Linked bibliography for the SEP article "Set Theory: Constructive and Intuitionistic ZF" by Laura Crosilla
This is an automatically generated and experimental page
If everything goes well, this page should display the bibliography of the aforementioned article as it appears in the Stanford Encyclopedia of Philosophy, but with links added to PhilPapers records and Google Scholar for your convenience. Some bibliographies are not going to be represented correctly or fully up to date. In general, bibliographies of recent works are going to be much better linked than bibliographies of primary literature and older works. Entries with PhilPapers records have links on their titles. A green link indicates that the item is available online at least partially.
This experiment has been authorized by the editors of the Stanford Encyclopedia of Philosophy. The original article and bibliography can be found here.
- Aczel, P., 1978, “The Type Theoretic Interpretation of
Constructive Set Theory”, in Logic Colloquium
‘77, A. MacIntyre, L. Pacholski, J. Paris (eds.), Amsterdam
and New York: North-Holland, pp. 55–66. (Scholar)
- –––, 1982, “The type theoretic interpretation of constructive set theory: choice principles”, in The L.E.J. Brouwer Centenary Symposium, A. S. Troelstra and D. van Dalen (eds.), Amsterdam and New York: North-Holland, pp. 1–40. (Scholar)
- –––, 1986, “The type theoretic interpretation of constructive set theory: inductive definitions”, in Logic, Methodology, and Philosophy of Science VII, R.B. Marcus, G.J. Dorn, and G.J.W. Dorn (eds.), Amsterdam and New York: North-Holland, pp. 17–49. (Scholar)
- –––, 1988, Non-wellfounded Sets (CSLI Lecture Notes 14), Stanford: CSLI. (Scholar)
- Aczel, P., and M. Rathjen, 2001, “Notes on Constructive Set
Theory”, Report No. 40, 2000/2001, Djursholm: Institut
Mittag-Leffler,
[available online] (Scholar)
- Aczel, P., and N. Gambino, 2002, “Collection principles in
dependent type theory”, in Types for Proofs and
Programs (Lecture Notes in Computer Science 2277), P. Callaghan,
Z. Luo, J. McKinna, and R. Pollack (eds.), Berlin: Springer, pp.
1–23. (Scholar)
- Awodey, S., 2008, “A Brief Introduction to Algebraic Set Theory”, The Bulletin of Symbolic, 14 (3): 281–298. (Scholar)
- Barwise, J., and L. Moss, 1996, Vicious Circles (CSLI
Lecture Notes 60), Stanford: CSLI. (Scholar)
- Beeson, M., 1985, Foundations of Constructive Mathematics, Berlin: Springer. (Scholar)
- Bezem, M., C. Thierry, and S. Huber, 2014, “A model of type
theory in cubical sets”, in 19th International Conference on
Types for Proofs and Programs (TYPES 2013), Matthes, R. and Schubert,
A. (eds.), Dagstuhl: Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik, pp. 107–128.
- Bishop, E., 1967, Foundations of Constructive Analysis, New York: McGraw-Hill. (Scholar)
- –––, 1970, “Mathematics as a numerical
language”, in Intuitionism and Proof Theory, A. Kino,
J. Myhill, and R. E. Vesley (eds.), Amsterdam: North-Holland, pp.
53–71. (Scholar)
- Bishop, E., and D. Bridges, 1985, Constructive Analysis, Berlin and Heidelberg: Springer. (Scholar)
- Bridges, D., and F. Richman, 1987, Varieties of Constructive Mathematics, Cambridge: Cambridge University Press. (Scholar)
- Buchholz, W., S. Feferman, W. Pohlers, and W. Sieg, 1981,
Iterated Inductive Definitions and Subsystems of Analysis,
Berlin: Springer. (Scholar)
- Cantini, A., and L. Crosilla, 2008, “Constructive set theory with operations”, in A. Andretta, K. Kearnes, D. Zambella (eds.), Logic Colloquium 2004 (Lecture Notes in Logic 29), Cambridge: Cambridge University Press, pp. 47–83. (Scholar)
- –––, 2010, “Explicit operational
set theory”, in R. Schindler (ed.), Ways of Proof
Theory, Frankfurt: Ontos, pp. 199–240. (Scholar)
- Chen, R.-M. and M. Rathjen, 2012, “Lifschitz Realizability for Intuitionistic Zermelo-Fraenkel Set Theory”, Archive for Mathematical Logic, 51: 789–818. (Scholar)
- Crosilla, L., 2017, “Predicativity and Feferman”, in G. Jäger and W. Sieg (eds.), Feferman on Foundations (Outstanding Contributions to Logic: Volume 13), Cham: Springer, pp. 423–447. (Scholar)
- –––, 2022, “Predicativity and Constructive Mathematics”, in Oliveri, G., Ternullo, C. and Boscolo, S. (eds.), Objects, Structures, and Logics (Boston Studies in the Philosophy and History of Science: Volume 339), Cham: Springer. (Scholar)
- Crosilla, L., and M. Rathjen, 2001, “Inaccessible set axioms may have little consistency strength”, Annals of Pure and Applied Logic, 115: 33–70. (Scholar)
- Diaconescu, R., 1975, “Axiom of choice and complementation”, Proceedings of the American Mathematical Society, 51: 176–178. (Scholar)
- Diener, H., and R. Lubarsky, 2013, “Separating the Fan Theorem and Its Weakenings”, in S. N. Artemov and A. Nerode (eds.), Proceedings of LFCS ‘13 (Lecture Notes in Computer Science 7734), Dordrecht: Springer, pp. 280–295. (Scholar)
- Dummett, M., 2000, Elements of Intuitionism, second
edition, (Oxford Logic Guides 39), New York: Oxford University
Press. (Scholar)
- Feferman, S., 1964, “Systems of predicative analysis”, Journal of Symbolic Logic, 29: 1–30. (Scholar)
- –––, 1975, “A language and axioms for
explicit mathematics”, in Algebra and Logic (Lecture
Notes in Mathematics 450), J. Crossley (ed.), Berlin: Springer, pp.
87–139.
- –––, 1988, “Weyl vindicated: Das Kontinuum
seventy years later”, in Temi e prospettive della logica e
della scienza contemporanee, C. Cellucci and G. Sambin (eds), pp.
59–93. (Scholar)
- –––, 1993, “What rests on what? The proof-theoretic analysis of mathematics”, in Philosophy of Mathematics, Part I, Proceedings of the 15th International Wittgenstein Symposium. Vienna: Verlag Hölder-Pichler-Tempsky. (Scholar)
- –––, 2005, “Predicativity”, in Handbook of the Philosophy of Mathematics and Logic, S. Shapiro (ed.), Oxford: Oxford University Press. (Scholar)
- Fletcher, P., 2007, “Infinity”, in Handbook of the
Philosophy of Logic, D. Jacquette, (ed.), Amsterdam: Elsevier,
pp. 523–585. (Scholar)
- Fourman, M.P., 1980, “Sheaf models for set theory”,
Journal of Pure Applied Algebra, 19: 91–101. (Scholar)
- Fourman, M.P., and D.S. Scott, 1980, “Sheaves and
logic”, in Applications of Sheaves (Lecture Notes in
Mathematics 753), M.P. Fourman, C.J. Mulvey and D.S. Scott (eds.),
Berlin: Springer, pp. 302–401. (Scholar)
- Friedman, H., 1973, “Some applications of Kleene’s
methods for intuitionistic systems”, in Proceedings of the
1971 Cambridge Summer School in Mathematical Logic (Lecture Notes
in Mathematics 337), A.R.D. Mathias and H. Rogers (eds.), Berlin:
Springer, pp. 113–170. (Scholar)
- –––, 1973a, “The consistency of classical set theory relative to a set theory with intuitionistic logic”, Journal of Symbolic Logic, 38: 315–319. (Scholar)
- –––, 1977, “Set-theoretical foundations
for constructive analysis”, Annals of Mathematics, 105:
1–28. (Scholar)
- Friedman, H., and A. Scedrov, 1983, “Set existence property for intuitionistic theories with dependent choice”, Annals of Pure and Applied Logic, 25: 129–140. (Scholar)
- –––, 1984, “Large sets in intuitionistic set theory”, Annals of Pure and Applied Logic, 27: 1–24. (Scholar)
- –––, 1985, “The lack of definable
witnesses and provably recursive functions in intuitionistic set
theory”, Advances in Mathematics, 57: 1–13. (Scholar)
- Gambino, N., 2006, “Heyting-valued interpretations for constructive set theory”, Annals of Pure and Applied Logic, 137: 164–188. (Scholar)
- Gödel, 1944, “Russell’s mathematical logic”,
The Philosophy of Bertrand Russell (Library of Living
Philosophers), P. Schilpp (ed.), New York: Tudor, 1951,
pp. 123–153. (Scholar)
- Goodman, N.D., and J. Myhill, 1972, “The formalization of
Bishop’s constructive mathematics”, in Toposes,
Algebraic Geometry and Logic (Lecture Notes in Mathematics 274),
F.W. Lawvere (ed.), Berlin: Springer, pp. 83–96. (Scholar)
- –––, 1978, “Choice implies excluded middle”, Zeitschrift für mathematische Logik und Grundlagen der Mathematik, 24(5): 461. (Scholar)
- Grayson, R.J., 1979, “Heyting-valued models for
intuitionistic set theory”, in Applications of Sheaves
(Lecture Notes in Mathematics 753), M.P. Fourman, C.J. Mulvey, and
D.S. Scott (eds.), Berlin: Springer, pp. 402–414. (Scholar)
- Griffor, E., and M. Rathjen, 1994, “The strength of some Martin-Löf type theories”, Archive Mathematical Logic, 33: 347–385. (Scholar)
- van Heijenoort, J., 1967, From Frege to Gödel. A Source Book in Mathematical Logic 1879–1931, Cambridge: Harvard Univ. Press. (Scholar)
- Ihemoff, R., 2010, “Kripke models for subtheories of
CZF”, Archive for Mathematical Logic, 49: 147–167. (Scholar)
- Iemhoff, R., and R. Passmann, 2021, “Logics of intuitionistic Kripke-Platek set theory”, Annals of Pure and Applied Logic, 172: 103014. (Scholar)
- –––, 2023, “Logics and admissible rules of
constructive set theories”, Philosophical Transactions of
the Royal Society A, 381 (2248). doi:10.1098/rsta.2022.0018 (Scholar)
- Kapulkin, C. and P.L. Lumsdaine, 2021, “The simplicial
model of univalent foundations (after Voevodsky)”, Journal
of the European Mathematical Society, 23(6): 2071–2126 (Scholar)
- Kleene, S.C., 1945, “On the interpretation of intuitionistic number theory”, Journal of Symbolic Logic, 10: 109–124. (Scholar)
- –––, 1962, “Disjunction and existence under implication in elementary intuitionistic formalisms”, Journal of Symbolic Logic, 27: 11–18. (Scholar)
- –––, 1963, “An addendum”, Journal of Symbolic Logic, 28: 154–156. (Scholar)
- Kreisel, G., 1958, “Ordinal logics and the characterization
of informal concepts of proof”, Proceedings of the
International Congress of Mathematicians (14–21 August
1958), Paris: Gauthier-Villars, pp. 289–299. (Scholar)
- Kreisel, G., and A. S. Troelstra, 1970, “Formal systems for some branches of intuitionistic analysis”, Annals of Mathematical Logic, 1: 229–387. (Scholar)
- Lifschitz, V., 1979, “CT\(_0\) is stronger than
CT\(_0\)!”, Proceedings of the American Mathematical
Society, 73(1): 101–106.
- Lindström, I., 1989, “A construction of non-well-founded sets within Martin-Löf type theory”, Journal of Symbolic Logic, 54: 57–64. (Scholar)
- Lipton, J., 1995, “Realizability, set theory and term extraction”, in The Curry-Howard isomorphism (Cahiers du Centre de Logique de l’Universite Catholique de Louvain 8), Louvain-la-Neuve: Academia, pp. 257–364. (Scholar)
- Lorenzen, P., and J. Myhill, 1959, “Constructive definition of certain analytic sets of numbers”, Journal of Symbolic Logic, 24: 37–49. (Scholar)
- Lubarsky, R., 1993, “Intuitionistic L”, in
J.N. Crossley, J.B. Remmel, R.A. Shore, and M.E. Sweedler
(eds.), Logical Methods (Progress in Computer Science and
Applied Logic: Volume 12), Birkhäuser, Boston, MA,
555–571. (Scholar)
- –––, 2005, “Independence results around constructive ZF”, Annals of Pure and Applied Logic, 132: 209–225. (Scholar)
- –––, 2006, “CZF and second order
arithmetic”, Annals of Pure and Applied Logic,
141: 29–34.
- –––, 2009, “Topological Forcing Semantics
with Settling”, in S. N. Artemov and A. Nerode (eds.),
Proceedings of LFCS ‘09 (Lecture Notes in Computer
Science 5407), Dordrecht: Springer, pp. 309–322. (Scholar)
- –––, 2023, “Inner and Outer Models for
Constructive Set Theories”, in D. Bridges, H. Ishihara,
M. Rathjen, and H. Schwichtenberg (eds.), The Handbook of
Constructive Mathematics, Cambridge: Cambridge University Press,
pp. 584–635. (Scholar)
- Lubarsky, R., and M. Rathjen, 2007, “On the Constructive Dedekind Reals”, in in S. N. Artemov and A. Nerode (eds.), Proceedings of LFCS 2007 (Lecture Notes in Computer Science 4514), Dordrecht: Springer, pp. 349–362. (Scholar)
- MacLane, S., and I. Moerdijk, 1992, “Sheaves in Geometry
and Logic”, New York: Springer. (Scholar)
- Maietti, M.E., 2009, “A minimalist two-level foundation for
constructive mathematics “, Annals of Pure and Applied
Logic, 160(3): 319–354.
- Maietti, M.E., and G. Sambin, 2005, “Toward a Minimalist
Foundation for Constructive Mathematics”, in From Sets and
Types to Topology and Analysis: Towards Practicable Foundations for
Constructive Mathematics (Oxford Logic Guides 48), L. Crosilla,
and P. Schuster (eds.), Oxford: Oxford University Press. (Scholar)
- Martin-Löf, P., 1975, “An intuitionistic theory of types: predicative part”, in H.E. Rose and J. Sheperdson (eds.), Logic Colloquium ‘73, Amsterdam: North-Holland, pp. 73–118. (Scholar)
- –––, 1984, “Intuitionistic Type
Theory”, Naples: Bibliopolis. (Scholar)
- Matthews, R. M. A., 2021, “Large Cardinals in Weakened
Axiomatic Theories”, Ph.D. Thesis, University of Leeds,
[Matthews 2021 available online]. (Scholar)
- Matthews, R., and M. Rathjen, 2024, “Constructing the Constructible Universe Constructively”, Annals of Pure and Applied Logic, 175(3). doi:10.1016/j.apal.2023.103392 (Scholar)
- McCarty, D.C., 1984, “Realisability and Recursive
Mathematics”, D.Phil. Dissertation, Philosophy, Oxford
University. (Scholar)
- –––, 1986, “Realizability and recursive
set theory”, Annals of Pure and Applied Logic, 32:
153–183. (Scholar)
- Myhill, J., 1973, “Some properties of Intuitionistic Zermelo-Fraenkel set theory”, in Proceedings of the 1971 Cambridge Summer School in Mathematical Logic (Lecture Notes in Mathematics 337), A.R.D. Mathias, and H. Rogers(eds.), Berlin: Springer, pp. 206–231. (Scholar)
- –––, 1975, “Constructive set theory”, Journal of Symbolic Logic, 40: 347–382. (Scholar)
- van Oosten, J., 1990, “Lifschitz’s
Realizability”, The Journal of Symbolic Logic, 55:
805–821. (Scholar)
- Powell, W., 1975, “Extending Gödel’s negative
interpretation to ZF”, Journal of Symbolic Logic, 40:
221–229. (Scholar)
- Rathjen, M., 1998, “The Higher Infinite in Proof
Theory”, in J. Makowsky & E. Ravve (eds.), Logic
Colloquium ’95: Proceedings of the Annual European Summer
Meeting of the Association of Symbolic Logic, in Haifa, Israel,
August 1995, Cambridge: Cambridge University Press,
pp. 275–304. (Scholar)
- –––, 1999, “The realm of ordinal
analysis”, in Sets and Proofs (London Mathematical
Society Lecture Notes 258), Cambridge: Cambridge University Press, pp.
219–279. (Scholar)
- –––, 2003, “The anti-foundation axiom in
constructive set theories”, in Games, logic, and
constructive sets (CSLI Lecture Notes 161), Stanford: CSLI
Publication, pp. 87–108. (Scholar)
- –––, 2003a, “Realizing Mahlo set theory in type theory”, Archive for Mathematical Logic, 42: 89–101. (Scholar)
- –––, 2004, “Predicativity, circularity,
and anti-foundation”, in One hundred years of
Russell’s paradox (Logic and its Applications 6), G. Link
(ed.), Berlin: de Gruyter, pp. 191–219. (Scholar)
- –––, 2005, “Replacement versus Collection and related topics in constructive Zermelo-Fraenkel Set Theory”, Annals of Pure and Applied Logic, 136: 156–174. (Scholar)
- –––, 2005a, “The constructive Hilbert program and the limits of Martin-Löf type theory”, Synthese, 147: 81–120. (Scholar)
- –––, 2005b, “The disjunction and related properties for constructive Zermelo-Fraenkel set theory”, Journal of Symbolic Logic, 70(4): 1232–1254. (Scholar)
- –––, 2006, “Choice principles in
constructive and classical set theories”, Logic Colloquium
‘02 (Lecture Notes in Logic 27), Z. Chatzidakis, P. Koepke,
and W. Pohlers (eds.), Wellesley, Massachusetts: A.K. Peters,
299–326. (Scholar)
- –––, 2006a, “Realizability for
constructive Zermelo-Fraenkel set theory”, in Logic
Colloquium ‘03 (Lecture Notes in Logic 24), V.
Stoltenberg-Hansen and J. Väänänen (eds.), Wellesley,
Massachusets: A.K. Peters, pp. 282–314. (Scholar)
- –––, 2006b, “Theories and ordinals in proof theory”, Synthese, 148(3): 719–743. (Scholar)
- –––, 2008, “The natural numbers in constructive set theory”, Mathematical Logic Quarterly, 54: 287–312. (Scholar)
- –––, 2012, “From the weak to the strong existence property”, Annals of Pure and Applied Logic, 163: 1400–1418. (Scholar)
- –––, 2012b, “Constructive Zermelo-Fraenkel
Set Theory, Power Set, and the Calculus of Constructions”, in
Epistemology versus Ontology: Essays on the Philosophy and
Foundations of Mathematics in Honour of Per Martin-Löf,
(Logic, Epistemology and the Unity of Science Series), P. Dybjer, S.
Lindström, E. Palmgren and G. Sundhölm (eds.), New York and
Dordrecht: Springer Verlag. (Scholar)
- –––, 2017, “Proof Theory of Constructive Systems: Inductive Types and Univalence”, in G. Jäger, and W. Sieg (eds.), Feferman on Foundations (Outstanding Contributions to Logic: Volume 13), Cham: Springer, pp. 385–419. (Scholar)
- –––, 2023, “An Introduction to
Constructive Set Theories: An Appetizer”, in D. Bridges,
H. Ishihara, M. Rathjen, and H. Schwichtenberg (eds.), The
Handbook of Constructive Mathematics, Cambridge: Cambridge
University Press, pp. 20–60. (Scholar)
- Rathjen, M., E. Griffor, and E. Palmgren, 1998,
“Inaccessibility in constructive set theory and type
theory”, Annals of Pure and Applied Logic, 94:
181–200. (Scholar)
- Richman, F., 2000, “The fundamental theorem of algebra: a
constructive development without choice”, Pacific Journal of
Mathematics, 196: 213–230. (Scholar)
- –––, 2001, “Constructive mathematics
without choice”, in Reuniting the Antipodes: Constructive
and Nonstandard Views of the Continuum (Synthese Library 306), P.
Schuster, et al. (eds.), Dordrecth: Kluwer, pp.
199–205. (Scholar)
- Russell, B., 1908, “Mathematical logic as based on the theory of types”, American Journal of Mathematics, 30: 222–262. Reprinted in van Heijenoort (1967), 150–182. (Scholar)
- Scedrov, A., 1981, “Consistency and independence results in
Intuitionistic set theory” in Constructive mathematics
(Lecture Notes in Mathematics 873), F. Richman (ed.), Berlin:
Springer, pp. 54–86. (Scholar)
- –––, 1982, “Independence of the fan
theorem in the presence of continuity principles” in The
L.E.J. Brouwer Centenary Symposium, A.S. Troelstra, and D. van
Dalen (eds.), Amsterdam: North-Holland, pp. 435–442. (Scholar)
- –––, 1985, “Intuitionistic set
theory” in Harvey Friedman’s research on the
foundations of mathematics, L.A. Garrubgtib et al.
(eds.), Amsterdam: Elsevier. (Scholar)
- Schütte, K., 1965, “Predicative well-orderings”,
in Formal Systems and Recursive Functions, J. Crossley and M.
Dummett (eds.), Amsterdam: North-Holland, pp. 279–302. (Scholar)
- –––, 1965a, “Eine Grenze für die Beweisbarkeit der Transfiniten Induktion in der verzweigten Typenlogik”, Archiv für mathematische Logik und Grundlagenforschung, 7: 45–60. (Scholar)
- Simpson, A., 2005, “Constructive set theories and their
category-theoretic models”, in From Sets and Types to
Topology and Analysis: Towards Practicable Foundations for
Constructive Mathematics (Oxford Logic Guides 48), L. Crosilla
and P. Schuster (eds.), Oxford: Oxford University Press. (Scholar)
- Swan, A.W., 2014, “CZF does not have the existence
property”, Annals of Pure and Applied Logic, 165:
1115–1147.
- Troelstra, A.S., and van Dalen, D., 1988, Constructivism in Mathematics (two volumes), Amsterdam: North Holland. (Scholar)
- Tupailo, S., 2003, “Realization of constructive set theory into Explicit Mathematics: a lower bound for impredicative Mahlo universe”, Annals of Pure and Applied Logic, 120: 165–196. (Scholar)
- Voevodsky, V., 2015, “An experimental library of formalized
mathematics based on univalent foundations”, Mathematical
Structures in Computer Science, 25: 1278–1294. (Scholar)
- Weyl, H., 1918, “Das Kontinuum. Kritische Untersuchungen
über die Grundlagen der Analysis”, Veit, Leipzig. (Scholar)
- Ziegler, Albert, 2012, “Generalizing realizability and Heyting models for constructive set theory”, Annals of Pure and Applied Logic, 163 (2): 175–184. (Scholar)
- –––, 2014, “A cumulative hierarchy of sets
for constructive set theory”, Mathematical Logic
Quarterly, 60 (1-2): 21–30.
- –––, 2014a, “Large sets in constructive
set theory”, Ph.D. Thesis, University of Leeds,
[available online] (Scholar)