Linked bibliography for the SEP article "Automated Reasoning" by Frederic Portoraro
This is an automatically generated and experimental page
If everything goes well, this page should display the bibliography of the aforementioned article as it appears in the Stanford Encyclopedia of Philosophy, but with links added to PhilPapers records and Google Scholar for your convenience. Some bibliographies are not going to be represented correctly or fully up to date. In general, bibliographies of recent works are going to be much better linked than bibliographies of primary literature and older works. Entries with PhilPapers records have links on their titles. A green link indicates that the item is available online at least partially.
This experiment has been authorized by the editors of the Stanford Encyclopedia of Philosophy. The original article and bibliography can be found here.
- Alama, J., P. Oppenheimer, and E. Zalta, “Automating
Leibniz’s Theory of Concepts”, CADE 25:
Proceedings of the 25th International Conference on Automated
Deduction, (Lecture Notes in Artificial Intelligence: Volume
9195), A. Felty and A. Middeldorp (eds.), Berlin: Springer, pp. 73–97. (Scholar)
- Anderson, C. A., 1990, “Some Emendations of Gödel’s
Ontological Proof”, Faith and Philosophy, 7(3):
291–303. (Scholar)
- Anderson, A. R. and N. D. Belnap, 1962, “The Pure Calculus of Entailment”, Journal of Symbolic Logic, 27: 19–52. (Scholar)
- Andrews, P. B., 1981, “Theorem-Proving via General
Matings”, Journal of the Association for Computing
Machinery, 28 (2): 193–214. (Scholar)
- Andrews, P. B., M. Bishop and C. E. Brown, 2006, “TPS: A Hybrid
Automatic-Interactive System for Developing Proofs”, Journal
of Applied Logic, 4: 367–395. (Scholar)
- Andrews, P. B., M. Bishop, S. Issar, D. Nesmith, F. Pfenning and
H. Xi, 1996, “TPS: A Theorem-Proving System for Classical Type
Theory”, Journal of Automated Reasoning, 16 (3):
321–353. (Scholar)
- Appel, K., and W. Haken, 1977, “Every Planar Map is Four
Colorable Part I. Discharging”, Illinois Journal of
Mathematics, 21: 429–490. (Scholar)
-
Aransay, J., J. Divansón, 2017, “A Formalization in HOL of the Fundamental Theorem of Linear Algebra and Its Application to the Solution of the Least Squares Problem”, Journal of Automated Reasoning, 58 (4): 509–535.
(Scholar)
- Avigad, J. and J. Harrison, 2014, “Formally Verified
Mathematics”, Communications of the ACM, 57 (4):
66–75. (Scholar)
-
Avigad, J., J. Hölzl and L. Serafin, 2017, “A Formally Verified Proof of the Central Limit Theorem”, Journal of Automated Reasoning, 59 (4): 389–423.
(Scholar)
- Baader, F. and T. Nipkow, 1998, Term Rewriting and All
That, Cambridge: Cambridge University Press. (Scholar)
- Bachmair, L. and H. Ganzinger, 1994, “Rewrite-Based
Equational Theorem Proving with Selection and Simplification”,
Journal of Logic and Computation, 4 (3): 217–247. (Scholar)
- Ballarin, C., 2014, “Locales: A Module System for
Mathematical Theories”, Journal of Automated Reasoning,
52 (2): 123–153. (Scholar)
- Bancerek, G. and P. Rudnicki, 2003, “Information Retrieval
in MML”, Proceedings of the Second International Conference
on Mathematical Knowledge Management, LNCS 2594, Heidelberg:
Springer-Verlag, pp. 119-132 (Scholar)
- Bancerek, G., C. Byliński, A. Grabowski, A. Korniłowicz,
R. Matuszewski, A. Naumowicz and K. Pąk, 2018, “The Role of
the Mizar Mathematical Library for Interactive Proof Development in
Mizar”, Journal of Automated Reasoning (Special Issue:
Milestones in Interactive Theorem Proving), 61 (9):
9–31. (Scholar)
- Barret C., M. Deters, L. de Moura, A. Oliveras and A. Stump, 2013,
“6 Years of SMT-COMP”, Journal of Automated
Reasoning, 50 (3): 243–277. (Scholar)
- Basin, D. A. and T. Walsh, 1996, “A Calculus for and
Termination of Rippling”, Journal of Automated
Reasoning, 16 (1–2): 147–180. (Scholar)
- Bauer, A., E. Clarke and X. Zhao, 1998, “Analytica: An
Experiment in Combining Theorem Proving and Symbolic
Computation”, Journal of Automated Reasoning, 21:
295–325. (Scholar)
- Beckert, B., R. Hanle and P.H. Schmitt (eds.), 2007,
“Verification of Object-Oriented Software: The KeY
Approach”, Lecture Notes in Artificial Intelligence
(Volume 4334), Berlin: Springer-Verlag. (Scholar)
-
Beeson M., 2001, “Automatic Derivation of the Irrationality of e”, Journal of Symbolic Computation, 32 (4): 333–349.
(Scholar)
-
Beeson,M. and L. Wos, 2017, “Finding Proofs in Tarskian Geometry”, Journal of Automated Reasoning, 58 (1), 181–207.
(Scholar)
-
Bentkamp, A., J.C. Blanchette and D. Klakow, 2019, “A Formal Proof of the Expressiveness of Deep Learning”, Journal of Automated Reasoning, 63 (2), 347–368.
(Scholar)
-
Bentkamp, A., J. Blanchette, S. Tourret, P. Vukmirović and U. Waldmann, 2021, “Superposition with Lambdas”, Journal of Automated Reasoning, 65 (7), 893–940.
(Scholar)
-
Benzmüller, C., 2019, “Universal (Meta-) Logical Reasoning: Recent Successes”, Science of Computer Programming, Vol. 172, 48–62.
(Scholar)
- Benzmüller, C. and B. W. Paleo, 2014, “Automating
Gödel’s Ontological Proof of God’s Existence with Higher-Order
Automated Theorem Provers”, ECAI 2014: Proceedings of the
21st European Conference on Artificial Intelligence, T. Schaub et
al. (eds.), IOS Press, pp. 93–98. (Scholar)
- –––, 2015, “Higher-Order
Modal Logics: Automation and Applications”, Reasoning Web
2015, LNCS 9203, W. Faber and A. Paschke (eds.), pp.
32–74. (Scholar)
- Benzmüller C., X. Parent and L. van der Torre, 2018, “A
Deontic Logic Reasoning Infrastructure”, CiE2018:
Proceedings of the 14th Conference on Computability in Europe,
LNCS 10936, F. Manea et al. (eds.), pp. 60–69. (Scholar)
- Benzmüller C. and L. C. Paulson, 2013, “Quantified Multimodal Logics in Simple Type Theory”, Logica Universalis, 7 (1): 7–20. (Scholar)
-
Benzmüller, C. and D. S. Scott, 2020, “Automating Free Logic in HOL, with an Experimental Application in Category Theory”, Journal of Automated Reasoning, 64 (1), 53–72.
(Scholar)
-
Benzmüller, C., A. Steen and M. Wisniewski, 2017, “Leo-III version 1.1 (system description)”, Logic for Programming, Artificial Intelligence, and Reasoning (LPAR)—Short Papers, T. Eiter, D. Sands, G. Sutcliffe and A. Voronkov (eds.), Kalpa Publications in Computing, Volume 1: 11–26.
(Scholar)
- Benzmüller, C., N. Sultana, L. C. Paulson and F. Theiß, 2015, “The Higher-Order Prover LEO-II”, Journal of Automated Reasoning, 55 (4): 389–404. (Scholar)
- Berndt, B., 1985, Ramanujan’s Notebooks (Part I), Berlin:
Springer-Verlag, pp. 25-43. (Scholar)
-
Beyer, D., M. Dangl and P. Wendler, 2018, “A Unifying View on SMT-Based Software Verification”, Journal of Automated Reasoning, 60 (3): 299–335.
(Scholar)
-
Beyer, D., M. Dangl and P. Wendler, 2021, “Correction to: A Unifying View on SMT-Based Software Verification”, Journal of Automated Reasoning, 65 (3): 461.
(Scholar)
- Bibel, W., 1981, “On Matrices with Connections”,
Journal of the Association of Computing Machinery, 28 (4):
633–645. (Scholar)
- Blanchette, J. C., S. Böhme and L. C. Paulson, 2013,
“Extending Sledgehammer with SMT Solvers”, Journal of
Automated Reasoning, 51 (1): 109–128. (Scholar)
- Blanchette, J. C. and T. Nipkow, 2010, “Nitpick: A
Counterexample Generator for Higher-Order Logic Based on a Relational
Model Finder”, ITP2010: First International Conference on
Interactive Theorem Proving, LNCS 6172, M. Kaufmann and L. C.
Paulson (eds.), pp. 131–146. (Scholar)
- Bledsoe, W. W., 1977, “Non-resolution Theorem Proving”, Artificial Intelligence, 9: 1–35. (Scholar)
- Bledsoe, W. W. and M. Tyson, 1975, “The UT Interactive
Prover”, Memo ATP-17A, Department of Mathematics,
University of Texas. (Scholar)
-
Boender, J., F. Kammüller and R. Nagarajan, 2015, “Formalization of Quantum Protocols using Coq”, 12th International Workshop on Quantum Physics and Logic (QPL), Oxford, arXiv preprint arXiv:1511.01568.
(Scholar)
- Bofill, M., R. Nieuwenhuis, A. Oliveras, E. Rodriguez-Carbonell
and A. Rubio, 2008, “A Write-Based Solver for SAT Modulo the
Theory of Arrays”, Formal Methods in Computer-Aided Design
(FMCAD’08), pp. 1–8. (Scholar)
- Bonacina, M. P., 1999, “A Taxonomy of Theorem-Proving
Strategies”, Artificial Intelligence Today, (Lecture
Notes in Computer Science: Volume 1600), Berlin: Springer-Verlag, pp.
43–84. (Scholar)
-
Bordg, A., H. Lachnitt and Y. He, 2021, “Certified Quantum Computation in Isabelle/HOL”, Journal of Automated Reasoning, 65 (5): 691–709.
(Scholar)
- Boyer R., et al., 1994, “The QED Manifesto”,
CADE-12: Proceedings of the 12th International Conference on
Automated Deduction, (Lecture Notes in Artificial Intelligence:
Volume 814), A. Bundy (ed.), Berlin: Springer-Verlag, pp.
238–251. (Scholar)
- Boyer, R. S., M. Kaufmann and J. S. Moore, 1995, “The
Boyer-Moore Theorem Prover and its Interactive Enhancement”,
Computers and Mathematics with Applications, 29:
27–62. (Scholar)
- Boyer, R.S. and J. S. Moore, 1979, A Computational Logic, New York: Academic Press. (Scholar)
-
Brakensiek, J., M. Heule, J. Mackey and D. Narváez, 2022, “The Resolution of Keller’s Conjecture”, Journal of Automated Reasoning, 66 (3): 277–300.
(Scholar)
-
Bridge, J.P., S.B. Holden and L.C. Paulson, 2014, “Machine Learning for First-Order Theorem Proving”, Journal of Automated Reasoning, 53 (2), 141–172.
(Scholar)
- Brown, C. E., 2012, “Satallax: An Automatic Higher-Order
Prover”, Automated Reasoning: Proceedings of the 6th
International Joint Conference on Automated Reasoning (IJCAR
2012), LNAI 7364, B. Gramlich et al. (eds.), pp. 111–117,
Springer-Verlag. (Scholar)
- –––, 2013, “Reducing Higher-Order Theorem Proving
to a Sequence of SAT Problems”, Journal of Automated
Reasoning, 51 (1): 57–77. (Scholar)
-
Buchberger B., T. Jebelean, T. Kutsia, A. Maletzky and W. Windsteiger, 2016, “Theorema 2.0: Computer-Assisted Natural-Style Mathematics”, Journal of Formalized Reasoning, 9 (1): 149–185.
(Scholar)
- Bundy, A., 2011, “Automated theorem proving: a practical
tool for the working mathematician?”, Annals of Mathematics
and Artificial Intelligence, 61 (1): 3–14. (Scholar)
- Bundy, A., F. van Harmelen, J. Hesketh and A. Smaill, 1991,
“Experiments with Proof Plans for Induction”, Journal
of Automated Reasoning, 7 (3): 303–324. (Scholar)
- Bundy, A., A. Stevens, F. van Harmelen, A. Ireland and A. Smaill, 1993, “Rippling: A Heuristic for Guiding Inductive Proofs”, Artificial Intelligence, 62: 185–253. (Scholar)
- Buresh-Oppenheim, J. and T. Pitassi, 2007, “The Complexity of Resolution Refinements”, Journal of Symbolic Logic, 72 (4): 1336–1352. (Scholar)
-
Chan, HL. and M. Norrish, 2019, “Classification of Finite Fields with Applications”, Journal of Automated Reasoning, 63 (3): 667–693.
(Scholar)
- Chang, C. L. and R. C. T. Lee, 1973, Symbolic Logic and Mechanical Theorem Proving, New York: Academic Press. (Scholar)
- Chou, S., 1987, Mechanical Geometry Theorem Proving,
Dordrecht: Kluwer Academic Publishers. (Scholar)
- Church, A., 1936a, “An unsolvable problem of elementary number theory”, American Journal of Mathematics, 58 (2): 345–363. (Scholar)
- –––, 1936b, “A note on the Entscheidungsproblem”, Journal of Symbolic Logic, 1 (1): 40–41. (Scholar)
- –––, 1940, “A Formulation of the Simple Theory of Types”, Journal of Symbolic Logic, 5: 56–68. (Scholar)
- Claessen, K. and N. Sörensson, 2003, “New Techniques
that Improve MACE-style Finite Model Finding”, Proceedings
of the CADE-19 Workshop: Model Computation – Principles,
Algorithms, Applications, P. Baumgartner and C. Fermueller
(eds.) (Scholar)
- Clarke, E. and X. Zhao, 1994, “Combining Symbolic
Computation and Theorem Proving: Some Problems of Ramanujan”,
CADE-12: Proceedings of the 12th International Conference on
Automated Deduction, (Lecture Notes in Artificial Intelligence:
Volume 814), A. Bundy (ed.), Berlin: Springer-Verlag, pp.
758-763. (Scholar)
- Clocksin, W. F. and C. S. Mellish, 1981, Programming in
Prolog, Berlin: Springer-Verlag. (Scholar)
- Colmerauer, A., H. Kanoui, R. Pasero and P. Roussel, 1973, Un
Système de Communication Homme-machine en Français,
Rapport, Groupe Intelligence Artificielle, Université d’Aix
Marseille. (Scholar)
- Constable, R. L., S. F. Allen, H. M. Bromley, W.R. Cleaveland, J.
F. Cremer, R. W. Harper, D. J. Howe, T. B. Knoblock, N. P. Mendler, P.
Panangaden, J. T. Sasaki and S. F. Smith, 1986, Implementing
Mathematics with the Nuprl Proof Development System, Englewood
Cliffs, NJ: Prentice Hall. (Scholar)
- Cook, S. A., 1971, “The complexity of Theorem-Proving
Procedures”, Proceedings of the 3rd Annual ACM Symposium on
Theory of Computing, New York: Association for Computing
Machinery, pp. 151–158. (Scholar)
- Coquand, T. and G. Huet, 1988, “The Calculus of Constructions”, Information and Computation - Semantics of Data Types, A. R. Meyer (ed.), 76 (2–3): 95–120. (Scholar)
- Coquand, T. and C. Paulin-Mohring, 1988, “Inductively
Defined Types”, COLOG88: Proceedings of the International
Conference on Computer Logic, P. Martin-Löf and G. Mints
(eds.), LNCS 417, pp. 50–66. (Scholar)
- Davis, M., G. Logemann and D. Loveland, 1962, “A Machine
Program for Theorem-Proving”, Communications of the
Association for Computing Machinery, 5 (7): 394–397. (Scholar)
- Davis, M. and H. Putnam, 1960, “A Computing Procedure for
Quantification Theory”, Journal of the Association for
Computing Machinery, 7 (3): 201–215. (Scholar)
- de Bruijn, N. G., 1968, “Automath, a Language for
Mathematics”, in Automation of Reasoning (Volume 2), J.
Siekmann and G. Wrighston (eds.), Berlin: Springer-Verlag, 1983, pp.
159–200. (Scholar)
- de Moura, L., 2007, “Developing Efficient SMT
Solvers”, Proceedings of the CADE-21 Workshop on Empirically
Successful Automated Reasoning in Large Theories, G. Sutcliffe,
J. Urban and S. Schulz (eds.), Bremen. (Scholar)
- Denney, E., B. Fischer and J. Schumann, 2004, “Using
Automated Theorem Provers to Certify Auto-generated Aerospace
Software”, Automated Reasoning, Second International Joint
Conference (IJCAR) (Lecture Notes in Artificial Intelligence:
Volume 3097), D. Basin and M. Rusinowitch (eds.), Berlin:
Springer-Verlag, pp. 198-212. (Scholar)
- Denney, E., J. Power and K. Tourlas, 2006, “Hiproofs: A
Hierarchical Notion of Proof Tree”, Proceedings of the 21st
Annual Conference on Mathematical Foundations of Programming Semantics
(MFPS XXI) (Electronic Notes in Theoretical Computer Science,
Vol. 155), pp. 341–359. (Scholar)
-
Deutsch, D., 1982, “Quantum theory, the Church-Turing principle and the universal quantum computer”, Proceedings of the Royal Society of London A, 400: 97–117.
(Scholar)
-
Dieks, D., 1982, “Communication by EPR devices”, Physics Letters A, 92: 271–272.
(Scholar)
-
Eisert, J., M. Wilkens and M. Lewenstein, 1999, “Quantum games and quantum strategies”, Physical Review Letters, 83: 3077–3080.
(Scholar)
-
–––, 2020, “Erratum: quantum games and quantum strategies”, [Physical Review Letters, 83: 3077–3080], Physical Review Letters, 124: 139901.
(Scholar)
- Ernst, Z., B. Fitelson, K. Harris and L. Wos, 2002, “Shortest Axiomatizations of Implicational S4 and S5”, Notre Dame Journal of Formal Logic, 43 (3): 169–179. (Scholar)
- Farmer, W. M., J. D. Guttman and F. J. Thayer, 1993, “IMPS:
An Interactive Mathematical Proof System”, Journal of
Automated Reasoning, 11 (2): 213–248. (Scholar)
- Fitelson B. and E. Zalta, 2007, “Steps Toward a
Computational Metaphysics”, Journal of Philosophical
Logic, 36 (2): 227–247. (Scholar)
- Fitting, M., 1990, First-Order Logic and Automated Theorem
Proving, Berlin: Springer-Verlag. (Scholar)
- –––, 2002, Types, Tableaus and Gödel’s God.
Kluwer. (Scholar)
- Fuenmayor, D. and C. Benzmüller, 2017, “Automating
Emendations of the Ontological Argument in Intensional Higher-Order
Modal Logic”, KI 2017: Advances in Artificial Intelligence -
Proceedings of the 40th Annual German Conference on AI, LNCS
10505, G. Kern-Isberner et al. (eds.), pp. 114-127. (Scholar)
- Furbach , U., 1994, “Theory Reasoning in First Order
Calculi”, Management and Processing of Complex Data
Structures, (Lecture Notes in Computer Science Volume 777), pp.
139–156. (Scholar)
- Furbach, U., C. Schon and F. Stolzenburg, 2014, “Automated
Reasoning in Deontic Logic”, MIWAI2014: Proceedings of the
8th Multi-disciplinary International Workshop on Artificial
Intelligence, LNAI 8875, M. N. Murty et al. (eds.), pp.
57–68. (Scholar)
-
Ganesalingam, M. and W. T. Gowers, 2017, “A Fully Automatic Theorem Prover with Human-Style Output”, Journal of Automated Reasoning, 58 (2): 253–291.
(Scholar)
- Ganzinger, H., G. Hagen, R. Nieuwenhuis, A. Oliveras, C. Tinelli,
2004, “DPLL(T): Fast Decision Procedures”, Computer
Aided Verification, (Lecture Notes in Computer Science: Volume
3114), pp. 175–188. (Scholar)
- Gentzen, G., 1935, “Investigations into Logical
Deduction”, in Szabo 1969, pp. 68–131. (Scholar)
- Giarratano, J. and G. Riley, 2004, Expert Systems: Principles
and Programming, 4th edition, Boston, MA: PWS Publishing Co. (Scholar)
- Gödel, K., 1970, “Appendix A: Notes in Kurt
Gödel’s Hand“, in Sobel 2004, pp. 144–145. (Scholar)
- Gordon, M. J. C. and T. F. Melham, eds., 1993, Introduction to
HOL: A Theorem Proving Environment for Higher Order Logic,
Cambridge: Cambridge University Press. (Scholar)
- Gordon, M. J. C., A. J. Milner and C. P. Wadsworth, 1979, Edinburgh LCF: A Mechanised Logic of Computation (LNCS 78), Berlin: Springer-Verlag. (Scholar)
- Gorenstein, D., 1982, Finite Simple Groups: An Introduction to
their Classification (University Series in Mathematics), New
York: Plenum Press. (Scholar)
- Green, C., 1969, “Application of Theorem Proving to Problem
Solving”, IJCAI’69 Proceedings of the 1st international
joint conference on Artificial intelligence, San Francisco:
Morgan Kaufmann, pp. 219–239 (Scholar)
- Haack, S., 1978, Philosophy of Logics, Cambridge: Cambridge University Press. (Scholar)
- Hales, T. C., 2005a, “A proof of the Kepler
Conjecture”, Annals of Mathematics, 162 (3):
1065–1185. (Scholar)
- –––, 2006, “Introduction to the Flyspeck
Project”, Dagstuhl Seminar Proceedings 05021: Mathematics,
Algorithms, Proofs, T. Coquand et al. (eds.) (Scholar)
- Hales, T. C. et al., 2015, “A Formal Proof of the
Kepler Conjecture”, arXiv:1501.02.02155 9 [mat.MG],
Cornell University Library. (Scholar)
- Harrison, J., 2000, “High-Level Verification Using Theorem
Proving and Formalized Mathematics”, CADE-17: Proceedings of
the 17th International Conference on Automated Deduction,
(Lecture Notes in Artificial Intelligence: Volume 1831), D. McAllester
(ed.), Berlin: Springer-Verlag, pp. 1-6. (Scholar)
- –––, 2006, “Verification: Industrial
Applications”, Proof Technology and Computation, H.
Schwichtenberg and K. Spies (eds.), Amsterdam: IOS Press, pp.
161–205. (Scholar)
- –––, 2009, “Formalizing an Analytic Proof of the
Prime Number Theorem”, Journal of Automated Reasoning
(Special Issue: A Festschrift for Michael J. C. Gordon), 43 (3):
243–261. (Scholar)
- Harrison, J. and L. Théry, 1998, “A Skeptic’s
Approach to Combining HOL and Maple”, Journal of Automated
Reasoning, 21: 279–294. (Scholar)
- Herbrand, J., 1930, Recherches sur la Theorie de la Demonstration, Travaux de la Societé des Sciences at des Lettres de Varsovie, Classe III, Science Mathématique et Physique, No. 33, 128. (Scholar)
- Heule, M. J. H. and O. Kullmann, 2017, “The Science of Brute
Force”, Communications of the ACM, 60 (8):
70–79. (Scholar)
- Heule, M. J. H., O. Kullmann and V. W. Marek, 2016, “Solving
and Verifying the Boolean Pythagorean Triples problem via
Cube-and-Conquer”, Theory and Applications of Satisfiability
Testing — SAT 2016, 19th International Conference, LNCS
9710, N. Creignou and D. Le Berre (eds.), pp. 228–245. (Scholar)
- Hilbert, D. and W. Ackermann, 1928, Principles of Mathematical
Logic, L. Hammond, G. Leckie, and F. Steinhardt (trans.), New
York: Chelsea Publishing Co., 1950. (Scholar)
- Huet, G. P., 1975, “A Unification Algorithm for Typed
\(\lambda\)-calculus”, Theoretical Computer Science, 1:
27–57. (Scholar)
-
Kaliszyk, C. and J. Urban, 2014, “Learning-Assisted Automated Reasoning with Flyspeck”, Journal of Automated Reasoning, 53 (2), 173–213.
(Scholar)
- Kanckos, A., and B. W. Paleo, 2017, “Variants of
Gödel’s Ontological Proof in a Natural Deduction Calculus”,
Studia Logica, (3): 553–586. (Scholar)
- Kerber, M., Kohlhase and V. Sorge, 1998, “Integrating
Computer Algebra into Proof Planning”, Journal of Automated
Reasoning, 21: 327–355. (Scholar)
-
Kirchner, D., 2017, “Representation and Partial Automation of the Principia Logico-Metaphysica in Isabelle/HOL”, Archive of Formal Proofs. Formal proof development. ISSN: 2150–914x. URL: http://isa-afp.org/entries/PLM.html.
(Scholar)
-
–––, 2021, Computer-Verified Foundations of Metaphysics and an Ontology of Natural Numbers in Isabelle/HOL, Ph.D. Dissertation, Fachbereich Mathematik und Informatik, Freie Universität Berlin.
(Scholar)
-
Kirchner, D., C. Benzmüller and E. Zalta, 2019, “Computer Science and Metaphysics: A Cross-Fertilization”, Open Philosophy, 2: 230–251.
(Scholar)
-
–––, 2020, “Mechanizing Principia Logico-Metaphysica in Functional Type Theory", Review of Symbolic Logic, 13 (1): 206–18.
(Scholar)
- Knuth, D. and P. B. Bendix, 1970, “Simple Word Problems in
Universal Algebras”, in Computational Problems in Abstract
Algebra, J. Leech (ed.), Oxford, New York: Pergamon Press, pp.
263–297. (Scholar)
- Kleene, S. C., 1962, Introduction to Metamathematics,
Amsterdam: North-Holland. (Scholar)
- Kovács, L. and A. Voronkov, 2013, “First-Order
Theorem Proving and VAMPIRE”, CAV 2013: Proceedings of the
International Conference on Computer Aided Verification, N.
Sharygina and H. Veith (eds.), LNCS 8044, pp. 1–35. (Scholar)
- Kowalski, R., 1974, “Predicate Logic as a Programming
Language”, Proceedings of the International Federation for
Information Processing (Proc. IFIP ’74), Amsterdam: North
Holland, pp. 569–574. (Scholar)
- Küchlin, W. and C. Sinz, 2000, “Proving Consistency
Assertions for Automotive Product Data Management”, Journal
of Automated Reasoning (Special Issue: Satisfiability in the Year
2000), I. P. Gent and T. Walsh (eds.), 24 (1–2):
145–163. (Scholar)
- Kühlwein, D., T. van Laarhoven, E. Tsivtsivadze, J. Urban and
T. Heskes, 2012, “Overview and Evaluation of Premise Selection
Techniques for Large Theory Mathematics”, Automated
Reasoning: 6th International Joint Conference, IJCAR 2012,
(Lecture Notes in Computer Science: Volume 7364), B. Gramlich, D.
Miller and U. Sattler (eds.), Manchester, UK: Springer-Verlag, pp.
378–392. (Scholar)
- Lemmon, E. J., C. A. Meredith, D. Meredith, A. N. Prioir and I. Thomas, 1957, Calculi of Pure Strict Implication, Philosophy Dept., Canterbury University, Christchurch, New Zealand. (Scholar)
- Lloyd, J. W., 1984, Foundations of Logic Programming,
Berlin: Springer-Verlag. (Scholar)
- Loveland, D. W., 1969, “A Simplified Format for the Model
Elimination Procedure”, Journal of the Association for
Computing Machinery, 16: 349–363. (Scholar)
- –––, 1970, “A Linear Format for
Resolution”, Proceedings of the IRIA Symposium on Automatic
Demonstration, New York: Springer-Verlag, pp. 147-162. (Scholar)
- –––, 1978, Automated Theorem Proving: A Logical Basis, Amsterdam: North Holland. (Scholar)
- Luckham, D., 1970, “Refinements in Resolution Theory”,
Proceedings of the IRIA Symposium on Automatic Demonstration,
New York: Springer-Verlag, pp. 163-190. (Scholar)
-
Maggesi, M., 2018, “A Formalization of Metric Spaces in HOL Light”, Journal of Automated Reasoning, 60 (2): 237–254.
(Scholar)
- Martin-Löf, P., 1982, “Constructive Mathematics and
Computer Programming”, Logic, Methodology and Philosophy of
Science (Volume IV), Amsterdam: North-Holland, pp. 153-175. (Scholar)
- Massacci, F. and L. Marraro, 2000, “Logical Cryptanalysis:
Encoding and Analysis of the U.S. Data Encryption Standard”,
Journal of Automated Reasoning (Special Issue: Satisfiability
in the Year 2000), I. P. Gent and T. Walsh (eds.), 24 (1–2):
165–203. (Scholar)
- McCarthy, J., 1962, “Towards a Mathematical Science of Computation”, International Federation for Information Processing Congress (Munich, 1962), Amsterdam: North Holland, pp. 21–28. (Scholar)
- McCharen, J. D., R. A. Overbeek and L. A. Wos, 1976,
“Problems and Experiments for and with Automated Theorem-Proving
Programs”, IEEE Transactions on Computers 8:
773–782. (Scholar)
- McCune, W., 1997, “Solution of the Robbins Problem”,
Journal of Automated Reasoning, 19 (3): 263–276. (Scholar)
- –––, 2001, MACE 2.0 Reference Manual and Guide,
Mathematics and Computer Science Division, ANL/MSC-TM-249, Argonne
National Laboratory. (Scholar)
- McRobie, M. A., 1991, “Automated Reasoning and Nonclassical
Logics: Introduction”, Journal of Automated Reasoning,
7 (4): 447–451. (Scholar)
- Meng, J. and L. C. Paulson, 2008, “Translating higher-order
clauses to first-order clauses”, Journal of Automated
Reasoning, 40 (1): 35–60. (Scholar)
- Meredith, C. A. and A. N. Prior, 1964, “Investigations into Implicational S5”, Z. Math. Logik Grundlagen Math., 10:203–220. (Scholar)
- Meyer, J.-J. Ch., 2014, “Logics for Intelligent Agents and
Multi-Agent Systems”, Handbook of the History of Logic,
Volume 9: Computational Logic, J. Siekmann (ed.), pp.
629–658, Elsevier. (Scholar)
- Miller, D. and G. Nadathur, 1988, “An Overview of
\(\lambda\)Prolog”, Proceedings of the Fifth International
Logic Programming Conference — Fifth Symposium in Logic
Programming, R. Bowen and R. Kowalski (eds.), Cambridge, MA: MIT
Press. (Scholar)
- Minker, J., D. Seipel and C. Zaniolo, 2014, “Logic and
Databases: A History of Deductive Databases”, Handbook of
the History of Logic, Volume 9: Computational Logic, J. Siekmann
(ed.), pp. 571–627, Elsevier. (Scholar)
- Muzalewski, M., 1993, An Outline of PC Mizar, Fondation
Philippe le Hodey, Brussels. (Scholar)
- Nipkow, T., L. C. Paulson and M. Wenzel, 2002, “Isabelle/HOL: A Proof Assistant for Higher-Order Logic“, LNCS Vol. 2283, pp. 207–208. (Scholar)
- Nivens, A. J., 1974, “A Human-Oriented Logic for Automatic
Theorem Proving”, Journal of the Association of Computing
Machinery, 21 (4): 606–621. (Scholar)
- Oppenheimer, P. and E. Zalta, 2011, “A
Computationally-Discovered Simplification of the Ontological
Argument”, Australasian Journal of Philosophy, 89 (2):
333–349. (Scholar)
- Paulson, L. C., 1990, “Isabelle: The Next 700 Theorem
Provers”, Logic and Computer Science, P. Odifreddi
(ed.), Academic Press, pp. 361–386. (Scholar)
- –––, 1994, Isabelle: A Generic Theorem Prover (Lecture Notes in Computer Science: Volume 828), Berlin: Springer-Verlag. (Scholar)
- –––, 2010. “Three Years of Experience with
Sledgehammer, a Practical Link Between Automatic and Interactive
Theorem Provers”, PAAR-2010, B. Konev et al. (eds.),
pp. 1–10. (Scholar)
- Paulson, L. C. and K. Grabczewski, 1996, “Mechanizing Set
Theory”, Journal of Automated Reasoning, 17 (3):
291–323. (Scholar)
- Pease, A. and G. Sutcliffe, 2007, “First Order Reasoning on
a Large Ontology”, Proceedings of the CADE-21 Workshop on
Empirically Successful Automated Reasoning in Large Theories
(Volume 257), G. Sutcliffe and J. Urban (eds.), Bremen. (Scholar)
- Pelletier, F. J., 1986, “Seventy-Five Problems for Testing
Automatic Theorem Provers”, Journal of Automated
Reasoning, 2 (2): 191–216. (Scholar)
- –––, 1998, “Natural Deduction Theorem Proving
in THINKER”, Studia Logica, 60 (1): 3–43. (Scholar)
- Pelletier, F. J., G. Sutcliffe and A. P. Hazen, 2017,
“Automated Reasoning for the Dialetheic Logic RM3”,
Proceedings of the Thirtieth International Florida Artificial
Intelligence Research Society Conference, V. Rus and Z. Markov
(eds.), pp. 110–115. (Scholar)
- Pelletier, F. J., G. Sutcliffe, and C. Suttner, 2002, “The
Development of CASC”, AI Communications, 15
(2–3): 79–90. (Scholar)
- Peterson, J. G., 1977, The Possible Shortest Single Axiom for
EC-Tautologies, Report 105, Department of Mathematics, University
of Auckland. (Scholar)
- Pollock, J., 1989, “OSCAR: A General Theory of
Rationality”, Journal of Experimental & Theoretical
Artificial Intelligence, 1 (3): 209–226 (Scholar)
- –––, 1995, Cognitive Carpentry, Cambridge, MA: Bradford/MIT Press. (Scholar)
- –––, 2006, “Against Optimality: Logical Foundations for Decision-Theoretic Planning in Autonomous Agents”, Computational Intelligence, 22(1): 1–25. (Scholar)
- Portoraro, F. D., 1994, “Symlog: Automated Advice in
Fitch-style Proof Construction”, CADE-12: Proceedings of the
12th International Conference on Automated Deduction, (Lecture
Notes in Artificial Intelligence: Volume 814), A. Bundy (ed.), Berlin:
Springer-Verlag, pp. 802-806. (Scholar)
- –––, 1998, “Strategic Construction of Fitch-style Proofs”, Studia Logica, 60 (1): 45–66. (Scholar)
- Prasad, M., A. Biere and A. Gupta, 2005, “A Survey of Recent
Advances in SAT-Based Formal Verification”, International
Journal on Software Tools for Technology Transfer, 7 (2):
156–173. (Scholar)
- Prawitz, D., 1965, Natural Deduction: A Proof Theoretical Study, Stockholm: Almqvist & Wiksell. (Scholar)
- Quaife, A., 1992, Automated Development of Fundamental
Mathematical Theories, Kluwer Academic Publishers. (Scholar)
- Robinson, J. A., 1965, “A Machine Oriented Logic Based on the Resolution Principle”, Journal of the Association of Computing Machinery, 12: 23–41. (Scholar)
- –––, 1965, “Automatic Deduction with
Hyper-resolution”, Internat. J. Comput. Math., 1:
227–234. (Scholar)
- Robinson, J. A. and A. Voronkov (eds.), 2001, Handbook of
Automated Reasoning: Volumes I and II, Cambridge, MA: MIT Press.
(Scholar)
- Schmitt, P. and I. Tonin, 2007, “Verifying the Mondex Case
Study”, Proceedings of the Fifth IEEE International
Conference on Software Engineering and Formal Methods, IEEE
Computer Society, pp. 47–58. (Scholar)
- Schulz, S., 2004, “System Abstract: E 0.81”,
Proceedings of the 2nd International Joint Conference on Automated
Reasoning (Lecture Notes in Artificial Intelligence: Volume
3097), D. Basin and M. Rusinowitch (eds.), Berlin: Springer-Verlag,
pp.223-228. (Scholar)
- Scott, D., 1972, “Appendix B: Notes in Dana Scott’s
Hand”, in Sobel 2004, pp. 145–146. (Scholar)
- Sieg, W. and J. Byrnes, 1996, Normal Natural Deduction Proofs (in Classical Logic), Report CMU-PHIL 74, Department of Philosophy, Carnegie-Mellon University. (Scholar)
- Slaney, J. K., 1984, “3,088 Varieties: A Solution to the Ackerman Constant Problem”, Journal of Symbolic Logic, 50: 487–501. (Scholar)
- Sobel, J. H., 2004, Logic and Theism: Arguments for and Against Beliefs in God, Cambridge University Press. (Scholar)
-
Steen, A. and C. Benzmüller, 2021, “Extensional Higher-Order Paramodulation in Leo-III”, Journal of Automated Reasoning, 65 (6): 775–807.
(Scholar)
- Stickel, M. E., 1992, “A Prolog Technology Theorem Prover: A
New Exposition and Implementation in Prolog”, Theoretical
Computer Science, 104: 109–128. (Scholar)
- Suppes, P., et al., 1981, “Part I: Interactive
Theorem Proving in CAI Courses”, University-Level
Computer-Assisted Instruction at Stanford: 1968–1980, P.
Suppes (ed.), Institute for the Mathematical Study of the Social
Sciences, Stanford University. (Scholar)
-
Sutcliffe, G., 2017, “The TPTP Problem Library and Associated Infrastructure”, Journal of Automated Reasoning, 59 (4): 483–502.
(Scholar)
- Sutcliffe, G. and C. Benzmüller, 2010, “Automated
Reasoning in Higher-Order Logic Using TPTP THF Infrastructure”,
Journal of Formalized Reasoning, 43 (4): 337–362. (Scholar)
- Sutcliffe, G. and C. Suttner, 1998, “The TPTP Problem
Library – CNF Release v1.2.1”, Journal of Automated
Reasoning, 21 (2): 177–203. (Scholar)
- Szabo, M. E. (ed.), 1969, The Collected Papers of Gerhard
Gentzen, Amsterdam: North-Holland. (Scholar)
- Trybulec, A., 1978, “The Mizar Logic Information
Language”, Bulletin of the Association for Literary
Linguistic Computing, 6(2): 136–140. (Scholar)
- Trybulec, A. and H. Blair, 1985, “Computer Assisted
Reasoning with Mizar”, Proceedings of the 9th International
Joint Conference on Artificial Intelligence, (IJCAI-85: Volume
1), Los Angeles, pp. 26–28. (Scholar)
- Turing, A., 1936, “On computable numbers, with an application to the Entscheidungsproblem”, Proceedings of the London Mathematical Society, 42 (2): 230–265. (Scholar)
- Urban, J., 2007, “MaLARea: A Metasystem for Automated
Reasoning in Large Theories”, Proceedings of the CADE-21
Workshop on Empirically Successful Automated Reasoning in Large
Theories, J. Urban, G. Sutcliffe and S. Schulz (eds.), pp.
45–58. (Scholar)
- Urban, J., K. Hoder, A. Voronkov, 2010, “Evaluation of
Automated Theorem Proving on the Mizar Mathematical Library”,
Mathematical Software – ICMS 2010: Proceedings of the Third
International Congress on Mathematical Software, Kobe, Japan,
(Lecture Notes in Computer Science, Volume 6327), pp.
155–166. (Scholar)
- Urban, J. and J. Vyskocil, 2012, “Theorem Proving in Large
Formal Mathematics as an Emerging AI Field”, arXiv:1209.3914
[cs.AI], Report No. DPA-12271, Cornell University. (Scholar)
-
Urquhart, A., 1987, “Hard Examples for Resolution”, Journal of the ACM, 34 (1): 209–219.
(Scholar)
- –––, 1994 (ed.), The Collected Papers of Bertrand
Russell, Volume 4: Foundations of Logic, 1903-05, Routledge,
London and New York.
- van Benthem Jutting, L. S., 1977, Checking Landau’s
“Grundlagen” in the Automath system, Ph.D. Thesis,
Eindhoven University of Technology; published in Mathematical
Centre Tracts, Number 83, Amsterdam: Mathematisch Centrum,
1979. (Scholar)
- Voronkov, A., 1995, “The Anatomy of Vampire: Implementing
Bottom-Up Procedures with Code Trees”, Journal of Automated
Reasoning, 15 (2): 237–265. (Scholar)
- Wallen, L. A., 1990, Automated Deduction in Nonclassical
Logics, Cambridge, MA: MIT Press. (Scholar)
- Wang, H., 1960, “Proving Theorems by Pattern Recognition
– I”, in Automation of Reasoning (Volume 1), J.
Siekmann and G. Wrightson (eds.), Berlin: Springer-Verlag, 1983, pp.
229–243. (Scholar)
- –––, 1960, “Toward Mechanical
Mathematics”, in Automation of Reasoning (Volume 1),
J. Siekmann and G. Wrightson (eds.), Berlin: Springer-Verlag, 1983,
pp. 244-264. (Scholar)
- Wegner, B., 2011, “Completeness of reference databases,
old-fashioned or not?”, Newsletter of the European
Mathematical Society, 80: 50–52. (Scholar)
- Wiedijk, F., 2006, The Seventeen Provers of the World, (Lecture Notes in Artificial Intelligence: Volume 3600), F. Wiedijk (ed.), New York: Springer-Verlag. (Scholar)
- –––, 2007, “The QED Manifesto
Revisited”, Studies in Logic, Grammar and Rhetoric, 10
(23): 121–133. (Scholar)
-
Wooters, W.K. and W. H. Zurek, 1982, “A single quantum cannot be cloned”, Nature, 299: 802–803.
- Wos, L. (ed.), 2001, Journal of Automated Reasoning
(Special Issue: Advances in Logic Through Automated Reasoning), 27
(2). (Scholar)
- Wos, L., D. Carson and G. R. Robinson, 1965, “Efficiency and
Completeness of the Set of Support Strategy in Theorem Proving”,
Journal of the Association of Computing Machinery, 12:
698–709. (Scholar)
- Wos, L., R. Overbeek, E. Lusk and J. Boyle, 1984, Automated
Reasoning: Introduction and Applications, Englewood Cliffs, NJ:
Prentice-Hall. (Scholar)
- Wos, L., D. Ulrich, and B. Fitelson, 2002, “Vanquishing the XCB Question; The Methodological Discovery of the Last Shortest Single Axiom for the Equivalential Calculus”, Journal of Automated Reasoning, 29 (2):107–124. (Scholar)
- Wos, L., S. Winker, R. Veroff, B. Smith and L. Henschen, 1983, “Questions Concerning Possible Shortest Single Axiom for the Equivalential Calculus: An Application of Automated Theorem Proving to Infinite Domains”, Notre Dame Journal of Formal Logic, 24: 205–223. (Scholar)
- Yoo, J., E. Jee and S. Cha, 2009, “Formal Modeling and
Verification of Safety-Critical Software”, IEEE
Software, 26 (3): 42–49. (Scholar)
- Zalta, E., 1983, Abstract Objects: An Introduction to Axiomatic Metaphysics, Synthese Library, SYLI Volume 160, Springer. (Scholar)
- –––, 1999, “Natural Numbers and Natural Cardinals as Abstract Objects: A Partial Reconstruction of Frege’s Grundgesetze in Object Theory”, Journal of Philosophical Logic, 28 (6): 619–660. (Scholar)
-
–––, 2018, “How Computational Investigations Improved an Ontology”, 2018 Annual Meeting of the International Association for Computing and Philosophy, Warsaw, Polska Akademia Nauk (PAN), Copernicus Center,
(Scholar)
-
–––, 2022, Principia Logico-Metaphysica, Draft/Excerpt dated September 2, 2022, URL: http://mally.stanford.edu/principia.pdf
(Scholar)
- Zhang, L. and S. Malik, 2002, “The Quest for Efficient
Boolean Satisfiability Solvers”, CADE-18: Proceedings of the
18th International Conference on Automated Deduction, (Lecture
Notes in Artificial Intelligence: Volume 2392), A. Voronkov (ed.),
Berlin: Springer-Verlag, pp. 295-313. (Scholar)