Through Understanding. Self-Knowledge, Interlocution, Reasoning, Reflection. Philosophical Essays, Volume 3, Oxford: Oxford University Press. (Scholar)
- Burgess, J., 2004. ‘Mathematics and Bleak House’, Philosophia Mathematica, 12: 37–53. (Scholar)
- –––, 2004b, ‘Quine, Analyticity and Philosophy of Mathematics’, Philosophical Quarterly, 54: 38–55. (Scholar)
- –––, 2005, Fixing Frege, Princeton: Princeton University Press. (Scholar)
- –––, 2015. Rigor and Structure, Oxford: Oxford University Press. (Scholar)
- Burgess, J. & Rosen, G., 1997. A Subject with No Object: Strategies for Nominalistic Interpretation of Mathematics, Oxford: Clarendon Press. (Scholar)
- Button, T. & Walsh, S., 2018. Philosophy and Model Theory, Oxford: Oxford University Press. (Scholar)
- Cantor, G., 1932. Abhandlungen mathematischen und
philosophischen Inhalts, E. Zermelo (ed.), Berlin: Julius
Springer. (Scholar)
- Carnap, R., 1950. ‘Empiricism, Semantics and Ontology’, in Benacerraf & Putnam 1983, pp. 241–257. (Scholar)
- Chihara, C., 1973. Ontology and the Vicious Circle Principle, Ithaca: Cornell University Press. (Scholar)
- Cohen, P., 1971. ‘Comments on the Foundations of Set
Theory’, in D. Scott (ed.) Axiomatic Set Theory
(Proceedings of Symposia in Pure Mathematics, Volume XIII, Part 1),
American Mathematical Society, pp. 9–15. (Scholar)
- Colyvan, M., 2001. The Indispensability of Mathematics, Oxford: Oxford University Press. (Scholar)
- Curry, H., 1958. Outlines of a Formalist Philosophy of
Mathematics, Amsterdam: North-Holland. (Scholar)
- Detlefsen, M., 1986. Hilbert’s Program, Dordrecht:
Reidel. (Scholar)
- –– (ed), 1992. Proof, logic and
formalisation, London: Routledge.
- Deutsch, D., Ekert, A. & Luppacchini, R., 2000. ‘Machines, Logic and Quantum Physics’, Bulletin of Symbolic Logic, 6: 265–283. (Scholar)
- Di Toffoli, S., 2021. ‘Reconciling Rigor and
Intuition’. Erkenntnis, 86: 1783–1802. (Scholar)
- Essenin-Volpin, A., 1961. ‘Le Programme Ultra-intuitionniste
des fondements des mathématiques’, in Infinistic
Methods, New York: Pergamon Press, pp. 201-223. (Scholar)
- Feferman, S., 1988. ‘Weyl Vindicated: Das Kontinuum seventy
years later’, reprinted in S. Feferman, In the Light of
Logic, New York: Oxford University Press, 1998, pp.
249–283. (Scholar)
- –––, 2005. ‘Predicativity’, in S. Shapiro (ed.), The Oxford Handbook of Philosophy of Mathematics and Logic, Oxford: Oxford University Press, pp. 590–624. (Scholar)
- Field, H., 1980. Science without Numbers: a defense of nominalism, Oxford: Blackwell. (Scholar)
- –––, 1989. Realism, Mathematics & Modality, Oxford: Blackwell. (Scholar)
- Fine, K., 2002. The Limits of Abstraction, Oxford: Oxford University Press. (Scholar)
- Frege, G., 1884. The Foundations of Arithmetic. A Logico-mathematical Enquiry into the Concept of Number, J.L. Austin (trans.), Evanston: Northwestern University Press, 1980. (Scholar)
- Friend, M. 2013. ‘Pluralism and “Bad”
Mathematical Theories: Challenging our Prejudices’, in K. Tanaka, et al.
(eds.), Paraconsistency: Logic and Application, Dordrecht: Springer,
pp. 277–307. (Scholar)
- Gentzen, G., 1938. ‘Die gegenwärtige Lage in der mathematischen Grundlagenforschung. Neue Fassung des Widerspruchsfreiheitsbeweises für die reine Zahlentheorie’, in Forschungen zur Logik und zur Grundlegung der exakten Wissenschaften (Neue Folge/Heft 4), Leipzig: Hirzel. (Scholar)
- Gödel, K., 1931. ‘On Formally Undecidable Propositions
in Principia Mathematica and Related Systems I’, in van
Heijenoort 1967, pp. 596–616. (Scholar)
- –––, 1944. ‘Russell’s Mathematical
Logic’, in Benacerraf & Putnam 1983, pp. 447–469. (Scholar)
- –––, 1947. ‘What is Cantor’s
Continuum Problem?’, in Benacerraf & Putnam 1983, pp.
470–485. (Scholar)
- Goodman, N. & Quine, W., 1947. ‘Steps Towards a Constructive Nominalism’, Journal of Symbolic Logic, 12: 97–122. (Scholar)
- Halbach, V. & Horsten, L., 2005. ‘Computational
Structuralism’, Philosophia Mathematica, 13:
174–186. (Scholar)
- Hale, B. & Wright, C., 2001. The Reason’s Proper
Study: Essays Towards a Neo-Fregean Philosophy of Mathematics,
Oxford: Oxford University Press. (Scholar)
- Hallett, M., 1984. Cantorian Set Theory and Limitation of Size, Oxford: Clarendon Press. (Scholar)
- Hodes, H., 1984. ‘Logicism and the Ontological Commitments of Arithmetic’, Journal of Philosophy, 3: 123–149. (Scholar) (Scholar)
- Hamkins, J., 2015. ‘Is the dream solution of the continuum hypothesis attainable?’, Notre Dame Journal of Formal Logic, 56: 135–145. (Scholar)
- Hellman, G., 1989. Mathematics without Numbers, Oxford: Clarendon Press. (Scholar)
- Hilbert, D., 1925. ‘On the Infinite’, in Benacerraf
& Putnam 1983, pp. 183–201. (Scholar)
- Hodes, H., 1984. ‘Logicism and the Ontological Commitments of Arithmetic’, Journal of Philosophy, 3: 123–149. (Scholar)
- Horsten, L., 2012. ‘Vom Zählen zu den Zahlen: on the relation between computation and mathematical structuralism’, Philosophia Mathematica, 20: 275–288. (Scholar)
- Horsten, L. & Welch, P. (eds.), 2016. Gödel’s
disjunction: the scope and limits of mathematical knowledge,
Oxford: Oxford University Press.
- Isaacson, D., 1987. ‘Arithmetical Truth and Hidden Higher-Order Concepts’, in The Paris Logic Group (eds.), Logic Colloquium ‘85, Amsterdam: North-Holland, pp. 147–169. (Scholar)
- Kanamori, A., 2009. The Higher Infinite. Large cardinals from
their beginnings, Berlin: Springer. (Scholar)
- Koellner, P., 2009. ‘On Reflection Principles’, Annals of Pure and Applied Logic, 157: 206–219. (Scholar)
- –––, 2009b. ‘Truth in Mathematics: The
Question of Pluralism’, in O. Bueno & Ø. Linnebo
(eds.), New Waves in Philosophy of Mathematics, Basingstoke:
Palgrave Macmillan, 80–116. (Scholar)
- Kreisel, G., 1967. ‘Informal Rigour and Completeness Proofs’, in I. Lakatos (ed.), Problems in the Philosophy of Mathematics, Amsterdam: North-Holland. (Scholar)
- Lakatos, I., 1976. Proofs and Refutations, New York: Cambridge University Press. (Scholar)
- Lavine, S., 1994. Understanding the Infinite, Cambridge, MA: Harvard University Press. (Scholar)
- Leng, M., 2010. Mathematics and Reality, Oxford: Oxford University Press. (Scholar)
- Linnebo, Ø., 2003. ‘Plural Quantification Exposed’, Noûs, 37: 71–92. (Scholar)
- –––, 2013. ‘The Potential Hierarchy of Sets’, Review of Symbolic Logic, 6: 205–228. (Scholar)
- –––, 2017. Philosophy of Mathematics, Princeton: Princeton University Press. (Scholar)
- –––, 2018. Thin Objects: an abstractionist account, Oxford: Oxford University Press. (Scholar)
- Linsky, B. & Zalta, E., 1995. ‘Naturalized Platonism vs. Platonized Naturalism’, Journal of Philosophy, 92: 525–555. (Scholar)
- Lucas, J.R., 1961. ‘Minds, Machines, and Gödel’, Philosophy, 36: 112–127. (Scholar)
- Maddy, P., 1988. ‘Believing the Axioms I, II’, Journal of Symbolic Logic, 53: 481–511, 736–764. (Scholar)
- –––, 1990. Realism in Mathematics, Oxford: Clarendon Press. (Scholar)
- –––, 1997. Naturalism in Mathematics, Oxford: Clarendon Press. (Scholar)
- –––, 2007. Second Philosophy: a Naturalistic Method, Oxford: Oxford University Press. (Scholar)
- Mancosu, P., 2008. The Philosophy of Mathematical Practice, Oxford: Oxford University Press. (Scholar)
- Manders, K., 1989. ‘Domain Extensions and the Philosophy of Mathematics’, Journal of Philosophy, 86: 553–562. (Scholar)
- Martin, D.A., 1998. ‘Mathematical Evidence’, in H.
Dales & G. Oliveri (eds.), Truth in Mathematics, Oxford:
Clarendon Press, pp. 215–231. (Scholar)
- –––, 2001. ‘Multiple Universes of Sets and Indeterminate Truth Values’ Topoi, 20: 5–16. (Scholar)
- McGee, V., 1997. ‘How we Learn Mathematical Language’, Philosophical Review, 106: 35–68. (Scholar)
- McLarty, C., 2004. ‘Exploring Categorical Structuralism’, Philosophia Mathematica, 12: 37–53. (Scholar)
- Moore, A., 2001. The Infinite, second edition, New York:
Routledge. (Scholar)
- Moore, G., 1982. Zermelo’s Axiom of Choice: Its Origins,
Development, and Influence, New York: Springer Verlag. (Scholar)
- Mormann, T., 2002. ‘Towards an evolutionary account of conceptual change in mathematics’, in G. Kampis et al (eds.), Appraising Lakatos: Mathematics, Methodology and the Man, Dordrecht: Kluwer, pp. 139–156. (Scholar)
- Myhill, J., 1960. ‘Some Remarks on the Notion of Proof’, Journal of Philosophy, 57: 461–471. (Scholar)
- Niebergall, K., 2000. ‘On the Logic of Reducibility: axioms and examples’, Erkenntnis, 53: 27–62. (Scholar)
- Parsons, C., 1980. ‘Mathematical Intuition’, Proceedings of the Aristotelian Society, 80: 145–168. (Scholar)
- –––, 1983. Mathematics in Philosophy: Selected Essays, Ithaca: Cornell University Press. (Scholar)
- –––, 1990a. ‘The Structuralist View of Mathematical Objects’, Synthese, 84: 303–346. (Scholar)
- –––, 1990b. ‘The Uniqueness of the Natural
Numbers’, Iyyun 13: 13–44. (Scholar)
- –––, 2008. Mathematical Thought and Its Objects, Cambridge: Cambridge University Press. (Scholar)
- Penrose, R., 1989. The Emperor’s New Mind. Oxford:
Oxford University Press. (Scholar)
- –––, 1994. Shadows of the Mind. Oxford: Oxford University Press. (Scholar)
- Pettigrew, R., 2008. ‘Platonism and Aristotelianism in Mathematics’, Philosophia Mathematica 16: 310–332. (Scholar)
- Potter, M., 2004. Set Theory and Its Philosophy: a Critical Introduction, Oxford: Oxford University Press. (Scholar)
- Pour-El, M., 1999. ‘The Structure of Computability in
Analysis and Physical Theory’, in E. Griffor (ed.), Handbook
of Computability Theory, Amsterdam: Elsevier, pp.
449–471. (Scholar)
- Putnam, H., 1967. ‘Mathematics without Foundations’, in Benacerraf & Putnam 1983, 295–311. (Scholar)
- –––, 1972. Philosophy of Logic, London: George Allen & Unwin. (Scholar)
- Quine, W.V.O., 1969. ‘Epistemology Naturalized’, in W.V.O. Quine, Ontological Relativity and Other Essays, New York: Columbia University Press, pp. 69–90. (Scholar)
- –––, 1970. Philosophy of Logic,
Cambridge, MA: Harvard University Press, 2nd edition. (Scholar)
- Rav, Y., 1999. ‘Why do we prove theorems?’, Philosophia Mathematica, 9: 5–41. (Scholar)
- Reck, E. & Price, M., 2000. ‘Structures and Structuralism in Contemporary Philosophy of Mathematics’, Synthese, 125: 341–383. (Scholar)
- Resnik, M., 1974. ‘The Frege-Hilbert Controversy’, Philosophy and Phenomenological Research, 34: 386–403. (Scholar)
- –––, 1997. Mathematics as a Science of Patterns, Oxford: Clarendon Press. (Scholar)
- Russell, B., 1902. ‘Letter to Frege’, in van
Heijenoort 1967, 124–125. (Scholar)
- Shapiro, S., 1983. ‘Conservativeness and Incompleteness’, Journal of Philosophy, 80: 521–531. (Scholar)
- –––, 1991. Foundations without Foundationalism: A Case for Second-order Logic, Oxford: Clarendon Press. (Scholar)
- –––, 1997. Philosophy of Mathematics: Structure and Ontology, Oxford: Oxford University Press. (Scholar)
- –––, 2000. Thinking about Mathematics, Oxford: Oxford University Press. (Scholar)
- Sieg, W., 1994. ‘Mechanical Procedures and Mathematical Experience’, in A. George (ed.), Mathematics and Mind, Oxford: Oxford University Press. (Scholar)
- Studd, J., 2019. Everything, more or less. A defence of generality relativism. Oxford: Oxford University Press. (Scholar)
- Tait, W., 1981. ‘Finitism’, reprinted in Tait 2005, pp. 21–42. (Scholar)
- –––, 2005. The Provenance of Pure Reason: Essays in the Philosophy of Mathematics and its History, Oxford: Oxford University Press. (Scholar)
- Tatton-Brown, O., forthcoming. ‘Rigour and Proof’, Review of Symbolic Logic, first online 21 October 2020. doi:10.1017/s1755020320000398 (Scholar)
- Troelstra, A. & van Dalen, D., 1988. Constructivism in Mathematics: An Introduction (Volumes I and II), Amsterdam: North-Holland. (Scholar)
- Turing, A., 1936. ‘On Computable Numbers, with an Application to the Entscheidungsproblem’, reprinted in M. Davis (ed.), The Undecidable: Basic Papers on Undecidable Propositions and Uncomputable Functions, Hewlett: Raven Press, 1965, pp. 116–151. (Scholar)
- Tymoczko, T., 1979. ‘The Four-Color Problem and its Philosophical Significance’, Journal of Philosophy, 76: 57–83. (Scholar)
- van Atten, M., 2004. On Brouwer, London: Wadsworth. (Scholar)
- van Heijenoort, J., 1967. From Frege to Gödel: A Source
Book in Mathematical Logic (1879–1931), Cambridge, MA:
Harvard University Press. (Scholar)
- Warren, J., 2015. ‘Conventionalism, Consistency, and Consistency Sentences’, Synthese, 192: 1351–1371. (Scholar)
- Weir, A., 2003. ‘Neo-Fregeanism: An Embarrassment of Riches’, Notre Dame Journal of Formal Logic, 44: 13–48. (Scholar)
- Welch, P. & Horsten, L. 2016. ‘Reflecting on Absolute Infinity.’, Journal of Philosophy, 113: 89–111. (Scholar)
- Weyl, H., 1918. The Continuum: A Critical Examination of the
Foundation of Analysis, S. Pollard and T. Bole (trans.), Mineola:
Dover, 1994. (Scholar)
- Woodin, H., 2001a. ‘The Continuum Hypothesis. Part I’,
Notices of the American Mathematical Society, 48:
567–578. (Scholar)
- –––, 2001b. ‘The Continuum Hypothesis.
Part II’, Notices of the American Mathematical Society,
48: 681–690. (Scholar)
- –––, 2011. ‘The Realm of the Infinite’, in H. Woodin & M. Heller (eds.), Infinity: New Research Frontiers, New York: Cambridge University Press, pp. 89–118. (Scholar)
- Wright, C., 1983. Frege’s Conception of Numbers as Objects (Scots Philosophical Monographs, Volume 2), Aberdeen: Aberdeen University Press. (Scholar)
- Yablo, S. 2014. Aboutness Princeton: Princeton University Press. (Scholar)
- Zach, R., 2006. ‘Hilbert’s Program Then and
Now’, in D. Jacquette (ed.), Philosophy of Logic
(Handbook of the Philosophy of Science, Volume 5), Amsterdam:
Elsevier, pp. 411–447. (Scholar)
- Zermelo, E., 1930. ‘On Boundard Numbers and Domains of
Sets’, translated by M. Hallett, in W. Ewald (ed.), From
Kant to Hilbert: A Source Book in Mathematics (Volume 2), Oxford:
Oxford University Press, 1996, pp. 1208–1233. (Scholar)