Linked bibliography for the SEP article "Typelogical Grammar" by Michael Moortgat

This is an automatically generated and experimental page

If everything goes well, this page should display the bibliography of the aforementioned article as it appears in the Stanford Encyclopedia of Philosophy, but with links added to PhilPapers records and Google Scholar for your convenience. Some bibliographies are not going to be represented correctly or fully up to date. In general, bibliographies of recent works are going to be much better linked than bibliographies of primary literature and older works. Entries with PhilPapers records have links on their titles. A green link indicates that the item is available online at least partially.

This experiment has been authorized by the editors of the Stanford Encyclopedia of Philosophy. The original article and bibliography can be found here.

Note: In addition to the regular text references, the bibliography contains some items that can place the entry in a broader context.

  • For general logical and mathematical background, see Galatos et al. 2007, Restall 2000, Sørensen and Urzyczyn 2006. (Scholar)
  • For monographs, collections and survey articles on typelogical grammar, see Buszkowski 1997, Buszkowski et al. 1988, Carpenter 1998, Jäger 2005, Moortgat 1988, 1997, Morrill 1994, 2010, Oehrle et al. 1988, van Benthem 1995. (Scholar)
  • Baldridge, J. (2002). Lexically Specified Derivational Control in Combinatory Categorial Grammar. Ph. D. thesis, University of Edinburgh. (Scholar)
  • Barker, C. (2004). Continuations in natural language. In H. Thielecke (Ed.), CW'04: Proceedings of the 4th ACM SIGPLAN continuations workshop, Tech. Rep. CSR-04-1, School of Computer Science, University of Birmingham, pp. 1–11. (Scholar)
  • –––. (2002). Continuations and the nature of quantification. Natural language semantics, 10: 211–242. (Scholar)
  • Barker, C. and C. Shan (2006). Types as graphs: Continuations in type logical grammar. Journal of Logic, Language and Information, 15(4): 331–370. (Scholar)
  • –––. (2008). Donkey anaphora is in-scope binding. Semantics and Pragmatics, 1(1): 1–46. (Scholar)
  • Barry, G., M. Hepple, N. Leslie, and G. Morrill (1991). Proof figures and structural operators for categorial grammar. In Proceedings of the 5th conference on European chapter of the Association for Computational Linguistics, Association for Computational Linguistics, pp. 198–203. (Scholar)
  • Bastenhof, A. (2010). Tableaux for the Lambek-Grishin calculus. CoRR abs/1009.3238. To appear in Proceedings ESSLLI 2010 Student Session. Copenhagen. (Scholar)
  • Bernardi, R. and M. Moortgat (2010). Continuation semantics for the Lambek-Grishin calculus. Information and Computation, 208(5): 394–416. (Scholar)
  • Bernardi, R. and A. Szabolcsi (2008). Optionality, Scope, and Licensing: An Application of Partially Ordered Categories. Journal of Logic, Language and Information, 17(3): 237–283. (Scholar)
  • Bransen, J. (2010). The Lambek-Grishin calculus is NP-complete. To appear in Proceedings 15th Conference on Formal Grammar, Copenhagen. CoRR abs/1005.4697. (Scholar)
  • Buszkowski, W. (2001). Lambek grammars based on pregroups. In P. de Groote, G. Morrill, and C. Retoré (Eds.), Logical Aspects of Computational Linguistics, Lecture Notes in Artificial Intelligence (Volume 2099), Berlin: Springer, pp. 95–109. (Scholar)
  • –––. (1997). Mathematical linguistics and proof theory. In J. van Benthem and A. ter Meulen (Eds.), Handbook of Logic and Language (Chapter 12), Amsterdam: Elsevier, and Cambridge, MA: MIT Press, pp. 683–736. (Scholar)
  • Buszkowski, W. and G. Penn (1990). Categorial grammars determined from linguistic data by unification. Studia Logica, 49(4): 431–454. (Scholar)
  • Buszkowski, W. and A. Preller (2007). Editorial introduction special issue on pregroup grammars. Studia Logica, 87(2): 139–144. (Scholar)
  • Buszkowski, W., W. Marciszewski, and J. van Benthem (Eds.) (1988). Categorial Grammar. Amsterdam: John Benjamins. (Scholar)
  • Capelletti, M. (2007). Parsing with structure-preserving categorial grammars. Ph. D. thesis, Utrecht Institute of Linguistics OTS, Utrecht University. (Scholar)
  • Carpenter, B. (1999). The Turing-completeness of multimodal categorial grammars. In J. Gerbrandy, M. Marx, M. de Rijke, and Y. Venema (Eds.), JFAK. Essays Dedicated to Johan van Benthem on the Occasion of his 50th Birthday. Amsterdam: Amsterdam University Press. (Scholar)
  • –––. (1998). Type-logical Semantics. Cambridge, MA: MIT Press. (Scholar)
  • Curry, H. B. (1961). Some logical aspects of grammatical structure. In R. Jacobson (Ed.), Structure of Language and its Mathematical Aspects, Proceedings of the Symposia in Applied Mathematics (Volume XII), American Mathematical Society, pp. 56–68. (Scholar)
  • de Groote, P. (2006). Towards a Montagovian account of dynamics. In Proceedings SALT 16. CLC Publications. (Scholar)
  • –––. (2001a). Towards abstract categorial grammars. In Proceedings of 39th Annual Meeting of the Association for Computational Linguistics, Association for Computational Linguistics, pp. 252–259. (Scholar)
  • –––. (2001b). Type raising, continuations, and classical logic. In M. S. R. van Rooy (Ed.), Proceedings of the Thirteenth Amsterdam Colloquium, Amsterdam: ILLC (Universiteit van Amsterdam), pp. 97–101. (Scholar)
  • –––. (1999). The non-associative Lambek calculus with product in polynomial time. In N. V. Murray (Ed.), Automated Reasoning With Analytic Tableaux and Related Methods, Lecture Notes in Artificial Intelligence (Volume 1617), Berlin: Springer, pp. 128–139. (Scholar)
  • de Groote, P. and F. Lamarche (2002). Classical non-associative Lambek calculus. Studia Logica, 71(3): 355–388. (Scholar)
  • de Groote, P. and S. Pogodalla (2004). On the Expressive Power of Abstract Categorial Grammars: Representing Context-Free Formalisms. Journal of Logic, Language and Information, 13(4): 421–438. (Scholar)
  • de Groote, P. and C. Retoré (1996). On the semantic readings of proof nets. In G.-J. Kruijff, G. Morrill, and D. Oehrle (Eds.), Proceedings 2nd Formal Grammar Conference, Prague, pp. 57–70. (Scholar)
  • Došen, K. (1992). A brief survey of frames for the Lambek calculus. Mathematical Logic Quarterly, 38(1): 179–187. (Scholar)
  • Galatos, N., P. Jipsen, T. Kowalski, and H. Ono (2007). Residuated Lattices: An Algebraic Glimpse at Substructural Logics, Studies in Logic and the Foundations of Mathematics (Volume 151), Amsterdam: Elsevier. (Scholar)
  • Girard, J.-Y. (1987). Linear logic. Theoretical Computer Science, 50: 1–102. (Scholar)
  • Grishin, V. (1983). On a generalization of the Ajdukiewicz-Lambek system. In A. Mikhailov (Ed.), Studies in Nonclassical Logics and Formal Systems, Moscow: Nauka, pp. 315–334. [English translation in Abrusci and Casadio (eds.) New Perspectives in Logic and Formal Linguistics. Bulzoni, Rome, 2002]. (Scholar)
  • Hendriks, H. (1993). Studied Flexibility. Categories and Types in Syntax and Semantics. Ph. D. thesis, ILLC, University of Amsterdam. (Scholar)
  • Hepple, M. (1999). An Earley-style predictive chart parsing method for Lambek grammars. In Proceedings of the 37th Annual Meeting of the Association for Computational Linguistics, Association for Computational Linguistics, pp. 465–472. (Scholar)
  • –––. (1990). Normal form theorem proving for the Lambek calculus. In Papers presented to the 13th International Conference on Computational Linguistics, Helsinki, pp. 173–178. (Scholar)
  • Hoyt, F. and J. Baldridge (2008). A logical basis for the D combinator and normal form in CCG. In Proceedings of ACL-08: HLT, Association for Computational Linguistics, pp. 326–334.
  • Jäger, G. (2005). Anaphora And Type Logical Grammar. Berlin: Springer. (Scholar)
  • –––. (2004). Residuation, Structural Rules and Context Freeness. Journal of Logic, Language and Information, 13: 47–59. (Scholar)
  • Johnson, M. (1998). Proof nets and the complexity of processing center-embedded constructions. Journal of Logic, Language and Information, 7(4): 433–447. (Scholar)
  • Joshi, A. K., K. Vijay-Shanker, and D. Weir (1991). The convergence of mildly context-sensitive grammar formalisms. In P. Sells, S. M. Shieber, and T. Wasow (Eds.), Foundational Issues in Natural Language Processing, Cambridge, MA: MIT Press, pp. 31–81. (Scholar)
  • Kanazawa, M. (1998). Learnable classes of categorial grammars. Stanford: CSLI Publications. (Scholar)
  • Kandulski, M. (1988). The equivalence of nonassociative Lambek categorial grammars and context-free grammars. Zeitschrift für mathematische Logik und Grundlagen der Mathematik, 34: 41–52. (Scholar)
  • Kanovich, M. (1994). The Complexity of Horn Fragments of Linear Logic. Annals of Pure and Applied Logic, 69(2-3): 195–241. (Scholar)
  • Kruijff, G.-J. and J. Baldridge (2003). Multi-modal combinatory categorial grammar. In Proceedings of the 10th Conference of the European Chapter of the Association for Computational Linguistics, Association for Computational Linguistics, pp. 211–218. (Scholar)
  • Kurtonina, N. (1995). Frames and Labels. A Modal Analysis of Categorial Inference. Ph. D. thesis, OTS Utrecht, ILLC Amsterdam. (Scholar)
  • Kurtonina, N. and M. Moortgat (2010). Relational semantics for the Lambek-Grishin calculus. In C. Ebert, G. Jäger, and J. Michaelis (Eds.), The Mathematics of Language. Proceedings of the 10th and 11th Biennial Conference, Lecture Notes in Computer Science (Volume 6149). Berlin: Springer, pp. 210–222. (Scholar)
  • ––– (1997). Structural control. In P. Blackburn and M. de Rijke (Eds.), Specifying Syntactic Structures, Stanford: CSLI Publications, pp. 75–113. (Scholar)
  • Lambek, J. (2008). From word to sentence. A computational algebraic approach to grammar. Polimetrica. (Scholar)
  • –––. (1999). Type grammar revisited. In A. Lecomte, F. Lamarche, and G. Perrier (Eds.), Logical Aspects of Computational Linguistics, Lecture Notes in Artificial Intelligence (Volume 1582), Berlin: Springer, pp. 1–27. (Scholar)
  • –––. (1993). From categorial to bilinear logic. In K. Došen and P. Schröder-Heister (Ed.), Substructural Logics. Oxford University Press. (Scholar)
  • –––. (1961). On the calculus of syntactic types. In R. Jacobson (Ed.), Structure of Language and its Mathematical Aspects, Proceedings of the Symposia in Applied Mathematics (Volume XII), American Mathematical Society, pp. 166–178. (Scholar)
  • –––. (1958). The mathematics of sentence structure. American Mathematical Monthly, 65: 154–170. (Scholar)
  • Melissen, M. (2009). The generative capacity of the Lambek-Grishin calculus: A new lower bound. In P. de Groote (Ed.), Proceedings 14th Conference on Formal Grammar, Lecture Notes in Computer Science (Volume 5591), Berlin: Springer. (Scholar)
  • Moortgat, M. (2009). Symmetric categorial grammar. Journal of Philosophical Logic, 8(6), 681–710. (Scholar)
  • –––. (1997). Categorial type logics. In J. van Benthem and A. ter Meulen (Eds.), Handbook of Logic and Language (Chapter 2), Amsterdam: Elsevier, pp. 93–177. (Second edition, revised and updated: Elsevier Insights Series, 2010). (Scholar)
  • –––. (1996). Multimodal linguistic inference. Journal of Logic, Language and Information, 5(3–4): 349–385. (Scholar)
  • –––. (1988). Categorial Investigations. Logical and Linguistic Aspects of the Lambek calculus. Berlin: De Gruyter. (Scholar)
  • Moot, R. (2008). Lambek grammars, tree adjoining grammars and hyperedge replacement grammars. In Proceedings of TAG+9, The 9th International Workshop on Tree Adjoining Grammars and Related Formalisms, Tübingen, pp. 65–72. (Scholar)
  • –––. (2007). Proof nets for display logic. CoRR, abs/0711.2444. (Scholar)
  • –––. (2002). Proof Nets for Linguistic Analysis. Ph. D. thesis, Utrecht Institute of Linguistics OTS, Utrecht University. (Scholar)
  • Moot, R. and M. Piazza (2001). Linguistic Applications of First Order Intuitionistic Linear Logic. Journal of Logic, Language and Information, 10(2): 211–232. (Scholar)
  • Moot, R. and Q. Puite (2002). Proof Nets for the Multimodal Lambek Calculus. Studia Logica, 71(3): 415–442. (Scholar)
  • Morrill, G. (2010). Categorial Grammar: Logical Syntax, Semantics, and Processing. Oxford: Oxford University Press. (Scholar)
  • –––. (2000). Incremental processing and acceptability. Computational linguistics, 26(3): 319–338. (Scholar)
  • –––. (1994). Type Logical Grammar: Categorial Logic of Signs. Dordrecht: Kluwer Academic Publishers. (Scholar)
  • –––. (1990). Intensionality and boundedness. Linguistics and Philosophy, 13(6): 699–726. (Scholar)
  • Morrill, G. and M. Fadda (2008). Proof nets for basic discontinuous Lambek calculus. Journal of Logic and Computation, 18(2): 239–256. (Scholar)
  • Morrill, G., M. Fadda, and O. Valentin (2007). Nondeterministic discontinuous Lambek calculus. In Proceedings of the Seventh International Workshop on Computational Semantics (IWCS7), Tilburg. (Scholar)
  • Morrill, G., O. Valentin, and M. Fadda (2009). Dutch grammar and processing: A case study in TLG. In P. Bosch, D. Gabelaia, and J. Lang (eds.), Logic, Language, and Computation: 7th International Tbilisi Symposium on Logic, Language, and Computation, Tbilisi, Georgia, October 1-5, 2007 (Revised Selected Papers), Lecture Notes in Artificial Intelligence (Volume 5422), Berlin: Springer, pp. 272–286. (Scholar)
  • Muskens, R. (2007). Separating syntax and combinatorics in categorial grammar. Research on Language & Computation, 5(3): 267–285. (Scholar)
  • Oehrle, R. T., E. Bach, and D. Wheeler (Eds.) (1988). Categorial Grammars and Natural Language Structures, Studies in Linguistics and Philosophy (Number 32). Dordrecht: Reidel. (Scholar)
  • Pentus, M. (1993b). Lambek grammars are context free. In Proceedings of the 8th Annual IEEE Symposium on Logic in Computer Science}, IEEE Computer Society Press, pp. 429–433. (Scholar)
  • –––. (2006). Lambek calculus is NP-complete. Theoretical Computer Science, 357: 186–201. (Scholar)
  • –––. (1995). Models for the Lambek calculus. Annals of Pure and Applied Logic, 75(1–2), 179–213. (Scholar)
  • Restall, G. (2000). An Introduction to Substructural Logics. London: Routledge. (Scholar)
  • Retoré, C. and S. Salvati (2010). A faithful representation of non-associative Lambek grammars in Abstract Categorial Grammars. Journal of Logic, Language and Information, 19(2). Special issue on New Directions in Type Theoretic Grammars. (Scholar)
  • Roorda, D. (1992). Proof Nets for Lambek calculus. Journal of Logic and Computation, 2(2): 211–231. (Scholar)
  • Savateev, Y. (2009). Product-free Lambek Calculus is NP-complete. In S. Artemov and A. Nerode (Eds.), Proceedings of the 2009 International Symposium on Logical Foundations of Computer Science, Lecture Notes in Computer Science (Volume 5407), Berlin: Springer, pp. 380–394. (Scholar)
  • Shan, C. and C. Barker (2006). Explaining Crossover and Superiority as Left-to-right Evaluation. Linguistics and Philosophy, 29(1): 91–134. (Scholar)
  • Sørensen, M. H. and P. Urzyczyn (2006). Lectures on the Curry-Howard Isomorphism, Studies in Logic and the Foundations of Mathematics (Volume 149), Amsterdam: Elsevier. (Scholar)
  • Stabler, E. (1999). Remnant movement and complexity. In G. Bouma, E. Hinrichs, G.-J. Kruijff, and R. T. Oehrle (Eds.), Constraints and Resources in Natural Language Syntax and Semantics, Stanford: CSLI, pp. 299–326. (Scholar)
  • –––. (1997). Derivational minimalism. In C. Retoré (Ed.), Logical Aspects of Computational Linguistics, Lecture Notes in Artificial Intelligence (Volume 1328), Berlin: Springer, pp. 68–95. (Scholar)
  • Steedman, M. (2000). The Syntactic Process. Cambridge, MA: MIT Press. (Scholar)
  • van Benthem, J. (1995). Language in Action: Categories, Lambdas and Dynamic Logic. Cambridge, MA: MIT Press. (Scholar)
  • –––. (1983). The semantics of variety in categorial grammar. Technical Report 83-29, Simon Fraser University. Revised version in W. Buszkowski et al. (1988). (Scholar)
  • Vermaat, W. (2006). The logic of variation. A cross-linguistic account of wh-question formation. Ph. D. thesis, Utrecht Institute of Linguistics OTS, Utrecht University. (Scholar)
  • –––. (2004). The minimalist move operation in a deductive perspective. Research on Language & Computation, 2(1), 69–85. (Scholar)
  • Wansing, H. (2002). Sequent systems for modal logics. In D. Gabbay and F. Guenthner (Eds.), Handbook of Philosophical Logic (Volume 8), Dordrecht: Kluwer Academic Publishers, pp. 61–145. (Scholar)
  • –––. (1992). Formulas-as-types for a hierarchy of sublogics of intuitionistic propositional logic. In D. Pearce and H. Wansing (Eds.), Nonclassical Logics and Information Processing, Lecture Notes in Computer Science (Volume 619), Berlin: Springer, pp. 125–145. (Scholar)

Generated Sun Mar 26 07:12:01 2017