Linked bibliography for the SEP article "Quantum Computing" by Amit Hagar and Michael Cuffaro

This is an automatically generated and experimental page

If everything goes well, this page should display the bibliography of the aforementioned article as it appears in the Stanford Encyclopedia of Philosophy, but with links added to PhilPapers records and Google Scholar for your convenience. Some bibliographies are not going to be represented correctly or fully up to date. In general, bibliographies of recent works are going to be much better linked than bibliographies of primary literature and older works. Entries with PhilPapers records have links on their titles. A green link indicates that the item is available online at least partially.

This experiment has been authorized by the editors of the Stanford Encyclopedia of Philosophy. The original article and bibliography can be found here.

  • Aaronson, S., 2013, ‘Why Philosophers Should Care about Computational Complexity’, in B. Jack Copeland, Carl J. Posy, Oron Shagrir (eds.), Computability: Turing, Gödel, Church, and Beyond, Cambridge, MA: MIT Press, pp. 261–327. (Scholar)
  • Adleman, L.M., 1994, ‘Molecular computation of solutions to combinatorial problems’, Science, 266: 1021–1024. (Scholar)
  • Aharonov, D., 1998, ‘Quantum computing’, Annual Review of Computational Physics, VI, Singapore: World Scientific. [Preprint available online]. (Scholar)
  • Aharonov, D. and Ben-Or, M., 1997, ‘Fault tolerant computation with constant error’, Proc. ACM Symposium on the Theory of Computing (STOC), 176–188. (Scholar)
  • Albert, D., 1983, ‘On quantum mechanical automata’, Phys. Lett., A 98: 249. (Scholar)
  • Alicki, R., Lidar, D., & Zanardi, P., 2006, ‘Internal consistency of fault tolerant quantum error correction’, Phys. Rev. A, 73: 052311. (Scholar)
  • Barenco, A. et al., 1995, ‘Elementary gates for quantum computation’, Phys. Rev., A 52: 3457–3467. (Scholar)
  • Bell, J.S., 1964, ‘On the Einstein Podolsky Rosen paradox’, Physics, 1: 195–200. (Scholar)
  • Bennett, C. et al., 1997, ‘Strengths and weaknesses of quantum computing’, SIAM Journal on Computing, 26(5): 1510–1523. (Scholar)
  • Biham, E., et al., 2004, ‘Quantum computing without entanglement’, Theoretical Computer Science, 320: 15–33. (Scholar)
  • Bub, J., 2005, ‘Quantum mechanics is about quantum information’, Foundations of Physics, 34: 541–560. (Scholar)
  • Cirac, J.I. and Zoller, P., 1995, ‘Quantum computations with cold trapped ions’, Phys. Rev. Lett., 74: 4091–4094. (Scholar)
  • Copeland, J., 2002, ‘Hypercomputation’, Minds and Machines, 12: 461–502. (Scholar)
  • Cook, S. A., 1971, ‘The complexity of theorem proving procedures’, Proc. 3rd ACM Symposium on Theory of Computing, 151–158. (Scholar)
  • Cuffaro, M. E., 2012, ‘Many Worlds, the Cluster-state Quantum Computer, and the Problem of the Preferred Basis.’ Studies in History and Philosophy of Modern Physics, 43: 35–42. (Scholar)
  • Cuffaro, M. E., forthcoming, ‘The Significance of the Gottesman-Knill Theorem’, The British Journal for the Philosophy of Science. (Scholar)
  • Davis, M., 1958, The Undecidable, New York: Dover. (Scholar)
  • Davis, M., 2003, ‘The myth of hypercomputation’, in C. Teuscher (ed.), Alan Turing, Life and Legacy of a Great Thinker, New York: Springer, pp. 195–212. (Scholar)
  • Deutsch, D., 1985, ‘Quantum theory, the Church Turing principle, and the universal quantum computer’, Proc. Roy. Soc. Lond., A 400: 97–117. (Scholar)
  • Deutsch, D., 1997, The Fabric of Reality. New York: Penguin. (Scholar)
  • Deutsch, D. and Jozsa, R., 1992, ‘Rapid solution of problems by quantum computer’, Proc. Roy. Soc. Lond, A 439: 553–558. (Scholar)
  • Dewdney A. K., 1984, ‘On the spaghetti computer and other analog gadgets for problem solving’, Scientific American, 250(6): 19–26. (Scholar)
  • Duwell, A., 2007, ‘The Many-Worlds Interpretation and Quantum Computation’. Philosophy of Science 74: 1007–1018. (Scholar)
  • DiVincenzo, D., 1995, ‘Two-bit gates are universal for quantum computation’, Phys. Rev., A 51: 1015–1022. (Scholar)
  • Ekert, A. and Jozsa, R., 1996, ‘Quantum computation and Shor’s factoring algorithm’, Rev. Mod. Phys., 68(3): 733–753. (Scholar)
  • Farhi, E. et al., 2001, ‘A quantum adiabatic evolution algorithm applied to random instances of an NP-complete problem’, Science, 292(5516): 472–475.
  • Feynman, R., 1982, ‘Simulating physics with computers’, International Journal of Theoretical Physics, 21: 467–488. (Scholar)
  • Fodor, J., 1974, ‘Special Sciences’, Synthese, 2: 97–115. (Scholar)
  • Fodor, J. and Pylyshyn, Z., 1988, ‘Connectionism and cognitive architecture, a critical analysis’, Cognition, 28: 3–71. (Scholar)
  • Fortnow, L., 2003, ‘One complexity theorist’s view of quantum computing’, Theoretical Computer Science, 292: 597–610. (Scholar)
  • Freedman, M., 1998, ‘P/NP and the quantum field computer’, Proc. Natl. Acad. Sci., 95: 98–101.
  • Gandy, R., 1980, ‘Church’s thesis and principles for mechanisms’, in J. Barwise et al. (eds.), The Kleene Symposium, Amsterdam: North-Holland, pp. 123–148. (Scholar)
  • Garey, M. R. and Johnson, D.S., 1979, Computers and intractability: A guide to the theory of NP-completeness, New York: WH Freeman. (Scholar)
  • Giblin, P., 1993, Primes and Programming, Cambridge, Cambridge University Press. (Scholar)
  • Gottesman, D. and Chuang, I., 1999, ‘Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations’, Nature, 402: 390–393. (Scholar)
  • Grover, L., 1996, ‘A fast quantum mechanical algorithm for database search’, Proc. 28th ACM Symp. Theory of Computing, 212–219.
  • Hagar, A., 2003, ‘A philosopher looks at quantum information theory’, Philosophy of Science, 70: 752–775.
  • Hagar, A., 2009, ‘Active Fault Tolerant Quantum Error Correction: The Curse of The Open System’, Philosophy of Science, 76(4): 506–535. (Scholar)
  • Hagar, A., forthcoming, ‘Ed Fredkin and the Physics of Information: an Inside Story of an Outsider Scientist’. Information and Culture. (Scholar)
  • Hagar, A. and Hemmo, M., 2006, ‘Explaining the unobserved: Why quantum mechanics ain’t only about information’, Foundations of Physics, 36(9): 1295–1324 [Preprint available online] (Scholar)
  • Hagar, A. and Korolev, A., 2007, ‘Quantum hypercomputation: Hype or Computation?’, Philosophy of Science, 74(3): 347–363. (Scholar)
  • Haroche, S. and Raimond, J.M., 1996, ‘Quantum computing: Dream or nightmare?’, Physics Today, 8: 51–52. (Scholar)
  • Hewitt-Horsman, C., 2009, ‘An Introduction to Many Worlds in Quantum Computation’. Foundations of Physics, 39: 869–902. (Scholar)
  • Hogarth, M., 1994, ‘Non-Turing computers and non-Turing computability’, PSA, 94(1): 126–138. (Scholar)
  • Holevo, A.S., 1973, ‘Bounds for the quantity of information transmitted by a quantum communication channel’, Problemy Peredachi Informatsii, 9(3): 3–11. English translation in Problems of Information Transmission, 9: 177–183, 1973. (Scholar)
  • Ingarden, R.S., 1976, ‘Quantum information theory’, Rep. Math. Phys., 10: 43–72. (Scholar)
  • Jozsa, R., 1997, ‘Entanglement and quantum computation’, Ch. 27 in S. Hugget et al. (eds.), The Geometric Universe, Oxford: Oxford University Press. [Preprint available online]. (Scholar)
  • Kieu, T.D., 2002, ‘Quantum Hypercomputability’, Minds and Machines, 12: 541–561. (Scholar)
  • Kieu, T.D., 2004, ‘A reformulation of Hilbert’s Tenth Problem through quantum mechanics’, Proc. Royal Soc., A 460: 1535–1545. (Scholar)
  • Knill, E. et al., 2000, ‘An algorithmic benchmark for quantum information processing’, Nature, 404: 368–370. (Scholar)
  • Levin, L., 2003, ‘Polynomial time and extravagant models’, Problems of Information Transmission, 39(1): 92–103. (Scholar)
  • Lidar, D., Chuang, I., & Whaley, B., 2010, ‘Decoherence free subspaces for quantum computation’, Phys. Rev. Lett. 81: 2594–2597. (Scholar)
  • Linden, N. and Popescu, S., 1999, ‘Good dynamics versus bad kinematics: Is entanglement needed for quantum computation?’, Phys. Rev. Lett., 87(4): 047901. [Preprint available online]. (Scholar)
  • Lipton, R., 1995, ‘Using DNA to solve NP-complete problems’, Science, 268: 542–545. (Scholar)
  • Manin, Y., 1980, Computable and Uncomputable, Moscow: Sovetskoye Radio. (Scholar)
  • Messiah, A., 1961, Quantum Mechanics (Volume II), New York: Interscience Publishers. (Scholar)
  • Moore, C., 1990, ‘Unpredictability and undecidability in dynamical systems’, Phys. Rev. Lett., 64: 2354–2357. (Scholar)
  • Myers, J., 1997, ‘Can a universal quantum computer be fully quantum?’, Phys. Rev. Lett., 78(9): 1823–1824. (Scholar)
  • Nielsen, M., 2003, ‘Quantum computation by measurement and quantum memory’, Phys. Lett., A 308: 96–100. (Scholar)
  • Nielsen, M.A. and Chuang I.L., 2000, Quantum Computation and Quantum Information, Cambridge: Cambridge University Press. (Scholar)
  • Pitowsky, I., 1990, ‘The physical Church thesis and physical computational complexity, Iyyun, 39: 81–99. (Scholar)
  • Pitowsky. I., 1996, ‘Laplace’s demon consults an oracle: The computational complexity of predictions’, Studies in the History and Philosophy of Modern Physics, 27: 161–180. (Scholar)
  • Pitowsky, I., 2002, ‘Quantum speed-up of computations’, Philosophy of Science, 69: S168–S177. (Scholar)
  • Pitowsky, I. and Shagrir, O., 2003, ‘Physical hypercomputation and the Church-Turing thesis’, Minds and Machines, 13: 87–101. (Scholar)
  • Poplavskii, R.P, 1975, ‘Thermodynamical models of information processing’, (in Russian). Uspekhi Fizicheskikh Nauk, 115(3): 465–501. (Scholar)
  • Pour-el, M. and Richards, I., 1981, The wave equation with computable initial data such that its unique solution is not computable’, Advances in Mathematics, 39: 215–239. (Scholar)
  • Preskill, J., 1998, ‘Quantum computing: Pro and Con’, Proc. Roy. Soc. Lond., A 454: 469–486. (Scholar)
  • Pylyshyn, Z., 1984, Computation and Cognition: Toward a Foundation for Cognitive Science, Cambridge: MIT Press. (Scholar)
  • Rabin, M., 1976, ‘Probabilistic algorithms’, in J. Traub (ed.) Algorithms and Complexity: New Directions and Recent Results, New York: Academic Press, pp. 21–39. (Scholar)
  • Reichardt, B.W., 2004, ‘The quantum adiabatic optimization algorithm and local minima’, Proceedings of the 36th Symposium on Theory of Computing (STOC), 502–510. (Scholar)
  • Rivset R. et al., 1978, ‘A method for obtaining digital signatures and public-key cryptosystems’, Communications of the ACM, 21(2): 120–126.
  • Schrader et al., 2004, ‘Neutral atoms quantum register’, Phys. Rev. Lett., 93: 150501. (Scholar)
  • Sieg W. and Byrnes J., 1999, ‘An abstract model for parallel computations’, The Monist, 82: 150–164. (Scholar)
  • Simon, D.R., 1994, ‘On the power of quantum computation’, Proceedings of the 35th Annual IEEE Symposium on Foundations of Computer Science, pp. 116–123; reprinted, SIAM Journal on Computing, 26(5) (1997): 1474–1483. (Scholar)
  • Shor, P., 1994 ‘Algorithms for quantum computation: Discrete logarithms and factoring’, Proceedings of the 35th Annual IEEE Symposium on Foundations of Computer Science, pp. 124–134. (Scholar)
  • Shor, P., 1995, ‘Scheme for reducing decoherence in quantum computer memory’, Phys. Rev., A 52: 2493–2496. (Scholar)
  • Shor, P., 1996, ‘Fault-tolerant quantum computation’, Proceedings of the 37th Annual IEEE Symposium on Foundations of Computer Science, pp. 56–65. (Scholar)
  • Shor, P., 2004, ‘Progress in quantum computing’, Quantum Information Processing, 3: 5–13. [Preprint available online]. (Scholar)
  • Shor, P. and DiVincenzo, D., 1996m ‘Fault tolerant error correction with efficient quantum codes’, Phys. Rev. Lett., 77: 3260–3263. (Scholar)
  • Steane, A.M., 1996, ‘Multiple particle interference and quantum error correction’, Proc. Roy. Soc. Lond., A 452: 2551–2577. (Scholar)
  • Steane, A.M., 2003, ‘A Quantum Computer Only Needs One Universe’. Studies in History and Philosophy of Modern Physics, 34: 469–478. (Scholar)
  • Turing, A., 1936, ‘On computable numbers, with an application to the Entscheidungsproblem’, reprinted in M. Davis (ed.), The Undecidable, New York: Raven Press, 1965, 116–154. (Scholar)
  • Unruh,W.G., 1995, ‘Maintaining coherence in quantum computers’, Phys. Rev., A 51: 992–997. (Scholar)
  • Vergis, A. et al., 1986, ‘The complexity of analog computation’, Mathematics and Computers in Simulation, 28: 91–113. (Scholar)
  • Vidal, G., 2003, ‘Efficient classical simulation of slightly entangled quantum computations’, Phys. Rev. Lett., 91: 147902. (Scholar)
  • Wallace, D., 2012, The Emergent Multiverse. Oxford: Oxford University Press. (Scholar)
  • Wiesner, S., 1983, ‘Conjugate coding’, Sigact news, 18: 78–88. (Scholar)
  • Witten, E., 1989, ‘Quantum field theory and the Jones polynomial’, Comm. Math. Phys., 121: 351–399. (Scholar)
  • Wolfram, S., 1985, ‘Undecidability and intractability in theoretical physics’, Phys. Rev. Lett., 54: 735. (Scholar)

Generated Sun Sep 17 09:37:09 2017