Linked bibliography for the SEP article "Principia Mathematica" by Bernard Linsky and Andrew David Irvine
This is an automatically generated and experimental page
If everything goes well, this page should display the bibliography of the aforementioned article as it appears in the Stanford Encyclopedia of Philosophy, but with links added to PhilPapers records and Google Scholar for your convenience. Some bibliographies are not going to be represented correctly or fully up to date. In general, bibliographies of recent works are going to be much better linked than bibliographies of primary literature and older works. Entries with PhilPapers records have links on their titles. A green link indicates that the item is available online at least partially.
This experiment has been authorized by the editors of the Stanford Encyclopedia of Philosophy. The original article and bibliography can be found here.
Primary Literature
- Russell, Bertrand, [PoM] 1903, The Principles of Mathematics, Cambridge: Cambridge University Press. [PoM available online] (Scholar)
- –––, 1905, “On Denoting”, Mind, 14(4): 479–493. doi:10.1093/mind/xiv.4.479 (Scholar)
- –––, 1911, “On the Axioms of the Infinite
and of the Transfinite”, printed in Logical and
Philosophical Papers 1909–1913: The Collected Papers of Bertrand
Russell, Vol. 6, John G. Slater (ed.), London and New York:
Routledge, 1992, 41–53. (Scholar)
- –––, 1919, Introduction to Mathematical Philosophy, London: George Allen & Unwin. (Scholar)
- –––, 1948, “Whitehead and Principia Mathematica”, Mind, 57(226): 137–138. doi:10.1093/mind/lvii.226.137 (Scholar)
- –––, 1959, My Philosophical Development, London: George Allen and Unwin, and New York: Simon and Schuster; reprinted London: Routledge, 1993. (Page numbers are to the 1959 edition.) (Scholar)
- –––, 1967, 1968, 1969, The Autobiography of Bertrand Russell, 3 vols., London: George Allen and Unwin; Boston: Little Brown and Company (Vols 1 and 2), New York: Simon and Schuster (Volume 3). (Scholar)
- Whitehead, Alfred North, 1898, A Treatise on Universal Algebra, Cambridge: Cambridge University Press. [Whitehead 1898 available online] (Scholar)
- –––, 1906, “On Mathematical Concepts of
the Material World”, Philosophical Transactions of the Royal
Society A: Mathematical, Physical and Engineering Sciences,
205(387–401): 465–525. doi:10.1098/rsta.1906.0014 (Scholar)
- –––, 1926, “Notes: Principia Mathematica”, Mind, 35(137): 130. doi:10.1093/mind/xxxv.137.130-a (Scholar)
- Whitehead, Alfred North, Bertrand Russell, and M.R. James, 1910, Contract for the First Edition of Principia Mathematica, reprinted in “Illustrations: Manuscripts Relating to Principia Mathematica”, Russell: The Journal of Bertrand Russell Studies, 31(1): 82. doi:10.15173/russell.v31i1.2199 (Scholar)
- Whitehead, Alfred North and Bertrand Russell, 1910, 1912, 1913, Principia Mathematica, 3 volumes, Cambridge: Cambridge University Press; 2nd edition, 1925 (Vol. I), 1927 (Vols II, II); abridged as Principia Mathematica to ∗56, Cambridge: Cambridge University Press, 1956. (Page numbers are to the second edition.) (Scholar)
Secondary Literature
- Borel, Émile, 1898, Leçons Sur La Théorie
Des Fonctions, Paris. (Scholar)
- Bernays, Paul, 1926, “Axiomatische Untersuchungen des
Aussagen-Kalkuls der Principia Mathematica”,
Mathematische Zeitschrift, 25: 305–320.
doi:10.1007/bf01283841 (Scholar)
- Blackwell, Kenneth, 2005, “A Bibliographical Index for Principia Mathematica”, Russell: The Journal of Bertrand Russell Studies, 25(1): 77–80. doi:10.15173/russell.v25i1.2072 (Scholar)
- –––, 2011, “The Wit and Humour of Principia Mathematica”, in Griffin, Linsky, and Blackwell 2011: 151–160. doi:10.15173/russell.v31i1.2198 (Scholar)
- Boolos, George, 1971, “The Iterative Conception of Set”, Journal of Philosophy, 68(8): 215–231. doi:10.2307/2025204 (Scholar)
- –––, 1994, “The Advantages of Honest Toil
over Theft”, Mathematics and Mind, Alexander George
(ed.), Oxford: Oxford University Press, 27–44. (Scholar)
- Burgess, John P., 2005, Fixing Frege, Princeton: Princeton University Press. (Scholar)
- Cantor, Georg, 1883 [1996], Grundlagen einer allgemeinen
Mannigfaltigkeitslehre. Ein mathematisch-philosophischer Versuch in
der Lehre des Unendlichen, Teubner, Leipzig. Printed as
“Foundations of a General Theory of Manifolds: A
Mathematico-Philosophical Investigation into the Theory of the
Infinite” in From Kant to Hilbert: A Source Book in the
Foundations of Mathematics, Vol. II, William Ewald (trans.),
Oxford: Oxford University Press, 1996, 878–920. (Scholar)
- –––, 1895 & 1897 [1915],
“Beiträge zur Begründung der transfiniten
Mengenlehre”, Mathematische Annalen, (1895) 46(4):
481–512 & (1897) 49(2): 207–246. Translated as
Contributions to the Founding of the Theory of Transfinite
Numbers, Philip E.B. Jourdain (trans), Chicago: Open Court, 1915.
doi:10.1007/BF02124929 (de) doi:10.1007/BF01444205 (de) (Scholar)
- Chihara, Charles S., 1973, Ontology and the Vicious Circle Principle, Ithaca, NY: Cornell University Press. (Scholar)
- Church, Alonzo, 1974, “Russellian Simple Type Theory”,
Proceedings and Addresses of the American Philosophical
Association, 47: 21–33. doi:10.2307/3129899 (Scholar)
- –––, 1976, “Comparison of Russell’s Resolution of the Semantical Antinomies with That of Tarski”, The Journal of Symbolic Logic, 41(04): 747–760. doi:10.2307/2272393 (Scholar)
- Chwistek, Leon, 1912 [2017], “Zasada sprzeczności w
świetle nowszych badań Bertranda Russella”, Rozprawy
Akademii Umiejętności (Kraków), Wydzial
historyczno-filozoficzny, Series II. 30: 270–334. Translated by Rose Rand as
“The Law of Contradiction in the Light of Recent Investigations
of Bertrand Russell”, in The Significance of the Lvov-Warsaw
School in the European Culture, Anna Brożek, Friedrich
Stadler, and Jan Woleński (eds.), Cham: Springer International
Publishing, 2017, 227–289. doi:10.1007/978-3-319-52869-4_13 (Scholar)
- –––, 1921 [1967], “Antynomie logiki
formalnej”, Przegla̧d Filozoficzny, 24: 164–171.
Printed as “Antinomies of Formal Logic”, Z. Jordan
(trans.), in Polish Logic 1920-1939, Storrs McCall (ed.),
Oxford: Clarendon Press, 1967, 338–345. (Scholar)
- Collins, Jordan E., 2012, A History of the Theory of Types:
Developments after the Second Edition of Principia Mathematica,
Saarbrücken: Lambert Academic Publishing. (Scholar)
- Copi, Irving M., 1950, “The Inconsistency or Redundancy of Principia Mathematica”, Philosophy and Phenomenological Research, 11(2): 190–199. doi:10.2307/2103637 (Scholar)
- –––, 1971, The Theory of Logical Types, London: Routledge and Kegan Paul. (Scholar)
- Dedekind, Richard, 1872 [1901], Stetigkeit und irrationale
Zahlen, Braunschweig: Vieweg. Translated 1901, “Continuity
and Irrational Numbers”, Wooster Woodruff Beman (trans.),
in Essays on the Theory of Numbers Chicago: Open Court.
doi:10.1007/978-3-322-98548-4 (Scholar)
- Eliot, T.S., 1927, “A Commentary”, The Monthly
Criterion, 6(4), 289–291. (Scholar)
- Enderton, Herbert B., 1977, Elements of Set Theory, New
York: Academic Press. (Scholar)
- Ewald, William and Wilfried Sieg (eds), 2013, David
Hilbert’s Lectures on the Foundations of Arithmetic and Logic
1917–1933, Berlin: Springer Verlag. doi:
doi:10.1007/978-3-540-69444-1 (Scholar)
- Frege, Gottlob, 1879 [1967], Begriffsschrift: Eine Der Arithmetische Nachgebildete Formelsprache des Reinen Denkens, Halle a/S: Louis Nebert. Translated by Stefan Bauer-Mengelberg as “Begriffsschrift, A Formula Language, Modeled Upon that of Arithmetic, for Pure Thought” in Jean van Heijenoort (ed.), From Frege to Gödel: A Source Book in Mathematical Logic, 1879-1931, Cambridge, MA: Harvard University Press, 1967, 1–82. [Frege 1879 available online (de)] (Scholar)
- –––, 1884 [1950], Die Grundlagen der Arithmetik: Eine logisch mathematische Untersuchung über den Begriff der Zahl, Breslau: Koebner, translated by J.L. Austin as The Foundations of Arithmetic: A logico-mathematical enquiry into the concept of number, Oxford: Basil Blackwell, 1950. (Scholar)
- –––, 1892 [1984], “Über Sinn und
Bedeutung”, Zeitschrift für Philosophie und
philosophische Kritik 100, 25-50, translated by Max Black as
“On Sense and Meaning” in Gottlob Frege: Collected
Papers on Mathematics, Logic, and Philosophy, Brian McGuinness,
ed., Oxford: Basil Blackwell, 1984, 157–177. (Scholar)
- –––, 1893/1903 [2013], Grundgesetze der Arithmetik, Band I (1893), Band II (1903), Jena: Verlag Hermann Pohle. Translated (preserving the original pagination) by Philip A. Ebert & Marcus Rossberg with Crispin Wright as Basic Laws of Arithmetic, Oxford: Oxford University Press, 2013. (Scholar)
- –––, 1980, Philosophical and Mathematical
Correspondence, G. Gabriel, et al. (eds.), Chicago: University of
Chicago Press. (Scholar)
- Gabbay, Dov M. and John Woods (eds.), 2009, Handbook of the
History of Logic, Volume 5: Logic From Russell to Church,
Amsterdam: Elsevier/North Holland. (Scholar)
- Gandon, Sébastien, 2008, “Which Arithmetization for Which Logicism? Russell on Relations and Quantities in The Principles of Mathematics”, History and Philosophy of Logic, 29(1): 1–30. doi:10.1080/01445340701398530 (Scholar)
- –––, 2011, “Principia
Mathematica, part VI: Russell and Whitehead on Quantity”,
Logique et Analyse, 54(214): 225–247.
[Gandon 2011 available online] (Scholar)
- –––, 2012, Russell’s Unknown
Logicism, New York: Palgrave Macmillan. (Scholar)
- Gödel, Kurt, 1933 [1995], “The Present Situation in the
Foundations of Mathematics”, lecture delivered to the
Mathematical Association of America and the American Mathematical
Society, Cambridge, MA, December 1933. Printed in Kurt Gödel:
Collected Works, Vol. II, Solomon Feferman, et al. (eds.), Oxford
and New York: Oxford University Press, 1995, 45–53. (Scholar)
- –––, 1944 [1951], “Russell’s Mathematical Logic”, in The Philosophy of Bertrand Russell, Paul Arthur Schilpp (ed.), first edition, Chicago: Northwestern University, 1944; third edition, New York: Tudor, 1951, 123–153. (Scholar)
- Grattan-Guinness, I., 2000, The Search for Mathematical Roots,
1870-1940: Logics, Set Theories and the Foundations of Mathematics
from Cantor Through Russell to Gödel, Princeton and Oxford:
Princeton University Press. (Scholar)
- Griffin, Nicholas and Bernard Linsky (eds.), 2013, The Palgrave Centenary Companion to Principia Mathematica, London: Palgrave Macmillan. doi:10.1057/9781137344632 (Scholar)
- Griffin, Nicholas, Bernard Linsky and Kenneth Blackwell (eds.), 2011, Principia Mathematica at 100, Hamilton, ON: Bertrand Russell Research Centre; also published as a special issue of Russell: The Journal of Bertrand Russell Studies, 31(1). [Griffin, Linsky, and Blackwell 2011 available online] (Scholar)
- Guay, Alexandre (ed.), 2012, Autour de Principia Mathematica de Russell et Whitehead, Dijon: Editions Universitaires de Dijon. (Scholar)
- Hale, Bob and Crispin Wright, 2001, The Reason’s Proper
Study: Essays towards a Neo-Fregean Philosophy of Mathematics,
Oxford: Oxford University Press. doi:10.1093/0198236395.001.0001 (Scholar)
- Hausdorff, Felix, 1906, “Untersuchungen über
Ordnungstypen”, Berichte der Königlichen Sächsische
Akademie der Wissenschaft (Leipzig), 58: 106–169; 59:
84–159. (Scholar)
- Hilbert, David and W. Ackermann, 1928, Grundzüge der theoretischen Logik, Berlin: Julius Springer Verlag. Translated as “Principles of Mathematical Logic”, Providence: American Mathematical Society, 1958. (Scholar)
- Hilbert, David and Paul Bernays, 1934, Grundlagen der Mathematik, Berlin: Julius Springer Verlag. (Scholar)
- Hinkis, Arie, 2013, Proofs of the Cantor-Bernstein Theorem: A
Mathematical Excursion, New York, Dordrecht, London:
Birkhäuser. (Scholar)
- Hintikka, Jaakko, 2009, “Logicism”, in Irvine 2009:
271–290. doi:10.1016/b978-0-444-51555-1.50010-9 (Scholar)
- Irvine, Andrew D. (ed.), 2009, Philosophy of Mathematics (Handbook of the Philosophy of Science), Amsterdam: Elsevier. doi:10.1016/b978-0-444-51555-1.x0001-7 (Scholar)
- Kahle, Reinhard, 2013, “David Hilbert and Principia Mathematica in Poland”, in Griffin and Linsky, 2013: 21–34. (Scholar)
- Kanamori, Akihiro, 2009, “Set Theory from Cantor to
Cohen”, in Irvine 2009: 395-459.
doi:10.1016/b978-0-444-51555-1.50014-6 (Scholar)
- Kleene, S.C., 1952, Introduction to Metamathematics, Princeton: Van Nostrand. (Scholar)
- Landini, Gregory, 1998, Russell’s Hidden Substitutional
Theory, New York and Oxford: Oxford University Press. (Scholar)
- –––, 2011, Russell, London and New York: Routledge. (Scholar)
- –––, 2016, “Whitehead’s (Badly) Emended Principia”, History and Philosophy of Logic, 37(2): 114–169. doi:10.1080/01445340.2015.1082063 (Scholar)
- Link, Godehard (ed.), 2004, One Hundred Years of
Russell’s Paradox, Berlin and New York: Walter de
Gruyter. (Scholar)
- Linsky, Bernard, 1990, “Was the Axiom of Reducibility a Principle of Logic?” Russell, 10: 125–140; reprinted in A.D. Irvine (ed.), 1990, Bertrand Russell: Critical Assessments, 4 vols., London: Routledge, vol. 2, 150–264. doi:10.15173/russell.v10i2.1775 (Scholar)
- –––, 1999, Russell’s Metaphysical
Logic, Stanford: CSLI Publications. (Scholar)
- –––, 2002, “The Resolution of Russell’s Paradox in Principia Mathematica”, Philosophical Perspectives, 16: 395–417. doi:10.1111/1468-0068.36.s16.15 (Scholar)
- –––, 2003, “Leon Chwistek on the
No-Classes Theory in Principia Mathematica”,
History and Philosophy of Logic, 25(1): 53–71.
doi:10.1080/01445340310001614698 (Scholar)
- –––, 2004, “Classes of Classes and Classes
of Functions in Principia Mathematica”, in Link 2004:
435–447. (Scholar)
- –––, 2009, “From Descriptive Functions to Sets of Ordered Pairs”, in Alexander Hieke and Hannes Leitgeb, Reduction-Abstraction-Analysis, Vol. 11 of Publications of the Austrian Ludwig Wittgenstein Society, new series, Frankfurt: Ontos Verlag, 259-272. (Scholar)
- –––, 2011, The Evolution of Principia
Mathematica: Bertrand Russell’s Manuscripts and Notes for the
Second Edition, Cambridge: Cambridge University Press.
doi:10.1017/cbo9780511760181 (Scholar)
- –––, 2016, “Propositional Logic from The Principles of Mathematics to Principia Mathematica”, in Early Analytic Philosophy: New Perspectives on the Tradition, Sorin Costreie (ed.), Cham: Springer International Publishing, 213–229. doi:10.1007/978-3-319-24214-9_8 (Scholar)
- Linsky, Bernard and Kenneth Blackwell, 2005, “New Manuscript Leaves and the Printing of the First Edition of Principia Mathematica”, Russell: The Journal of Bertrand Russell Studies, 25(2): 141–154. doi:10.15173/russell.v25i2.2084 (Scholar)
- Mares, Edwin D., 2007, “The Fact Semantics for Ramified Type Theory and the Axiom of Reducibility”, Notre Dame Journal of Formal Logic, 48(2): 237–251. doi:10.1305/ndjfl/1179323266 (Scholar)
- Mayo-Wilson, Conor, 2011, “Russell on Logicism and Coherence”, in Griffin, Linsky, and Blackwell 2011: 63–79. doi:10.15173/russell.v31i1.2206 (Scholar)
- Myhill, John, 1974, “The Undefinability of the Set of Natural Numbers in the Ramified Principia”, in Bertrand Russell’s Philosophy, George Nakhnikian (ed.), London: Duckworth, 19-27. (Scholar)
- Proops, Ian, 2006, “Russell’s Reasons for Logicism”, Journal of the History of Philosophy, 44(2): 267–292. doi:10.1353/hph.2006.0029 (Scholar)
- Quine, W.V.O., 1951, “Whitehead and Modern Logic”, in
The Philosophy of Alfred North Whitehead, P.A. Schilpp (ed.),
New York: Tudor Publishing, 125-163. (Scholar)
- –––, 1960, Word and Object, Cambridge: MIT Press. (Scholar)
- –––, 1963, Set Theory and Its Logic, Cambridge: Harvard University Press (Scholar)
- –––, 1966a, Selected Logic Papers, New York: Random House. (Scholar)
- –––, 1966b, Ways of Paradox, New York: Random House. (Scholar)
- Ramsey, Frank, 1931, “The Foundations of Mathematics”,
in his The Foundations of Mathematics and Other Essays,
London: Kegan Paul, Trench, Trubner, 1-61. (Scholar)
- Rodriguez-Consuegra, Francisco, 1991, The Mathematical Philosophy of Bertrand Russell, Boston: Birkhäuser Press; repr. 1993. (Scholar)
- Shapiro, Stewart (ed.), 2005, The Oxford Handbook of Philosophy of Mathematics and Logic, Oxford: Oxford University Press. doi:10.1093/oxfordhb/9780195325928.001.0001 (Scholar)
- Sheffer, Henry M., unpublished, Notes on Bertrand Russell's
Lectures (Cambridge, MA 1910), in Harvard University Archives: Henry Maurice Sheffer Personal Archive [accessions], 1891–1970. For further information see URL = <http://id.lib.harvard.edu/alma/990138368470203941/catalog>. (Scholar)
- Solomon, Graham 1989, “What became of Russell's ‘relation arithmetic’?”, Russell: The Journal of Bertrand Russell
Studies, 9(2): 168 –173. (Scholar)
- Stevens, Graham, 2011, “Logical Form in Principia Mathematica”, in Griffin, Linsky, and Blackwell 2011: 9–28. doi:10.15173/russell.v31i1.2203 (Scholar)
- Suppes, Patrick, 1960, Axiomatic Set Theory, Princeton:
van Nostrand. (Scholar)
- Tarski, Alfred, 1956, Ordinal Algebras, Amsterdam:
North Holland. (Scholar)
- Urquhart, Alasdair, 1988, “Russell’s Zigzag Path to the Ramified Theory of Types”, Russell: The Journal of Bertrand Russell Studies, 8(1): 82–91. doi:10.15173/Russell.v8i1.1735 (Scholar)
- –––, 2012, Review of Bernard Linsky’s
The Evolution of Principia Mathematica: Bertrand Russell’s
Manuscripts and Notes for the Second Edition, Notre Dame
Philosophical Reviews,
[Urquhart 2012 available online]. (Scholar)
- –––, 2013, “Principia
Mathematica: The First 100 Years”, in Griffin and Linsky
2013: 3–20. (Scholar)
- Wahl, Russell, 2011, “The Axiom of Reducibility”, in Griffin, Linsky, and Blackwell 2011: 45–62. doi:10.15173/russell.v31i1.2205 (Scholar)
- Wiener, Norbert, 1914, “A Simplification of the Logic of
Relations”, Proceedings of the Cambridge Philosophical
Society, 17: 387–90.
[Wiener 1914 available online] (Scholar)
- Wittgenstein, Ludwig, 1922, Tractatus Logico-Philosophicus, C.K. Ogden (trans.), London: Routledge & Kegan Paul. (Scholar)
- Wolenski, Jan , 2013, “Principia Mathematica in Poland”, in
Griffin and Linsky, 2013: 35–55.
(Scholar)
- Wright, Crispin, 1983, Frege’s Conception of Numbers as Objects, Aberdeen: Aberdeen University Press. (Scholar)
- Wrinch, Dorothy, 1919, “On the Exponentiation of
Well-Ordered Series”, Proceedings of the Cambridge
Philosophical Society, 19: 219-233.
[Wrinch 1919 available online] (Scholar)
- Zermelo, Ernst, 1908 [1967], “Neuer Beweis für die
Möglichkeit einer Wohlordnung”, Mathematische
Annalen, 65(1): 107–128. Translated by Stefan
Bauer-Mengelberg as “A New Proof of the Possibility of a
Well-Ordering”, in Jean van Heijenoort (ed.), From Frege to
Gödel: A Source Book in Mathematical Logic, 1879-1931,
Cambridge, MA: Harvard University Press, 1967, 183–198.
doi:10.1007/BF01450054 (de) (Scholar)