Linked bibliography for the SEP article "Bohmian Mechanics" by Sheldon Goldstein

This is an automatically generated and experimental page

If everything goes well, this page should display the bibliography of the aforementioned article as it appears in the Stanford Encyclopedia of Philosophy, but with links added to PhilPapers records and Google Scholar for your convenience. Some bibliographies are not going to be represented correctly or fully up to date. In general, bibliographies of recent works are going to be much better linked than bibliographies of primary literature and older works. Entries with PhilPapers records have links on their titles. A green link indicates that the item is available online at least partially.

This experiment has been authorized by the editors of the Stanford Encyclopedia of Philosophy. The original article and bibliography can be found here.

  • Albert, D. Z., 1992, Quantum Mechanics and Experience, Cambridge, MA: Harvard University Press. (Scholar)
  • Allori, V., Dürr, D., Goldstein, S., and Zanghì, N., 2002, “Seven Steps Towards the Classical World,” Journal of Optics B, 4: 482–488. [Preprint available online.] (Scholar)
  • Aspect, A., Dalibard, J., and Roger, G., 1982, “Experimental test of Bell's inequalities using time-varying analyzers,” Phys. Rev. Lett, 49: 1804–1807. (Scholar)
  • Bacciagaluppi, G., and Valentini, A., 2009, Quantum Theory at the Crossroads: Reconsidering the 1927 Solvay Conference, Cambridge: Cambridge University Press. (Scholar)
  • Bell, J. S., 1964, “On the Einstein-Podolsky-Rosen Paradox,” Physics, 195–200; reprinted in Bell 1987 and in Wheeler and Zurek 1983. (Scholar)
  • –––, 1966, “On the Problem of Hidden Variables in Quantum Theory,” Rev. Mod. Phys., 38: 447–452; reprinted in Bell 1987 and in Wheeler and Zurek 1983. (Scholar)
  • –––, 1987, Speakable and Unspeakable in Quantum Mechanics, Cambridge: Cambridge University Press. (Scholar)
  • Beller, M., 1999, Quantum Dialogue: The Making of a Revolution, Chicago: University of Chicago Press. (Scholar)
  • Berndl, K., Daumer, M., Dürr, D., Goldstein, S., and Zanghì, N., 1995, “A Survey of Bohmian Mechanics,” Il Nuovo Cimento, 110B: 737–750. [Preprint available online.] (Scholar)
  • Berndl, K., Dürr, D., Goldstein, S., Peruzzi, G., and Zanghì, N., 1995, “On the Global Existence of Bohmian Mechanics,” Commun. Math. Phys., 173: 647–673. [Preprint available online.] (Scholar)
  • Berndl, K., Dürr, D., Goldstein, S., and Zanghì, N., 1996, “Nonlocality, Lorentz Invariance, and Bohmian Quantum Theory,” Phys. Rev. A, 53: 2062–2073. [Preprint available online.] (Scholar)
  • Bohm, D., 1952, “A Suggested Interpretation of the Quantum Theory in Terms of ‘Hidden’ Variables, I and II,” Physical Review, 85: 166–193. (Scholar)
  • –––, 1953, “Proof that Probability Density Approaches |ψ|2 in Causal Interpretation of Quantum Theory,” Physical Review, 89: 458–466. (Scholar)
  • –––, 1980, Wholeness and the Implicate Order, New York: Routledge. (Scholar)
  • Bohm, D., and Hiley, B. J., 1993, The Undivided Universe: An Ontological Interpretation of Quantum Theory, London: Routledge & Kegan Paul. (Scholar)
  • Born, M., 1926, Z. Phys., 38: 803; English translation in Ludwig, G., ed., 1968, Wave Mechanics, Oxford: Pergamon Press: 206. (Scholar)
  • –––, 1949, Natural Philosophy of Cause and Chance Oxford: Oxford University Press. (Scholar)
  • Brown, H., and Wallace, D., 2005, “Solving the Measurement Problem: De Broglie-Bohm loses out to Everett,” Foundations of Physics, 35: 570–540. (Scholar)
  • de Broglie, L., 1928, in Solvay 1928. (Scholar)
  • Cushing, J. T., 1994, Quantum Mechanics: Historical Contingency and the Copenhagen Hegemony, Chicago: University of Chicago Press. (Scholar)
  • Cushing, J. T., Fine, A., and Goldstein, S., eds., 1996, Bohmian Mechanics and Quantum Theory: An Appraisal, (Boston Studies in the Philosophy of Science, Volume 184), Boston: Kluwer Academic Publishers. (Scholar)
  • Daumer, M., Dürr, D., Goldstein, S., and Zanghì, N., 1997, “Naive Realism About Operators,” Erkenntnis 45: 379–397. [Preprint available online.] (Scholar)
  • Daumer, M., Dürr, D., Goldstein, S., and Zanghì, N., 1997a, “On the Quantum Probability Flux Through Surfaces,” Journal of Statistical Physics, 88: 967–977. [Preprint available online.] (Scholar)
  • Davies, E. B., 1976, Quantum Theory of Open Systems, London: Academic Press. (Scholar)
  • Deotto, E., and Ghirardi, G. C., 1998, “Bohmian Mechanics Revisited,” Foundations of Physics, 28: 1–30. (Scholar)
  • Deutsch, D., 1996, “Comment on Lockwood,” British Journal for the Philosophy of Science, 47: 222–228. (Scholar)
  • Dürr, D., and Teufel, S., 2009, Bohmian Mechanics: The Physics and Mathematics of Quantum Theory, Berlin: Springer-Verlag. (Scholar)
  • Dürr, D., Goldstein, S., and Zanghì, N., 1992, “Quantum Equilibrium and the Origin of Absolute Uncertainty,” Journal of Statistical Physics, 67: 843–907. [Available online .] (Scholar)
  • Dürr, D., Goldstein, S., and Zanghì, N., 1992a, “Quantum Chaos, Classical Randomness, and Bohmian Mechanics,” Journal of Statistical Physics, 68: 259–270. [Available (in Postscript) online.] (Scholar)
  • Dürr, D., Goldstein, S., and Zanghì, N., 1997, “Bohmian Mechanics and the Meaning of the Wave Function,” in Cohen, R. S., Horne, M., and Stachel, J., eds., Experimental Metaphysics — Quantum Mechanical Studies for Abner Shimony, Volume One; Boston Studies in the Philosophy of Science, 193, Boston: Kluwer Academic Publishers. Preprint available online.] (Scholar)
  • Dürr, D., Goldstein, S., Münch-Berndl, K., and Zanghì, N., 1999, “Hypersurface Bohm-Dirac Models,” Phys. Rev. A, 60: 2729–2736. [Preprint available online.] (Scholar)
  • Dürr, D., Goldstein, S., Teufel, S., and Zanghì, N., 2000, “Scattering Theory from Microscopic First Principles,” Physica A, 279: 416–431. (Scholar)
  • Dürr, D., Goldstein, S., Tumulka, R., and Zanghì, N., 2004, “Bohmian Mechanics and Quantum Field Theory,” Phys. Rev. Lett., 93: 1–4. [Preprint available online.] (Scholar)
  • Dürr, D., Goldstein, S., Tumulka, R., and Zanghì, N., 2005, “Bell-Type Quantum Field Theories,” J. Phys. A: Math. Gen., 38: R1-R43. [Preprint available online.] (Scholar)
  • Dürr, D., Goldstein, S., and Zanghì, N., 2009, “On the Weak Measurement of Velocity in Bohmian Mechanics,” Journal of Statistical Physics, 134: 1023–1032. [Preprint available online.] (Scholar)
  • Eberhard, P. H., 1978, “Bell's Theorem and the Different Concepts of Locality,” Il Nuovo Cimento, 46B: 392–419. (Scholar)
  • Einstein, A., 1949, “Reply to Criticisms,” in Schilpp 1949. (Scholar)
  • Einstein, A., Podolsky, B., and Rosen, N., 1935, “Can Quantum-Mechanical Description of Physical Reality be Considered Complete?,” Phys. Rev., 47: 777–780. (Scholar)
  • Everett III, H., 1957, “'Relative State’ Formulation of Quantum Mechanics,” Rev. Mod. Phys., 29: 454–462. (Scholar)
  • Feynman, R. P., 1967, The Character of Physical Law, Cambridge, MA: MIT Press. (Scholar)
  • Feynman, R. P., Leighton, R. B., and Sands, M., 1963, The Feynman Lectures on Physics, I, New York: Addison-Wesley. (Scholar)
  • Gleason, A. M., 1957, “Measures on the Closed Subspaces of a Hilbert Space,” J. Math. and Mech., 6: 885–893. (Scholar)
  • Goldstein, S., 2001, “Boltzmann's Approach to Statistical Mechanics,” in Bricmont, J., Dürr, D., Galavotti, M. C., Ghirardi, G., Petruccione, F., Nino Zanghì, N., eds., Chance in Physics: Foundations and Perspectives, Lecture Notes in Physics 574, Berlin: Springer-Verlag. [Preprint available online.] (Scholar)
  • Goldstein, S., and Teufel, S., 2001, “Quantum Spacetime without Observers: Ontological Clarity and the Conceptual Foundations of Quantum Gravity,” in Callender, C. and Huggett, N., eds., Physics meets Philosophy at the Planck Scale, Cambridge: Cambridge University Press. [Preprint available online.] (Scholar)
  • Goldstein, S., and Tumulka, R., 2003, “Opposite Arrows of Time Can Reconcile Relativity and Nonlocality,” Classical and Quantum Gravity, 20: 557–564. [Preprint available online.] (Scholar)
  • Goldstein, S., and Struyve, W., 2007, “On the Uniqueness of Quantum Equilibrium in Bohmian Mechanics,” Journal of Statistical Physics, 128: 1197–1209. [Preprint available online.] (Scholar)
  • Holland, P. R., 1993, The Quantum Theory of Motion, Cambridge: Cambridge University Press. (Scholar)
  • Kochen, S., and Specker, E. P., 1967, “The Problem of Hidden Variables in Quantum Mechanics,” J. Math. and Mech. 17: 59–87. (Scholar)
  • Kocsis, S., Braverman, B., Ravets, S., Stevens, M. J., Mirin, R. P., Shalm, L. K., and Steinberg, A. M., 2011, “Observing the Average Trajectories of Single Photons in a Two-Slit Interferometer,” Science, 332: 1170–1173. (Scholar)
  • Leavens, C. R., 1996, “The ‘Tunneling-Time Problem’ for Electrons,” in Cushing et al. 1996. (Scholar)
  • Leggett, A. J., 2002, “Testing the Limits of Quantum Mechanics: Motivation, State of Play, Prospects,” J. Phys. Cond. Mat. 14: R415–451. (Scholar)
  • –––, 2005, “The Quantum Measurement Problem,” Science, 307: 871–872. (Scholar)
  • Lewis, P. J., 2007, “Empty Waves in Bohmian Mechanics,” British Journal for the Philosophy of Science, 58: 787–803. (Scholar)
  • Maudlin, T., 1994, Quantum Non-Locality and Relativity: Metaphysical Intimations of Modern Physics, Cambridge, MA: Blackwell. (Scholar)
  • –––, 2010, “Can the World be Only Wavefunction?” in Saunders, S., Barrett, J., Kent, A., and Wallace, D. (eds.) Many Worlds? Everett, Quantum Theory, & Reality, Oxford: Oxford University Press, pp. 121–143. (Scholar)
  • Mermin, N. D., 1993, “Hidden Variables and the Two Theorems of John Bell,” Rev. Mod. Phys., 65: 803–815. (Scholar)
  • Nerukh, D., and Frederick, J. H., 2000, “Multidimensional Quantum Dynamics with Trajectories: a Novel Numerical Implementation of Bohmian Mechanics,” Chem. Phys. Lett., 332: 145–153. (Scholar)
  • Nikolic, H., 2005, “Relativistic Quantum Mechanics and the Bohmian Interpretation,” Foundations of Physics Letters 18: 549–561. (Scholar)
  • Pauli, W., 1928, in Solvay 1928: 280–282. (Scholar)
  • Penrose, R., 2005, The Road to Reality, New York: Alfred A. Knopf. (Scholar)
  • Philippidis, C., Dewdney, C., and Hiley, B. J., 1979, “Quantum Interference and the Quantum Potential,” Il Nuovo Cimento 52B: 15–28. (Scholar)
  • Putnam, H., 2005, “A Philosopher Looks at Quantum Mechanics (Again),” Brit. J. Phil. Sci., 56: 615–634. (Scholar)
  • Schilpp, P. A., ed., 1949, Albert Einstein, Philosopher-Scientist, Evanston, IL: Library of Living Philosophers. (Scholar)
  • Schrödinger, E., 1935, “Die gegenwärtige Situation in der Quantenmechanik,” Naturwissenschaften, 23: 807–812, 823–828, 844–849; English translation by Trimmer, J. D., 1980, “The Present Situation in Quantum Mechanics: A Translation of Schrödinger's ‘Cat Paradox’ Paper”, Proceedings of the American Philosophical Society, 124: 323–338, reprinted in Wheeler and Zurek 1983. (Scholar)
  • Solvay Congress (1927), 1928, Electrons et Photons: Rapports et Discussions du Cinquième Conseil de Physique tenu à Bruxelles du 24 au 29 Octobre 1927 sous les Auspices de l'Institut International de Physique Solvay, Paris: Gauthier-Villars. (Scholar)
  • Struyve, W., 2010, “Pilot-Wave Theory and Quantum Fields,” Rep. Prog. Phys.73: 106001. (Scholar)
  • Teufel, S., and Tumulka, R., 2005, “Simple Proof for Global Existence of Bohmian Trajectories,” Commun. Math. Phys. 258: 349–365. [Preprint available online.] (Scholar)
  • Valentini, A., 1991, “Signal-Locality, Uncertainty and the Subquantum H-Theorem. II,” Physics Letters A 158: 1–8. (Scholar)
  • –––, 1997, “On Galilean and Lorentz Invariance in Pilot-Wave Dynamics,” Physics Letters A, 228: 215–222. (Scholar)
  • –––, 2010a, “Inflationary Cosmology as a Probe of Primordial Quantum Mechanics,” Phys. Rev. D, 82: 063513. (Scholar)
  • –––, 2010b, “De Broglie-Bohm Pilot-Wave Theory: Many Worlds in Denial?” in Saunders, S., Barrett, J., Kent, A., and Wallace, D. (eds.) Many Worlds? Everett, Quantum Theory, & Reality, Oxford: Oxford University Press, pp. 476–509. (Scholar)
  • Valentini, A., and Westman, H., 2005, “Dynamical Origin of Quantum Probabilities,” Proc. R. Soc. A, 461: 253–272. (Scholar)
  • von Neumann, J., 1932, Mathematische Grundlagen der Quantenmechanik, Berlin: Springer Verlag; English translation by Beyer, R. T., 1955, Mathematical Foundations of Quantum Mechanics, Princeton: Princeton University Press. (Scholar)
  • Wheeler, J. A., and Zurek, W. H., eds., 1983, Quantum Theory and Measurement, Princeton: Princeton University Press. (Scholar)
  • Wigner, E. P., 1976, “Interpretation of Quantum Mechanics,” in Wheeler and Zurek 1983. (Scholar)
  • –––, 1983, “Review of Quantum Mechanical Measurement Problem,” in Meystre, P., and Scully, M. O., eds., Quantum Optics, Experimental Gravity and Measurement Theory, New York: Plenum Press. (Scholar)
  • Wiseman, H. M., 2007, “Grounding Bohmian Mechanics in Weak Values and Bayesianism,” New Journal of Physics, 9: 165. (Scholar)

Generated Sun Mar 19 09:19:04 2017