Linked bibliography for the SEP article "Type Theory" by Thierry Coquand
This is an automatically generated and experimental page
If everything goes well, this page should display the bibliography of the aforementioned article as it appears in the Stanford Encyclopedia of Philosophy, but with links added to PhilPapers records and Google Scholar for your convenience. Some bibliographies are not going to be represented correctly or fully up to date. In general, bibliographies of recent works are going to be much better linked than bibliographies of primary literature and older works. Entries with PhilPapers records have links on their titles. A green link indicates that the item is available online at least partially.
This experiment has been authorized by the editors of the Stanford Encyclopedia of Philosophy. The original article and bibliography can be found here.
- Aczel, P., 1978, “The type theoretic interpretation of
constructive set theory”, Logic Colloquium ’77,
Amsterdam: North-Holland, 55–66. (Scholar)
- Andrews, P., 2002, An introduction to mathematical logic and type theory: to truth through proof (Applied Logic Series: Volume 27), Dordrecht: Kluwer Academic Publishers, second edition. (Scholar)
- Awodey, S. and Carus, A.W., 2001, “Carnap, completeness and categoricity: the Gabelbarkeitssatz of 1928”, Erkenntnis, 54: 145–171. (Scholar)
- ––– and Pelayo, A., Warren, M. 2013, “The
Axiom of Univalence in Homotopy Type Theory”, Notices of the
American Mathematical Society, 60(9): 1157–1164. (Scholar)
- Barendregt, H., 1997, “The impact of the lambda calculus in logic and computer science”, Bulletin of Symbolic Logic, 3(2): 181–215. (Scholar)
- –––, 1992, Lambda calculi with
types. Handbook of logic in computer science, Volume 2, Oxford,
New York: Oxford University Press, 117–309. (Scholar)
- Bell, J.L., 2012, “Types, Sets and Categories”, in Akihiro Kanamory Handbook of the History of Logic. Volume 6: Sets and Extensions in the Twentieth Century, Amsterdam: North Holland. (Scholar)
- Bourbaki, N., 1958, Théorie des Ensembles, 3rd edition, Paris: Hermann. (Scholar)
- de Bruijn, N. G., 1980, “A survey of the project
AUTOMATH”, in To H. B. Curry: essays on combinatory logic,
lambda calculus and formalism, London-New York: Academic Press,
579–606.
- Burgess J. P. and Hazen A. P., 1998, “Predicative Logic and
Formal Arithmetic Source,” Notre Dame J. Formal Logic,
39(1): 1–17. (Scholar)
- Buchholz, W. and K. Schütte, 1988, Proof theory of
impredicative subsystems of analysis (Studies in Proof Theory:
Monograph 2), Naples: Bibliopolis. (Scholar)
- Church, A., 1940, “A formulation of the simple theory of
types,” Journal of Symbolic Logic, 5: 56–68
- –––, 1984, “Russell’s theory of identity
of propositions,” Philosophia Naturalis, 21:
513–522 (Scholar)
- Chwistek, L., 1926, “Ueber die Hypothesen der
Mengelehre,” Mathematische Zeitschrift, 25:
439–473 (Scholar)
- –––, 1948, The Limits of Science: Outline of Logic and of the Methodology of the Exact Sciences, London: Routledge and Kegan Paul. (Scholar)
- Coquand, T., 1986, “An analysis of Girard’s paradox,”
Proceedings of the IEEE Symposium on Logic in Computer
Science, 227–236. (Scholar)
- –––, 1994, “A new paradox in type theory,”
Stud. Logic Found. Math. (Volume 134), Amsterdam:
North-Holland, 555–570.
- du Bois-Reymond, P., 1875, “Ueber asymptotische Werthe,
infintaere Appproximationen und infitaere Aufloesung von
Gleichungen,” Mathematische Annalen, 8:
363–414. (Scholar)
- Feferman, S., 1964, “Systems of predicative analysis,” Journal of Symbolic Logic, 29: 1–30. (Scholar)
- Ferreira, F. and Wehmeier, K., 2002, “On the consistency of
the Delta-1-1-CA fragment of Frege’s Grundgesetze,” Journal
of Philosophic Logic, 31: 301–311. (Scholar)
- Fitch, F. B., 1964, “The hypothesis that infinite classes
are similar,” Journal of Symbolic Logic, 4:
159–162. (Scholar)
- Girard, J.Y., 1972, Interpretation fonctionelle et
eleimination des coupures dans l’arithmetique d’ordre superieure,
These d’Etat, Université Paris 7. (Scholar)
- Goldfarb, Warren, 2005. “On Godel’s way in: The influence of
Rudolf Carnap.” Bulletin of Symbolic Logic 11(2):
185–193. (Scholar)
- Gödel, K., 1995, Collected Works Volume III, Unpublished
Essays and Lectures, Oxford: Oxford University Press, 1995. (Scholar)
- –––, 1931, “Über formal untentscheidbare Sätze der Principia Mathematica und verwandter Systeme I,” Monatshefte fü Mathematik und Physik, 38: 173–198. (Scholar)
- –––, 1944, “Russell’s mathematical
logic,” in The philosophy of Bertrand Russell,
P. A. Schilpp (ed.), Evanston: Northwestern University Press,
123–153. (Scholar)
- –––, 1958, “Über eine bisher noch nicht benützte Erweiterung des finiten Standpunktes,”, Dialectica, 12: 280–287. (Scholar)
- Heck, R., Jr., 1996, “The consistency of predicative
fragments of Frege’s Grundgesetze der Arithmetik,” History
and Philosophy of Logic, 17(4): 209–220. (Scholar)
- van Heijenoort, 1967, From Frege to Gödel. A source book in mathematical logic 1879–1931, Cambridge, MA: Harvard University Press. (Scholar)
- Hindley, R., 1997, Basic Simple Type Theory, Cambridge:
Cambridge University Press. (Scholar)
- Hodges, W., 2008, “Tarski on Padoa’s Method: a test case for
understanding logicians of other traditions”, in Logic,
Navya-Nyāya and Applications: Homage to Bimal Krishna Matilal,
Mihir K. Chakraborti et al. (eds.), London: College Publications,
pp. 155–169 (Scholar)
- Hofmann, M. and Streicher, Th. 1996, “The Groupoid
interpretation of Type Theory,” in Twenty-five years of
constructive type theory (Oxford Logic Guides: Volume 36),
Oxford, New York: Oxford University Press, 83–111. (Scholar)
- Howard, W. A., 1980, “The formulae-as-types notion of construction,” in To H. B. Curry: essays on combinatory logic, lambda calculus and formalism, London, New York: Academic Press, 480–490. (Scholar)
- Hurkens, A. J. C., 1995, “A simplification of Girard’s
paradox. Typed lambda calculi and applications,” in Lecture
Notes in Computer Science (Volume 902), Berlin: Springer:
266–278. (Scholar)
- Lambek, J., 1980. “From \(\lambda\)-calculus to Cartesian
Closed Categories” in To H.B. Curry: Essays on Combinatory
Logic, \(\lambda\)-calculus and Formalism, J. Seldin and J. Hindley
(eds.), London, New York: Academic Press. pp. 375–402. (Scholar)
- Lambek, J. and Scott, P. J., 1986, Introduction to higher order categorical logic (Cambridge Studies in Advanced Mathematics: Volume 7), Cambridge: Cambridge University Press; reprinted 1988. (Scholar)
- Lawvere, F. W. and Rosebrugh, R., 2003, Sets for
mathematics, Cambridge: Cambridge University Press. (Scholar)
- Martin-Löf, P., 1970, Notes on constructive mathematics, Stockholm: Almqvist & Wiksell. (Scholar)
- –––, 1971, A Theory of Types,
Technical Report 71–3, Stockholm: Stockholm University. (Scholar)
- –––, 1998, “An intuitionistic theory of
types,” in Twenty-five years of constructive type
theory (Oxford Logic Guides: Volume 36), Oxford, New York: Oxford
University Press, 127–172. (Scholar)
- –––, 1975 [1973], “An intuitionistic
theory of types: Predicative Part,” in Logic Colloquium
’73 (Proceedings of the Logic Colloquium, Bristol 1973) (Studies
in Logic and the Foundations of Mathematics: Volume 80), H.E. Rose and
J.C. Shepherdson (eds.), Amsterdam: North-Holland, 73–118. (Scholar)
- Myhill, J., 1974, “The Undefinability of the Set of Natural Numbers in the Ramified Principia”, in Bertrand Russell’s Philosophy, G. Nakhnikian (ed.), London: Duckworth, 19–27. (Scholar)
- Miquel, A., 2001, Le Calcul des Constructions implicite:
syntaxe et sémantique, Thèse de
doctorat, Université Paris 7. (Scholar)
- –––, 2003, “A strongly normalising Curry-Howard
correspondence for IZF set theory,” in Computer science
Logic (Lecture Notes in Computer Science, 2803), Berlin: Springer:
441–454. (Scholar)
- Oppenheimer, P. and E. Zalta, 2011, “Relations Versus Functions
at the Foundations of Logic: Type-Theoretic Considerations”,
Journal of Logic and Computation, 21: 351–374. (Scholar)
- Palmgren, Erik, 1998, “On universes in type theory,”
in Twenty-five years of Constructive Type Theory (Oxford
Logic Guides: Volume 36), Oxford, New York: Oxford University Press,
191–204. (Scholar)
- Poincaré, 1909, “H. La logique de l’infini”
Revue de metaphysique et de morale, 17: 461–482. (Scholar)
- Prawitz, D., 1967, “Completeness and Hauptsatz for second order logic”, Theoria, 33: 246–258. (Scholar)
- –––, 1970, “On the proof theory of
mathematical analysis,” in Logic and value (Essays
dedicated to Thorild Dahlquist on his fiftieth birthday), Filosofiska
Studier (Filosof. Föreningen och Filosof. Inst.), No. 9, Uppsala:
Uppsala University, 169–180. (Scholar)
- Quine, W., 1940, “Review of Church ‘A formulation of the simple theory of types’,” Journal of Symbolic Logic, 5: 114. (Scholar)
- Ramsey, F.P., 1926, “The foundations of mathematics,”
Proceedings of the London Mathematical Society, s2–25 (1),
338–384. (Scholar)
- Russell, B., 1901, “Sur la logique des relations avec des
applications a la théorie des séries”, Revue de
Mathématique, 7: 115–136, 137–148. (Scholar)
- –––, 1903, The Principles of Mathematics, Cambridge: Cambridge University Press. (Scholar)
- –––, 1908, “Mathematical logic as based on the theory of types,” American Journal of Mathematics, 30: 222–262. (Scholar)
- –––, 1919, Introduction to Mathematical Philosophy, London: George Allen and Unwin. (Scholar)
- –––, 1959, My philosophical development, London, New York: Routledge. (Scholar)
- Russell, B. and Whitehead, A., 1910, 1912, 1913, Principia Mathematica (3 volumes), Cambridge: Cambidge University Press. (Scholar)
- Reynolds, J., 1974, “Towards a theory of type
structure,” in Programming Symposium (Lecture Notes in
Computer Science: Volume 19), Berlin: Springer, 408–425. (Scholar)
- –––, 1983, “Types, Abstraction and
Parametric Polymorphism,” Proceedings of the IFIP 9th World
Computer Congress, Paris, 513–523. (Scholar)
- –––, 1984, “Polymorphism is not
set-theoretic. Semantics of data types,” Lecture Notes in
Computer Science (Volume 173), Berlin: Springer,
145–156. (Scholar)
- –––, 1985, “Three approaches to type
structure. Mathematical foundations of software development,”
in Lecture Notes in Computer Science (Volume 185), Berlin:
Springer, 97–138. (Scholar)
- Schiemer, G. and Reck, E.H., 2013, “Logic in the 1930s: Type Theory and Model Theory,” The Bulletin of Symbolic Logic, 19(4): 433–472. (Scholar)
- Schütte, K., 1960, Beweistheorie, Berlin: Springer-Verlag. (Scholar)
- –––, 1960b, “Syntactical and Semantical Properties of Simple Type Theory,” Journal of Symbolic Logic, 25: 305–326. (Scholar)
- Scott, D., 1993 “A type-theoretic alternative to ISWIM,
CUCH, OWHY,” Theoretical Computer Science, 121:
411–440.
- Skolem, T., 1970, Selected works in logic, Jens Erik Fenstad (ed.), Oslo: Universitetsforlaget. (Scholar)
- Tait, W. W., 1967, “Intensional interpretations of
functionals of finite type,” Journal of Symbolic Logic,
32 (2): 198–212. (Scholar)
- Takeuti, G., 1955 “On the fundamental conjecture of GLC:
I”, Journal of the Mathematical Society of Japan, 7:
249–275. (Scholar)
- –––, 1967, “Consistency proofs of
subsystems of classical analysis,” The Annals of
Mathematics (Second Series), 86 (2): 299–348. (Scholar)
- Tarski, A., 1931, “Sur les ensembles definissables de
nombres reels I,” Fundamenta Mathematicae, 17:
210–239. (Scholar)
- Urquhart, A., 2003, “The Theory of Types,” in The Cambridge Companion to Bertrand Russell, Nicholas Griffin (ed.), Cambridge: Cambridge University Press. (Scholar)
- Voevodsky, V., 2015, “An experimental library of formalized
mathematics based on univalent foundations,”
Mathematical Structures in Computer Science, 25: 1278–1294,
available online. (Scholar)
- Wiener, N., 1914, “A simplification of the logic of
relations,” Proceedings of the Cambridge Philosophical
Society, 17: 387–390.
- Weyl, H., 1946, “Mathematics and Logic,” American
Mathematical Monthly, 53: 2–13. (Scholar)
- Zermelo, E., 1908, “Untersuchungen über die Grundlagen
der Mengenlehre I,” Mathematische Annalen, 65:
261–281. (Scholar)