Linked bibliography for the SEP article "Hermann Weyl" by John L. Bell and Herbert Korté

This is an automatically generated and experimental page

If everything goes well, this page should display the bibliography of the aforementioned article as it appears in the Stanford Encyclopedia of Philosophy, but with links added to PhilPapers records and Google Scholar for your convenience. Some bibliographies are not going to be represented correctly or fully up to date. In general, bibliographies of recent works are going to be much better linked than bibliographies of primary literature and older works. Entries with PhilPapers records have links on their titles. A green link indicates that the item is available online at least partially.

This experiment has been authorized by the editors of the Stanford Encyclopedia of Philosophy. The original article and bibliography can be found here.

Primary Sources

[1908] “Singuläre Integralgleichungen mit besonderer Berücksichtigung des Fourierschen Integraltheorems”. Dissertation, Göttingen. GA I, 1–87, [1].
[1910a] “Über die Definitionen der mathematischen Grundbegriffe”. Mathematisch-naturwissenschaftliche Blätter, 7: 93–95 and 109–113. GA I, 298–304, [9].
[1910b] “Über gewöhnliche Differentialgleichungen mit Singularitäten und die zugehörigen Entwicklungen willkürlicher Funktionen”. Mathematische Annalen, 68:220–269. GA I, 248–297, [8].
[1913] Die Idee der Riemannschen Fläche. B. G. Teubner, Leipzig, 1 edition. 2 edn, B. G. Teubner, Leipzig, 1923; Reprint of 2 edn, Chelsea Co., New York, 1951; 3 edn, revised, B. G. Teubner, Leipzig, 1955. English translation of 3 edn, The Concept of a Riemann Surface, Addison-Wesley, 1964. Dover edition 2009.
[1918a] “Gravitation und Elektrizität”. Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften zu Berlin, pages 465–480. GA II, 29–42, [31].
[1918b] “Reine Infinitesimalgeometrie”. Mathematische Zeitschrift, 2:384–411. GA II, 1–28, [30].
[1918c] Das Kontinuum. Veit & Co., Leipzig, Reprinted 1987. 2 edn, de Gryter & Co., Berlin, 1932. English translation: The Continuum: A Critical Examination of the Foundation of Analysis, translated by Stephen Pollard and Thomas Bole, Thomas Jefferson University Press: 1987. Corrected re-publication, Dover 1994.
[1918d] “Letter to Einstein, Zürich, 10 December”. In Robert Schulmann, A. J. Kox, Michel Janssen, and József Illy, editors, The Collected Papers of Albert Einstein: The Berlin Years: Correspondence, 1914–1918, volume 8, Part B. Princeton University Press, 1918/1998.
[1919a] “Eine neue Erweiterung der Relativitätstheorie”. Annalen der Physik, 59:101–133. GA II, 55–87, [34].
[1919b] “Über die statischen kugelsymmetrischen Lösungen von Einsteins “kosmologischen” Gravitationsgleichungen”. Physikalische Zeitschrift, 20:31–34. GA II, 51–54, [33].
[1920] “Das Verhältnis der kausalen zur statistischen Betrachtungsweise in der Physik”. Schweizerische Medizinische Wochenschrift, 50:737–741. GA II, 113–122, [38].
[1921a] “Electricity and gravitation”. Nature, 106:800–802. GA II, 260–262, [48].
[1921b] “Feld und Materie”. Annalen der Physik, 65:541–563. GA II, 237–259, [47].
[1921c] “Zur Infinitesimalgeometrie: Einordnung der projektiven und konformen Auffassung”. Nachrichten der Königlichen Gesellschaft der Wissenschaften zu Göttingen; Mathematisch-physikalische Klasse, pages 99–112. GA II, 195–207, [43].
[1921] “Über die neue Grundlagenkrise der Mathematik”. Mathematische Zeitschrift, 10:39–79, Reprinted 1998. GA II, 143–180, [41]. Reprinted by Wissenschaftliche Buchgesellschaft, Darmstadt, 1965. English translation On the New Foundational Crisis in Mathematics in Mancosu (1998), 86–122.
[1922a] “Das Raumproblem”. Jahresbericht der Deutschen Mathematikervereinigung, 31:205–221. GA II, 328–344, [53].
[1922b] “Die Einzigartigkeit der Pythagoreischen Maßbestimmung”. Mathematische Zeitschrift, 12:114–146. GA II, 263–295, [49].
[1923a] Mathematische Analyse Des Raumproblems. J. Springer, Berlin.
[1923b] Raum, Zeit, Materie. J. Springer, Berlin. 3 edn, essentially revised, J. Springer, Berlin 1919; 4 edn, essentially revised, J. Springer, Berlin 1921; 5 edn, revised, J. Springer, Berlin, 1923; 7 edn, edited (with notes) by J. Ehlers, Springer, Berlin 1988; Temps, espace, matière (from the 4th German edn), A. Blanchard, Paris, 1922; Space, Time, Matter, (from the 4th German edn), Methuen, London, 1922.
[1923c] “Zur allgemeinen Relativitätstheorie”. Physikalische Zeitschrift, 24:230–232. GA II, 375–377, [56].
[1924a] “Das gruppentheoretische Fundament der Tensorrechnung”. Nachrichten der Gesellschaft der Wissenschaften zu Göttingen. Mathematisch-physikalische Klasse, pages 218–224. GA II, 461–467, [62].
[1924b] “Massenträgheit und Kosmos. Ein Dialog”. Die Naturwissenschaften, 12:197–204. GA II, 478–485, [65].
[1924c] “Randbemerkungen zu Hauptproblemen der Mathematik”. Mathematische Zeitschrift, 20:131–150. GA II, 433–452, [60].
[1924d] “Über die Symmetrie der Tensoren und die Tragwite der symbolischen Methode in der Invariantentheorie”. Rendiconti del Circolo Matematico di Palermo, pages 29–36. GA II, 468–475, [63].
[1924e] “Was ist Materie?” Die Naturwissenschaften, 12:561–568, 585–593, and 604–611. GA II, 486–510, [66]. Reprinted by J. Springer, Berlin, 1924 and Wissenschaftliche Buchgesellschaft, Darmstadt, 1963.
[1924f] “Zur Theorie der Darstellung der einfachen kontinuierlichen Gruppen”. (Aus einem Schreiben an Herrn I. Schur). Sitzungsberichte der Preußischen Akademie der Wissenschaften zu Berlin, pages 338–345. GA II, 453–460, [61].
[1925a] “Theorie der Darstellung kontinuierlicher halbeinfacher Gruppen durch lineare Transformationen I”. Mathematische Zeitschrift, 23:271–309. GA II, 543–579, [68].
[1925b] “Die heutige Erkenntnislage in der Mathematik”. Symposion, 1:1–32, Reprinted 1998. GA II, 511–542, [67]. English translation On the Current Epistemological Situation in Mathematics, in Mancosu (1998), 123–142.
[1926a] “Theorie der Darstellung kontinuierlicher halbeinfacher Gruppen durch lineare Transformationen II”. Mathematische Zeitschrift, 24:328–376. GA II, 580–605, [68].
[1926b] “Theorie der Darstellung kontinuierlicher halbeinfacher Gruppen durch lineare Transformationen III”. Mathematische Zeitschrift, 24:377–395. GA II, 606–645, [68].
[1926c] “Theorie der Darstellung kontinuierlicher halbeinfacher Gruppen durch lineare Transformationen (Nachtrag)”. Mathematische Zeitschrift, 24:789–791. GA II, 645–647, [68].
[1926d] “Universe, modern conceptions of”. In The Encyclopedia Britannica, pages 908–911. 13 edition.
[1927] “Quantenmechanik und Gruppentheorie”. Zeitschrift für Physik, 46:1–46. GA III, 90–135, [75].
[1928a] Gruppentheorie und Quantenmechanik. S. Hirzel, Leipzig.
[1928b] “Diskussionsbemerkungen zu dem zweiten Hilbertschen Vortrag über die Grundlagen der Mathematik”. Abhandlungen aus dem mathematischen Seminar der Hamburgischen Universität, 6:86–88, Reprinted 1967. GA III, 147–149, [77]. English translation Comments on Hilbert’s second lecture on the foundations of mathematics in van Heijenoort (1967), 480–484.
[1929a] “Consistency in mathematics”. The Rice Institute Pamphlet, 16:245–265. GA III, 150–170, [78].
[1929b] “Elektron und Gravitation”. Zeitschrift für Physik, 56:330–352. GA III, 245–267, [85].
[1929c] “Gravitation and the electron”. The Rice Institute Pamphlet, 16:280–295. GA III, 229–244, [84].
[1929d] “Gravitation and the electron”. Proceedings of the National Academy of Sciences of the United States of America, 15:323–334. GA III, 217–228, [83].
[1929e] “On the foundations of infinitesimal geometry”. Bulletin of the American Mathematical Society, 35:716–725. Reprinted in Weyl (1968).
[1930] “Redshift and relativistic cosmology”. The London, Edinburgh and Dublin philosophical Magazine and Journal of Science, 9:936–943. GA III, 300–307, [89].
[1931a] “Geometrie und Physik”. Die Naturwissenschaften, 19:49–58. GA III, 336–345, [93].
[1931b] Gruppentheorie und Quantenmechanik. S. Hirzel, Leipzig. (a) 2nd reworked edition, S. Hirzel, Leipzig 1931. (b) English translation: The Theory of groups and quantum mechanics, Dutten, New York, 1932. (c) Reprinting of (b): Dover Publications, New York, 1949.
[1932] The Open World: Three Lectures on the Metaphysical Implications of Science. Yale University Press.
[1934a] Mind and Nature. University of Pennsylvania Press.
[1934b] “Universum und Atom”. Die Naturwissenschaften, 22:145–149. GA III, 420–424, [101].
[1938a] “Cartan on groups and differential geometry”. Bulletin of the American Mathematical Society, 44:598–601.
[1938b] Symmetry. Journal of the Washington Academy of Sciences, 28:253–271. GA III, 592–610, [111].
[1939] The classical groups, their invariants and representations. Princeton University Press; Oxford University Press; H. Milford, London. 2 edn, Princeton University Press; Oxford University Press; H. Milford, London, 1946.
[1946] “Mathematics and logic. A brief survey serving as a preface to a review of ‘The Philosophy of Bertrand Russell’”. The American Mathematical Monthly, 53:2–13. GA IV, 268–279, [138].
[1948] “Wissenschaft als symbolische Konstruktion des Menschen”. Eranos-Jahrbuch, pages 375–431. GA IV, 289–345, [142].
[1949a] Philosophy of Mathematics and Natural Science. Princeton University Press, 1 edition. 2 edn, Princeton University Press, 1950. 2009 edition, with a new introduction by Frank Wilczek. An expanded English version of Philosophie der Mathematik und Naturwissenschaft, München, Leibniz Verlag, 1927.
[1949b] “Relativity theory as a stimulus in mathematical research”. Proceedings of the American Philosophical Society, 93: 535–541. GA IV, 394–400, [147].
[1950] Space-Time-Matter. Dover, New York. English translation of the 4th edition (1921) of Raum-Zeit-Materie by Henry L. Brose.
[1952] Symmetry. Princeton University Press, Princeton.
[1953] “Über den Symbolismus der Mathematik und mathematischen Physik”. Studium generale, 6:219–238. GA IV, 527–536, [156].
[1954a] “Address on the unity of knowledge”. GA IV, 623–649, [165]. Address delivered at the Bicentennial Conference of Columbia University.
[1954b] “Erkenntnis und Besinnung (Ein Lebensrückblick)”. Studia Philosophica, 1954/1955. GA IV, 631–649, [166]. A talk given at the University of Lausanne, May 1954. English translation Insight and Reflection in T. L. Saaty and F. J. Weyl, eds., The Spirit and Uses of the Mathematical Sciences, 281–301, New York, McGraw-Hill, 1955.
[1968] Gesammelte Abhandlungen, volume I–IV. Springer Verlag, Berlin. Edited by K. Chandrasekharan.
[1985] “Axiomatic versus constructive procedures in mathematics”. The Mathematical Intelligencer, 7(4):12–17. A posthumous publication, edited by Tito Tonietti.
[1988] Riemanns geometrische Ideen, ihre Auswirkung und ihre Verknüpfung mit der Gruppentheorie. Springer-Verlag. Posthumous publication; edited by K. Chandrasekharan.
[2009] Mind and Nature: Selected Writings on Philosophy, Mathematics and Physics, Princeton University Press. Edited and with an introduction by Peter Pesic.

Secondary Sources

  • Barbour, J. and Pfister, H. (eds.). 1995. Mach’s Principle: From Newton’s Bucket to Quantum Gravity, volume 6 of Einstein Studies. Birkäuser, Basel. (Scholar)
  • Barbour, J. 2001. The Discovery of Dynamics. Oxford University Press, New York. (Scholar)
  • Becker, O. 1973. Beiträge zur phänomenologischen Begründung der Geometrie und ihrer physikalischen Anwendung. Max Niemeyer Verlag, Tübingen. (Scholar)
  • Bell, J. L. 2000. “Hermann Weyl on intuition and the continuum,” Philosophia Mathematica, 8: 259–273. (Scholar)
  • Bell, J. L. 2004. “Hermann Weyl’s later philosophical views: his divergence from Husserl,” In Feist [2004a], 173–185. (Scholar)
  • Bohr, N. and Rosenfeld. L. 1933. “Zur Frage der Messbarkeit der elektromagnetischen Feldgrössen”. Kgl. Danske Videnshab. Selskb, Mat.-Phys. Medd, 12(8). (Scholar)
  • Bohr, N. and Rosenfeld, L. 1950. “Field and charge measurements in qunatum electrodynamics”. Phys. Rev., 78:794–798. (Scholar)
  • Bondi, H. 1960. Cosmology. Cambridge University Press, London. (Scholar)
  • Brading, K. A. 2002. “Which symmetry? Noether, Weyl, and the conservation of charge”. Studies in the History and Philosophy of Modern Physics, 33:3–22. (Scholar)
  • Brading, K. and Brown, H. R. 2003. “Symmetries and Noether’s theorems”. In Katherine Brading and Elena Castellani, editors, Symmetries in Physics: Philosophical Reflections, chapter 5, pages 89–109. Cambridge University Press. (Scholar)
  • Brauer, R. and Weyl, H. 1935. “Spinors in \(n\) dimensions”. American Journal of Mathematics, 57:425–449. (Scholar)
  • Brown, H. R. 2005. Physical Relativity: Space-time Structure from a Dynamical Perspective. Clarendon Press, Oxford, New York. (Scholar)
  • Cao, T. N. 1997. Conceptual Developments of Twentieth Century Field Theories. Cambridge University Press, Cambridge. (Scholar)
  • Carnap, R. 1963. “Intellectual autobiography”. In Paul Arthur Schilpp, editor, The Philosophy of Rudolf Carnap, volume XI of The Library of Living Philosophers, pages 1–84. Open Court, La Salle, Illinois. (Scholar)
  • Cartan, E. 1922. “Sur un théorème fondamental de M. H. Weyl dan la théorie de l’espace métrique”. Comptes Rendus de l’Academie des Sciences, 175:82–85. Reprinted in (Cartan, 1952–1955, 3.1, 629–632). (Scholar)
  • Cartan, E, 1923a. “Sur les variétés à connexion affine et la théorie de la relativité générallisée”. Annales de l’ École Normale Supérieure, 40:325–412. Reprinted in (Cartan, 1952–1955, 3.1, 659–746). (Scholar)
  • Cartan, E. 1923b. “Sur un théorème fondamental de M. H. Weyl”. Journal de Mathématique, II(2):167–192. Reprinted in (Cartan, 1952–1955, 3.1, 633–658). (Scholar)
  • Cartan, E. 1937. La théorie des groupes finis et continus et la géométrie différentielle traitées par la méthode du repère mobile. Cahiers scientifiques 18. Gauthier-Villars, Paris. (Scholar)
  • Cartan, E. 1952–1955. Oeuvres Complètes, volume 1–3. Gauthiers-Villars, Paris. (Scholar)
  • Chern, Shiing-Shen. 1996. “Finsler geometry is just Riemannian geometry without the quadratic restriction”. Notices of the American Mathematical Society, 43(9):959–963, September. (Scholar)
  • Coleman, R.A. and Korté, H. 1980. “Jet bundles and path structures”. The Journal of Mathematical Physics, 21(6):1340–1351. (Scholar)
  • Coleman, R.A. and Korté, H. 1981. “Spacetime G-structures and their prolongations”. The Journal of Mathematical Physics, 22 (11):2598–2611. (Scholar)
  • Coleman, R.A. and Korté, H. 1982. “The status and meaning of the laws of inertia”. In The Proceedings of the Biennial Meeting of the Philosophy of Science Association, pages 257–274, Philadelphia. (Scholar)
  • Coleman, R.A. and Korté, H. 1984. “Constraints on the nature of inertial motion arising from the universality of free fall and the conformal causal structure of spacetime”. The Journal of Mathematical Physics, 25(12):3513–3526. (Scholar)
  • Coleman, R.A. and Korté, H. 1987. “Any physical, monopole, equation-of-motion structure uniquely determines a projective inertial structure and an \((n - 1)\)-force”. The Journal of Mathematical Physics, 28(7):1492–1498. (Scholar)
  • Coleman, R.A. and Korté, H. 1989. “All directing fields that are polynomial in the \((n - 1)\)-velocity are geodesic”. The Journal of Mathematical Physics, 30(5):1030–1033. (Scholar)
  • Coleman, R.A. and Korté, H. 1990. “Harmonic analysis of directing fields”. The Journal of Mathematical Physics, 31(1):127–130. (Scholar)
  • Coleman, R.A. and Korté, H. 1995. “A new semantics for the epistemology of geometry I, Modeling spacetime structure”. Erkenntnis, 42:141–160. (Scholar)
  • Coleman, R.A. and Korté, H. 2001. “Hermann Weyl: Mathematician, Physicist, Philosopher”. In Erhard Scholz, editor, Hermann Weyl’s Raum – Zeit – Materie and a General Introduction to His Scientific Work, volume 30 of Deutsche Mathematiker-Vereinigung Seminar, pages 161–386. Birkhäuser, Basel. (Scholar)
  • Da Silva, J. J. 1997. “Husserl’s phenomenology and Weyl’s predicativism,” Synthese, 110: 277–296. (Scholar)
  • Dirac, P. 1928a. “The quantum theory of the electron I”. Proceedings of the Royal Society (London) A, 117:610–624, February. (Scholar)
  • Dirac, P. 1928b. “The quantum theory of the electron II”. Proceedings of the Royal Society (London) A, 118:351–361, March. (Scholar)
  • Dirac, P. 1930. “A theory of electrons and protons”. Proceedings of the Royal Society (London) A, 126:360–365, January.
  • Dirac, P. 1931. “Quantised singularities in the electromagnetic field”. Proceedings of the Royal Society (London) A, 133: 60–72, September. (Scholar)
  • Dirac, P. 1973. “Long range forces and broken symmetries”. Proceedings of the Royal Society, 333A:403–418. (Scholar)
  • Dirac, P. 1977. “Recollections of an exciting era”. In C. Weiner, editor, History of Twentieth Century Physics, volume LVII of Proceedings of the International School of Physics “Enrico Fermi”, pages 109–146. Italian Physical Society, Academic Press. The summer school on the history of twentieth century of physics took place from July 31 to August 12. (Scholar)
  • Dirac, P. 1971. The Development of Quantum Theory. (J. Robert Oppenheimer Memorial Prize Acceptance Speech) Gordon and Breach Science Publishers, New York. (Scholar)
  • DiSalle, Robert. 2006. Understanding Space-Time: The Philosophical Development of Physics from Newton to Einstein. Cambridge University Press, Cambridge. (Scholar)
  • Dyson, J.D. 1983. Unfashionable pursuits. Alexander von Humboldt Stiftung Mitteilung, 41:12–18. (Scholar)
  • Eddington, A. 1933. The Expanding Universe. Cambridge University Press, Cambridge. (Scholar)
  • Ehlers, J. and Köhler, E. 1977. “Path structures on manifolds”. The Journal of Mathematical Physics, 18(10):2014–2018. (Scholar)
  • Ehlers, J., Pirani, R. A. E., and Schild, A. 1972. “The geometry of free fall and light propagation”. In L. O’ Raifeartaigh, editor, General Relativity, Papers in Honour of J. L. Synge, pages 64–84. Clarendon Press, Oxford. (Scholar)
  • Ehlers, J. 1988. “Hermann Weyl’s contributions to the general theory of relativity”. In Wolfgang Deppert and Kurt Hübner, editors, Exact Sciences and Their Philosophical Foundations: Exakte Wissenschaften und ihre philosophische Grundlegung. Vorträge des internationalen Hermann-Weyl-Kongresses, pages 83–105. Peter Lang Verlag, Frankfurt/M - Bern. (Scholar)
  • Ehresmann, C. 1951a. “Les prolongements d’ une variété différentiable I”. Comptes rendus des séances de l’ Académie des Sciences, 233:598–600. Reprinted in (Ehresmann, 1983, pp. 343–345). (Scholar)
  • Ehresmann, C. 1951b. “Les prolongements d’ une variété différentiable II”. Comptes rendus des séances de l’ Académie des Sciences, 233:777–779. Reprinted in (Ehresmann, 1983, pp. 346–348). (Scholar)
  • Ehresmann, C. 1951c. Les prolongements d’ une variété différentiable III. Comptes rendus des séances de l’ Académie des Sciences, 233:1081–1083. Reprinted in (Ehresmann, 1983, pp. 349–351). (Scholar)
  • Ehresmann, C. 1952a. “Les prolongements d’ une variété différentiable IV”. Comptes rendus des séances de l’ Académie des Sciences, 234:1028–1030. Reprinted in (Ehresmann, 1983, pp. 355–357). (Scholar)
  • Ehresmann, C. 1952b. “Les prolongements d’ une variété différentiable V”. Comptes rendus des séances de l’ Académie des Sciences, 234:1424–1425. Reprinted in (Ehresmann, 1983, pp. 358–360). (Scholar)
  • Ehresmann, C. 1983. “Charles Ehresmann œuvres complètes et commentées”. In A. C. Ehresmann, editor, Topologie Algébrique et Géométrie Différentielle, number Suppléments #1 et #2 of Vol. 24 in Cahiers de Topologie et Géométrie Différentielle. Evrard, Amiens. (Scholar)
  • Einstein, A. 1916. “Die Grundlage der allgemeinen Relativitätstheorie”. Annalen der Physik, 49(7):769–822. English translation “The Foundation of the General Theory of Relativity” in Lorentz et al. (1952). (Scholar)
  • Einstein, A. 1917. “Kosmologische Betrachtungen zur allgemeinen Relativitätstheorie”. Königlich Preußische Akademie der Wissenschaften, pages 142–152, February. (Scholar)
  • Einstein, A. 1949. “Autobiographical notes”. In P. A. Schilpp, editor, Albert Einstein: Philosopher-Scientist, volume 7 of The Library of Living Philosophers, pages 1–96. Open Court, La Salle, 3 edition. 1970 edition. (Scholar)
  • Einstein, A. 1928. “Riemann-Geometrie mit Aufrechterhaltung des Begriffes des Fernparallelismus”. Sitzungsberichte der Preussischen Akademie der Wissenschaften, Physikalisch-Mathematische Klasse, 7:217–221. (Scholar)
  • Einstein, A. 1954. “What is the theory of relativity”. In Ideas and Opinions, pages 227–232. Bonanza Books, New York. (Scholar)
  • Einstein, A. and Infeld, L. 1938. The Evolution of Physics. Simon & Schuster, New York. (Scholar)
  • Ewald, W. 1996. From Kant to Hilbert: A Source Book in the Foundations of Mathematics, Volume 2, Oxford: Clarendon Press. (Scholar)
  • Feferman, S., 1988. “Weyl vindicated: Das Kontinuum 70 years later,” in Temi e prospettive della logica e della filosofia della scienza contemporanee, I, Bologna (1988), 59–93. Reprinted in Feferman, S. In the Light of Logic, Oxford University Press, New York (1998), 249–283. (Scholar)
  • Feferman, S. 2000. “The significance of Hermann Weyl’s Das Kontinuum,” in Hendricks et al, (eds.), Proof Theory, Dordrecht: Kluwer. (Scholar)
  • Feist, R., 2002. “Weyl’s appropriation of Husserl’s and Poincaré’s thought,” Synthese, 132: 273–301. (Scholar)
  • Feist, R. (ed.), 2004a. Husserl and the Sciences, University of Ottawa Press. (Scholar)
  • Feist, R. 2004b. “Husserl and Weyl: phenomenology, mathematics, and physics,” In Feist [2004a], 153–172. (Scholar)
  • Fock, V. 1964. The Theory of Space, Time and Gravitation. The MacMillan Company, New York. (Scholar)
  • Fock, V. 1926. “Über die invariante Form der Wellen-und Bewegungsgleichungen für einen geladenen Massepunkt”. Zeitschrift für Physik, 39:226–232. (Scholar)
  • Folina, J. 2008. “Intuition between the analytic-continental divide: Hermann Weyl’s philosophy of the continuum,” Philosophia Mathematica, 16: 25–55. (Scholar)
  • Frankel, T. 1997. The Geometry of Physics. Cambridge University Press. (Scholar)
  • Frei, G. and Stammbach, U. 1992. H. Weyl und die Mathematik an der ETH Zürich 1913–1930. Birkhäuser Verlag, Basel. (Scholar)
  • Goodman, R. 2008. “Harmonic analysis on compact symmetric spaces: the legacy of Elie Cartan and Hermann Weyl”. In Katrin Tent, editor, Groups and Analysis, volume 354 of London Mathematical Society Lecture Note Series, chapter 1, pages 1–23. Cambridge, Cambridge. (Scholar)
  • Grünbaum, A. 1973. Philosophical Problems of Space and Time, volume XII of Boston Studies in the Philosophy of Science. Reidel, Dordrecht, 2 edition. (Scholar)
  • Hardy, G.H. 1967. A Mathematician’s Apology. Cambridge University Press. (Scholar)
  • Hawkins, T. 1998. “From general relativity to group representations: the background to Weyl’s papers of 1925–26”. Société Mathématique de France, pages 69–100. (Scholar)
  • Hawkins, T. 2000. Emergence of the Theory of Lie Groups. Sources and Studies in the History of Mathematics and Physical Sciences. Springer. (Scholar)
  • Hilbert, D. 1902. “Über die Grundlagen der Geometrie”. Math. Ann., 56:381–422. (Scholar)
  • Hilbert, D. 1922. “The new grounding of mathematics: first report,” translated from German original in Ewald [1996], 1117–1134. (Scholar)
  • Hilbert, D. 1926/1967. “Über das Unendliche”. Mathematische Annalen 95, 161–190. English translation “On the Infinite.” in van Heijenoort [1981], 369–392. (Scholar)
  • Hilbert, D. 1927/1967. “Die Grundlagen der Mathematik”. English translation The Foundations of Mathematics in van Heijenoort (1967), 464–479. (Scholar)
  • Husserl, E. 1931. Ideas: General Introduction to Pure Phenomenology, Tr. W.R. Boyce Gibson. New York: Collier Books. Fourth Printing, 1972. (Scholar)
  • Jackson, J.D. and Okun, L.B. 2001. “Historical roots of gauge invariance”. Reviews of Modern Physics, 73:663–680. (Scholar)
  • Kerszberg, Pierre. 1989. The Invented Universe: The Einstein-De Sitter Controversy (1916–17) and the Rise of Relativistic Cosmology. Clarendon Press, Oxford. (Scholar)
  • Kerszberg, Pierre. 2007. “Perseverance and adjustment: On Weyl’s phenomenological philosophy of nature”. In Luciano Boi, Pierre Kerszberg, and Frédéric Patras, editors, Rediscovering Phenomenology: Phenomenological Essays of Mathematical Beings, Physical Reality, Perception and Conscioussness, pages 173–194. Springer, Dordrecht. (Scholar)
  • Klein, Felix 1872/1921. “Vergleichende Betrachtungen über neuere geometrische Forschungen”. In R. Fricke and A. Ostrowski, editors, Felix Klein Gesammelte Mathematische Abhandlungen, volume 1. Springer, Berlin. (This is Klein’s inauguration paper upon his appointment to a professorship at Erlangen in 1872; it was originally published in 1872). [Available online]. (Scholar)
  • Kragh, Helge. 1990. Dirac A Scientific Biography. Cambridge University Press. (Scholar)
  • Kragh, Helge. 1996. Cosmology and Controversy: The Historical Development of Two Theories of the Universe. Princeton University Press, Princeton, New Jersey. (Scholar)
  • Laugwitz, Detlef. 1958. “Über eine Vermutung von Hermann Weyl zum Raumproblem”. Archiv der Mathematik, IX:128–133. (Scholar)
  • Lie, S. 1886/1935. “Bemerkungen zu v. Helmholtzs Arbeit: Ueber die Tatsachen, die der Geometrie zu Grunde liegen”. In Lie, Gesammelte Abhandlungen, volume II, pages 374–379. Teubner, Leipzig. Originally published in Berichte über die Abhandlungen der Kgl. Sächsischen Gesellschaft der Wissenschaften in Leipzig, Math.-Phys. Klasse, Supplement, abgeliefert am 21.2.1887, pp. 337–342. (Scholar)
  • Lie, S. 1890a. “Über die Grundlagen der Geometrie (Erste Abhandlung)”. Berichte über d. Verh. d. Sächsischen Gesell. der Wiss., math.-phys. Klasse, pages 284–321. (Scholar)
  • Lie, S. 1890b. “Über die Grundlagen der Geometrie (Zweite Abhandlung)”. Berichte über d. Verh. d. Sächsischen Gesell. der Wiss., pages 355–418. (Scholar)
  • London, Fritz 1927. “Quantenmechanische Deutung der Theorie von Weyl”. Zeitschrift für Physik, 42:375–389. (Scholar)
  • Lorentz, H.A., Einstein, A., Minkowski, H., and Weyl, H. 1923/1952. The Principle of Relativity: A Collection of Original Memoirs on the Special and General Theory of Relativity. Dover Publications, Inc., New York, 1952. Translated from the third and enlarged German edition of 1923 “Das Relativitätsprinzip, eine Sammlung von Abhandlungen” (Leibzig: Teubner) by W. Perrett and G. B. Jeffrey. (Scholar)
  • Mackey, G.W. 1988. “Hermann Weyl and the application of group theory to quantum mechanics”. In Wolfgang Deppert and Kurt Hübner, editors, Exact Sciences and Their Philosophical Foundations: Exakte Wissenschaften und ihre philosophische Grundlegung. Vorträge des internationalen Hermann-Weyl-Kongresses, pages 131–159. Peter Lang Verlag, Frankfurt/M - Bern. (Scholar)
  • Mancosu, P., 1998. From Brouwer to Hilbert: The Debate on the Foundations of Mathematics in the 1920s, Oxford: Clarendon Press. (Scholar)
  • Mancosu, P. and Ryckman, T. 2002. “Mathematics and phenomenology: the correspondence between O. Becker and H. Weyl”. Philosophia Mathematica 3, 10:130–202. (Scholar)
  • Marzke, R.F. and Wheeler, J.A. 1964. “Gravitation as geometry, I: The geometry of space-time and the geometrical standard meter”. In Hong-Yee Chiu and W. F. Hoffmann, editors, Gravitation and Relativity, pages 40–64. Benjamin, Amsterdam. (Scholar)
  • Mehra, J. and Rechenberg, H. 2000. The Historical Development of Quantum Theory, volume 6, Part 1. Springer. (Scholar)
  • Mielke, E. and Hehl, F. 1988. “Die Entwickelung der Eichtheorien: Marginalien zu deren Wissenschaftsgeschichte”. In Exact Sciences and Their Philosophical Foundations: Exakte Wissenschaften und ihre philosophische Grundlegung. Vorträge des internationalen Hermann-Weyl-Kongresses, pages 191–231. Peter Lang Verlag, Frankfurt/M - Bern. (Scholar)
  • Misner, C.W., Thorne, K.S. and Wheeler, J.A. 1973. Gravitation. W. H. Freeman, San Francisco. (Scholar)
  • Moriyasu, K. 1983. An Elementary Primer For Gauge Theory. World Scientific, Singapore. (Scholar)
  • Muller, F.A. and Saunders, Simon. 2008. “Discerning fermions”. British Journal for the Philosophy of Science, 59:499–548. (Scholar)
  • Narlikar, Jayant Vishnu. 2002 . An Introduction to Cosmology. Cambridge, Cambridge, 3 edition. (Scholar)
  • Noether, Emmy. 1918. “Invariante Variationsprobleme”. Nachrichten der Königlichen Gesellschaft der Wissenschaften zu Göttingen; Mathematisch-physikalische Klasse, pages 235–257. (Scholar)
  • North, J.D. 1965. The Measure of the Universe. Dover Publications, New York. (Scholar)
  • Norton, John D., 1999. “Geometries in collision: Einstein, Klein and Riemann”. In Jeremy J. Gray, editor, The Symbolic Universe; Geometry and Physics 1890–1930. Oxford University Press. (Scholar)
  • O’Raifeartaigh, L. and Straumann, N. 2000. “Gauge theory: origins and modern developments”. Rev. Mod. Phys., 72(1). (Scholar)
  • O’Raifeartaigh, Lochlainn 1997.. The Dawning of Gauge Theory. Princeton Series in Physics. Princeton University Press, Princeton. (Scholar)
  • Pauli, W. 1921/1958. Relativitätstheorie, volume 19 of Encyklopädie der mathematischen Wissenschaften. B. G. Teubner, Leipzig. English translation; 1958 Pergamon Press, Ltd. (Scholar)
  • Penrose, Roger. 2004. Hermann Weyl’s neighborhood. Vintage, London. (Scholar)
  • Pesic, Peter. 2013. “Hermann Weyl’s neighborhood”. Studis in History and Philosophy of Science, 44, 150–153. (Scholar)
  • Raman, V.V. and Forman, P. 1969. “Why was it Schrödinger who developed de Broglie’s Ideas?” In Russell McCormmach, editor, Historical Studies in the Physical Sciences, pages 291–314.. University of Pennsylvania Press. (Scholar)
  • Reichenbach, Hans. 1924. Axiomatik der relativistischen Raum-Zeit-Lehre. Vieweg, Braunschweig. Reprinted in Hans Reichenbach Gesammelte Werke, volume 3, edited by Andreas Kamlah and Maria Reichenbach. (Scholar)
  • Reid, C. 1986. Hilbert-Courant. New York: Springer-Verlag. (Scholar)
  • Riemann, Bernhard. 1854. “Ueber die Hypothesen, welche der Geometrie zu Grunde liegen”. Abhandlungen der Königlichen Gesellschaft der Wissenschaften zu Göttingen, 13. Reproduced in Riemann (1953). (Scholar)
  • Riemann, Bernhard. 1876/1953. Gesammelte Mathematische Werke. Dover, New York, 2 edition. Edited by Heinrich Weber with the assistance of Richard Dedekind; with a supplement edited by M. Noether and W. Wirtinger and with a new introduction by Professor Hans Lewy. (Scholar)
  • Ryckman, Thomas. 1994. “Weyl, Reichenbach and the epistemology of geometry”. Studies in the History and Philosophy of Modern Physics, 25:831–870. (Scholar)
  • Ryckman, Thomas. 1996. “Einstein agonists: Weyl and Reichenbach on geometry and the general theory of relativivty”. In Ronald N. Giere and Alan W. Richardson, editors, Origins of Logical Empiricism, volume XVI of Minnesota Studies in the Philosophy of Science, pages 165–209. University of Minnesota Press. (Scholar)
  • Ryckman, Thomas. 2003. “The philosophical roots of the gauge principle: Weyl and transcendental phenomenological idealism”. In Katherine Brading and Elena Castellani, editors, Symmetries in Physics: Philosophical Reflections. Cambridge. (Scholar)
  • Ryckman, Thomas. 2005. The Reign of Relativity: Philosophy in Physics 1915–1925. Oxford Studies in Philosophy of Science. Oxford University Press. (Scholar)
  • Ryckman, Thomas. 2009. “Hermann Weyl and “First Philosophy”: Constituting gauge invariance”. In Michel Bitbol, Pierre Kerszberg, and Jean Petitot, editors, Constituting Objectivity: Transcendental Perspectives on Modern Physics, The Western Ontario Series in Philosophy of Science, pages 281–298. Springer. (Scholar)
  • Salmon, Wesley C. 1977. “The curvature of physical space”. In J. Earman, C. N. Glymour, and J. J. Stachel, editors, Foundations of Space-Time Theories, volume VIII of Minnesota Studies in the Philosophy of Science, pages 281–302. University of Minnesota Press, Minneapolis. (Scholar)
  • Scheibe, Erhard. 1957 . “Über das Weylsche Raumproblem”. Journal für Mathematik, 197(3/4):162–207. (Dissertation Göttingen 1955). (Scholar)
  • Scheibe, Erhard. 1988. “Hermann Weyl and the nature of spacetime”. In Wolfgang Deppert and Kurt Hübner, editors, Exact Sciences and Their Philosophical Foundations: Exakte Wissenschaften und ihre philosophische Grundlegung. Vorträge des internationalen Hermann-Weyl-Kongresses, pages 61–82. Peter Lang Verlag, Frankfurt/M - Bern. (Scholar)
  • Scholz, Erhard. 1992. “Riemann’s vision of a new approach to geometry”. In D. Flament L. Boi and J.-M. Salanskis, editors, 1830–1930: A Century of Geometry, volume 402 of Lecture Notes in Physics, pages 22–34. Springer Verlag, Berlin. (Scholar)
  • Scholz, Erhard. 1999a. “Weyl and the theory of connections”. In Jeremy Gray, editor, The Symbolic Universe: Geometry and Physics 1890–1930, pages 260–284. Oxford University Press, Oxford. (Scholar)
  • Scholz, Erhard. 1999b. “Weyl and the theory of connections”. In Jeremy Gray, editor, The Symbolical Universe, pages 260–284. Oxford University Press. (Scholar)
  • Scholz, Erhard. 2001. “Weyl’s infinitesimalgeometrie, 1917–1925”. In Erhard Scholz, editor, Hermann Weyl’s Raum – Zeit – Materie and a General Introduction to His Scientific Work, pages 48–104. Birkäuser, Basel. (Scholar)
  • Scholz, Erhard. 2004. “Hermann Weyl’s Analysis of the “Problem of Space” and the Origin of Gauge Structures”. Science in Context, 17:165–197. (Scholar)
  • Scholz, Erhard. 2005. “Local spinor structures in V. Fock’s and H. Weyl’s work on the Dirac equation (1929)”. In Joseph Kouneiher, Philippe Nabonnand, and Jean-Jacques Szczeciniarz, editors, Géométrie au XXe siècle, 1930–2000: histoire et horizons, pages 284–301. Presses internationales Polytechnique. (Scholar)
  • Scholz, Erhard. 2006. “Introducing groups into quantum theory (1926–1930)”. Historia Mathematica, 33(4):440–490, November. (Scholar)
  • Schrödinger, Erwin. 1922. “Über eine bemerkenswerte Eigenschaft der Quantenbahnen eines einzelnen Elektrons”. Zeitschrift für Physik, 12:13–23. (Scholar)
  • Schwinger, Julian. 1988. “Hermann Weyl and quantum kinematics”. In Wolfgang Deppert and Kurt Hübner, editors, Exact Sciences and Their Philosophical Foundations: Exakte Wissenschaften und ihre philosophische Grundlegung. Vorträge des internationalen Hermann-Weyl-Kongresses, pages 107–129. Peter Lang Verlag, Frankfurt/M - Bern. (Scholar)
  • Sharpe, R.W. 1997. Differential Geometry; Cartan’s Generalization of Klein’s Erlangen Program. Graduate Texts in Mathematics. Springer Verlag. (Scholar)
  • Sieroka, Norman. 2006. “Weyl’s ‘agens theory’ of matter and the Zurich Fichte”. Studies in History and Philosophy of Science, 38: 84–107. (Scholar)
  • Sieroka, Norman. 2010.Umgebungen:Symboliscer Konstruktivismus im Anschluss an Hermann Weylund Fritz Medicus. Chronos Verlag, Zurich. (Scholar)
  • Sigurdsson, Skúli. 1991. Hermann Weyl, Mathematics and Physics, 1900–1927. Ph.D., Harvard University, Cambridge, Massachusetts. Department of the History of Science. (Scholar)
  • Sigurdsson, Skúli. 2001. “Journeys in spacetime”. In Erhard Scholz, editor, Hermann Weyl’s Raum – Zeit – Materie and a General Introduction to His Scientific Work, volume 30 of Deutsche Mathematiker-Vereinigung Seminar, pages 15–47. Birkhäuser, Basel. (Scholar)
  • Sklar, L. 1974. Space, Time, and Spacetime. University of California Press, Berkeley. (Scholar)
  • Sklar, L. 1977. “Facts, conventions and assumptions”. In J. Earman, C. N. Glymour, and J. J. Stachel, editors, Foundations of Space-Time Theories, volume VIII of Minnesota Studies in the Philosophy of Science, pages 206–274. University of Minnesota Press, Minneapolis. (Scholar)
  • Speiser, David. 1988. “Gruppentheorie und Quantenmechanik: the book and its position in Weyl’s work”. In Wolfgang Deppert and Kurt Hübner, editors, Exact Sciences and Their Philosophical Foundations: Exakte Wissenschaften und ihre philosophische Grundlegung. Vorträge des internationalen Hermann-Weyl-Kongresses, pages 161–189. Peter Lang Verlag, Frankfurt/M - Bern. (Scholar)
  • Straumann, N. 2001. “Ursprünge der Eichtheorien”. In Erhard Scholz, editor, Hermann Weyl’s Raum – Zeit – Materie and a General Introduction to His Scientific Work, pages 138–155. Birkäuser, Basel. (Scholar)
  • Tieszen, R., 2000. “The philosophical background of Weyl’s mathematical constructivism.” Philosophia Mathematica, 8: 274–301. (Scholar)
  • Thomas, T.Y. 1925. “On the projective and equi-projective geometries of paths”. Proceedings of the National Academy of Sciences, 2(4):199–209. (Scholar)
  • Van Atten, M., D. Van Dalen, and R. Tieszen. 2002. “The phenomenology and mathematics of the intuitive continuum” Philosophia Mathematica, 10: 203–226. (Scholar)
  • van Dalen, Dirk. 1995. “Hermann Weyl’s intuitionistic mathematics”. The Bulletin of Symbolic Logic, 1(2): 145–169. (Scholar)
  • van Heijenoort, J. (ed). 1967. From Frege to Gödel, A Source Book in Mathematical Logic, 1879–1931, Cambridge Massachusetts: Harvard University Press. (Scholar)
  • Veblen, O. and Thomas, J. M. 1926. “Projective invariants of the affine geometry of paths”. Annals of Mathematics, 27:279–296. (Scholar)
  • Vizgin, V. 1994. Unified Field Theories in the First Third of the Twentieth Century. Birkhäuser Verlag, Basel. Translated from the Russian original by J. Barbour. (Scholar)
  • von Helmholtz, H. 1868. “Über die Thatsachen, die der Geometrie zum Grunde liegen”. Nachrichten von der Königlichen Gesellschaft der Wissenschaften zu Göttingen, pages 192–222. Reprinted in Wissenschaftliche Abhandlungen (1883) vol. II, pp. 618–639. (Scholar)
  • von Neumann, J. 1928. “Einige Bemerkungen zur Diracschen Theorie des relativistischen Drehelektrons”. Zeitschrift für Physik, 48:868–881. (Scholar)
  • Weinberg, Steven 1972. Gravitation and Cosmology: Principles and Applications of the Geeral Theory of Relativity. John Wiley & Sons, New York. (Scholar)
  • Wheeler, John A. 1994. At Home in the Universe. The American Institute of Physics, New York, 1994. (Scholar)
  • Winnie, John A. 1977. “The causal theory of space-time”. In J. Earman, C. N. Glymour, and J. J. Stachel, editors, Foundations of Space-Time Theories, volume VIII of Minnesota Studies in the Philosophy of Science, pages 134–205. University of Minnesota Press, Minneapolis. (Scholar)
  • Yang, Chen Ning. 1986. “Hermann Weyl’s Contribution to Physics”. In K. Chandrasekharan, editor, H. Weyl, pages 7–21. Springer-Verlag, Berlin. Centenary Lectures delivered by C. N. Yang, R. Penrose, and A. Borel at the ETH Zürich. (Scholar)
  • Yang, Chen Ning. 1987. “Square root of minus one, complex phases and Erwin Schrödinger”. In C. W. Kilmister, editor, Schrödinger; Centenary celebration of a polymath, chapter 5, pages 53–64. Cambridge University Press. (Scholar)
  • Zee, A. 2003. Quantum Field Theory in a Nutshell. Princeton University Press. (Scholar)

Generated Sun Mar 26 10:17:01 2017