Skip to main content

Revisiting School Scientific Argumentation from the Perspective of the History and Philosophy of Science

  • Chapter
  • First Online:
International Handbook of Research in History, Philosophy and Science Teaching

Abstract

This chapter aims to revisit the notion of argumentation that is currently used in science education. After acknowledging a consolidated tendency of linguistics-based approaches to the study of ‘school scientific argumentation’, the chapter proposes to shift the interest towards an examination of the epistemic aspects of argumentation, i.e. those that derive from its central participation in science as a process and as a product. The premise of the chapter is that the contributions of the philosophy and history of science and of other science studies and metatheoretical perspectives –which are here collectively called ‘HPS’– constitute a fruitful theoretical background to understand scientific arguments and arguing in educational settings. Based on this premise, five possible ‘bridges’ between argumentation and HPS are proposed; such bridges are identified through a ‘theory-directed’ literature review.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 749.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 949.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 949.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See the following ‘focussed’ philosophy of science textbooks for more or less extensive discussions around philosophers that inspect the centrality of argumentation in science: Asti Vera and Ambrosini (2010), Føllesdal and Walløe (1986), and Salmon (1995). Also of particular interest for this chapter are the portrayals of the ‘combined’ scientific practice of argumentation-explanation that revolve around the notion of abductive reasoning (cf., Adúriz-Bravo 2005; Aliseda 2006; Bex and Walton 2012; Giere 1988; Giere et al. 2005; Lawson 2009; Samaja 1999).

  2. 2.

    Leema Kuhn Berland and Brian Reiser (2009) also present a three-element characterisation of argumentation, which is very similar to the one proposed here. They talk about: ‘(1) using evidence and general science concepts to make sense of the specific phenomena being studied; (2) articulating these understandings; and (3) persuading others of these explanations by using the ideas of science to explicitly connect the evidence to the knowledge claims’ (p. 29; emphasis in the original).

  3. 3.

    These two theoretical constructs refer to the communicative activity as a whole, with all its pragmatic constraints, where different types of texts – among them, arguments – are produced.

  4. 4.

    The distinction here between ‘scientists’ science’ and ‘school science’ (cf., Izquierdo-Aymerich and Adúriz-Bravo 2003) is based on the French tradition in didactique des sciences. In the theory of didactical transposition (Chevallard 1991), there is a ‘savoir savant’ constructed within the disciplines and a ‘savoir enseigné’, taught at school, which emerges from transposing (i.e. performing adaptive operations on) the former. Thus, science as done at school resembles in some aspects, and differs in some others from, science as performed by scientists.

  5. 5.

    An anonymous reviewer of this chapter suggested the inclusion of this remark. Emphasis on this central ‘learning to learn’ aspect of argumentation is probably a cause for the blurring of its more specific epistemic aspects, linked to the nature of science.

  6. 6.

    In Archila (2012), Buty and Plantin (2008a), Erduran and Jiménez-Aleixandre (2008), Jiménez-Aleixandre (2010), Jiménez-Aleixandre and Díaz de Bustamante (2003), Khine (2012), Nielsen (2011), Sampson and Clark (2006, 2008), and Sanmartí (2003), there are rather comprehensive literature reviews on the subject, with more than three hundred references in English, French and Spanish.

  7. 7.

    For example: Abell and colleagues (2000), Adúriz-Bravo and colleagues (2005), Bell and Linn (2000), Driver and colleagues (2000), Duschl (1990), Duschl and Osborne (2002), Fagúndez Zambrano and Castells Llavanera (2009), García Romano and Valeiras (2010), Henao and Stipcich (2008), Islas and colleagues (2009), Konstantinidou and colleagues (2010), Lawson (2003), Linhares Queiroz and Passos Sá (2009), Newton and colleagues (1999), Osborne and colleagues (2001), Revel Chion and colleagues (2005), Ruiz and colleagues (2011), Sanmartí (2003), Sasseron and Carvalho (2011), and Schwarz and colleagues (2003).

  8. 8.

    See, for instance, Cadermártori and Parra (2000), Candela (1999), Kuhn (1992), Martins (2009), Mason and Scirica (2006), and Pontecorvo and Girardet (1993), among a host of others, for theoretical foundations ranging from psychologist James F. Voss to semiotician Mikhail Bakhtin, going through argumentation theorist Frans van Eemeren and social anthropologist Jean Lave.

  9. 9.

    I will here use the acronym HPS (history and philosophy of science in/for science education) to denote the area of research within didactics of science that strives to incorporate a metatheoretical perspective in science education (cf., Matthews 1994/2014, 2000). This area would mainly draw from the meta-sciences (philosophy, history and sociology of science), but it would also include elements from the science studies and from other ‘less disciplined’ metatheoretical endeavours, such as science-technology-society (STS), feminist epistemologies or public understanding of science.

  10. 10.

    The tables of content of the three available handbooks on school scientific argumentation (i.e. Buty and Plantin 2008a; Erduran and Jiménez-Aleixandre 2008; Khine 2012) can give readers an idea of the current lines of research within the strand. These lines would be, once chunked and retitled, argumentation, learning and concept formation; argumentation, learning environments and communities of practice; argumentation, discourse and language games; argumentation, social interactions and meaning negotiation; argumentation and scientific reasoning; argumentation and socioscientific and moral issues; argumentation and science teacher education; argumentation-based instruction; argumentation quality and assessment; and argumentation and epistemic criteria and practices.

  11. 11.

    For authoritative works on argumentation in connection with socioscientific issues, see Zeidler (2003, especially Chaps. 3, 4, 5, and 7) and Sadler (2011, especially Chaps. 11 and 12).

  12. 12.

    A conception of evidence that is broader than ‘experimental data’ on the one hand better captures the history of scientific activity and on the other hand is essential in order to account for argumentation in socioscientific contexts.

  13. 13.

    For other authors not mentioned in this list, see Reygadas and Haidar (2001), Santibáñez (2012).

  14. 14.

    This opposition is in turn based on Aristotle’s division of ‘perspectives’ on argumentation that has been thoroughly used in continental studies and retrieved by the Anglo-Saxon tradition: logical, dialectical and rhetorical (cf., Harpine 1985; van Eemeren and Houtlosser 2003). The chapter concentrates only in the first two classes of arguments.

  15. 15.

    This is what Constanza Padilla (2012) calls ‘demonstrative dimension’ of argumentation.

  16. 16.

    The name of this section is a paraphrasis of an expression by Sandoval and Millwood (2008, p. 72).

  17. 17.

    Both Lewis Wolpert (1992) and Lydia Galagovsky (2008) refer to this ‘non-naturality’ of science in the titles of their books. Nevertheless, the meanings of the expressions that they use are quite distinct from each other. Wolpert’s thesis, positivistic in its foundations, is that science is a way of thinking far away from common sense. Galagovsky’s compilation of chapters aims at showing how science is a very elaborate human construction and not a mere expression of the way the world is.

  18. 18.

    For example, Allchin (2011), Duschl (1990, 1998), Hodson (2009), Lawson (2003, 2005, 2009), and McDonald (2010)

  19. 19.

    For example, Clark and colleagues (2010), Duschl and Grandy (2008), Sampson and Clark (2007), Sandoval and Reiser (2004), and Windschitl and colleagues (2008).

  20. 20.

    Cf., Driver and colleagues (2000), Izquierdo-Aymerich (2005), Newton and colleagues (1999), Ogunniyi (2007), and Ogunniyi and Hewson (2008).

  21. 21.

    As one of the anonymous reviewers of this chapter pointed out, considering the nature of science or argumentation important goals of science education does not imply deciding to teach these issues explicitly. The contention that school scientific skills are not developed by ‘exposure’ and deserve ‘direct instruction’ is still debated; nevertheless, such contention seems to be finding some support coming from recent empirical studies (e.g. Kirschner et al. (2006), at a general level, and McDonald (2010), for the case of nature of science and argumentation).

  22. 22.

    See Izquierdo-Aymerich (2005), Izquierdo-Aymerich and Adúriz-Bravo (2003), and Izquierdo-Aymerich and colleagues (1999).

  23. 23.

    Here I refer to Toulmin (2001).

References

  • AAAS [American Association for the Advancement of Science] (1993). Project 2061: Benchmarks for science literacy. Washington, DC: American Association for the Advancement of Science.

    Google Scholar 

  • Abell, S.K., Anderson, G. & Chezem, J. (2000). Science as argument and explanation: Exploring concepts of sound in third grade. In Minstrell, J. & Van Zee, E.H. (Eds.). Inquiry into inquiry learning and teaching in science (pp. 100–119). Washington, D.C.: American Association for the Advancement of Science.

    Google Scholar 

  • Adúriz-Bravo, A. (2005). Una introducción a la naturaleza de la ciencia: La epistemología en la enseñanza de las ciencias naturales. Buenos Aires: Fondo de Cultura Económica.

    Google Scholar 

  • Adúriz-Bravo, A. (2010). Argumentación científica escolar: Herramientas para su análisis y su enseñanza. Plenary lecture presented at the Seminario Internacional sobre Enseñanza de las Ciencias, Cali, Colombia, June.

    Google Scholar 

  • Adúriz-Bravo, A. (2011). Fostering model-based school scientific argumentation among prospective science teachers. US-China Education Review, 8(5), 718–723.

    Google Scholar 

  • Adúriz-Bravo, A., Bonan, L., González Galli, L., Revel Chion, A. & Meinardi, E. (2005). Scientific argumentation in pre-service biology teacher education. Eurasia Journal of Mathematics, Science and Technology Education, 1(1), 76–83.

    Google Scholar 

  • Aliseda, A. (2006). Abductive reasoning: Logical investigations into discovery and explanation. Dordrecht: Springer.

    Google Scholar 

  • Allchin, D. (2011). Evaluating knowledge of the nature of (whole) science. Science Education, 95(3), 518–542.

    Google Scholar 

  • Archila, P.A. (2012). La investigación en argumentación y sus implicaciones en la formación inicial de profesores de ciencias. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 9(3), 361–375.

    Google Scholar 

  • Asti Vera, C. & Ambrosini, C. (2010). Argumentos y teorías: Aproximación a la epistemología. Buenos Aires: CCC Educando.

    Google Scholar 

  • Atkins, L.J. (2008). The roles of evidence in scientific argument. In AIP Conference Proceedings: 2008 Physics Education Research Conference, Volume 1064 (pp. 63–66). Edmonton: American Institute of Physics.

    Google Scholar 

  • Bar-Hillel, Y. (1970). Aspects of language: Essays and lectures on philosophy of language, linguistic philosophy and methodology of linguistics. Jerusalem: The Magnes Press.

    Google Scholar 

  • Bell, P. & Linn, M.C. (2000). Scientific arguments as learning artifacts: Designing for learning from the web with KIE. International Journal of Science Education, 22(8), 797–817.

    Google Scholar 

  • Bex, F.J. & Walton, D.N. (2012). Burdens and standards of proof for inference to the best explanation: Three case studies. Law, Probability & Risk, 11(2–3), 113–133.

    Google Scholar 

  • Böttcher, F. & Meisert, A. (2011). Argumentation in science education: A model-based framework. Science & Education, 20(2), 103–140.

    Google Scholar 

  • Bravo-Torija, B. & Jiménez-Aleixandre, M.P. (2011). A learning progression for using evidence in argumentation: An initial framework. Paper presented at the 9th ESERA Conference, Lyon, France, September.

    Google Scholar 

  • Bricker, L.A. & Bell, P. (2008). Conceptualizations of argumentation from science studies and the learning sciences and their implications for the practices of science education. Science Education, 92(3), 473–498.

    Google Scholar 

  • Buty, C. & Plantin, C. (Eds.) (2008a). Argumenter en classe de sciences: Du débat à l’apprentissage. Paris: Institut National de Recherche Pédagogique.

    Google Scholar 

  • Buty, C. & Plantin, C. (2008b). Introduction: L’argumentation à l’épreuve dans l’enseignement des sciences et vice-versa. In Buty, C. & Plantin, C. (Eds.). Argumenter en classe de sciences: Du débat à l’apprentissage (pp. 17–41). Paris: Institut National de Recherche Pédagogique.

    Google Scholar 

  • Cademártori, Y. & Parra, D. (2000). Reforma educativa y teoría de la argumentación. Revista Signos, 33(48), 69–85.

    Google Scholar 

  • Candela, A. (1999). Ciencia en el aula: Los alumnos entre la argumentación y el consenso. Mexico: Paidós.

    Google Scholar 

  • Cavagnetto, A.R. (2010). Argument to foster scientific literacy: A review of argument interventions in K-12 science contexts. Review of Education Research, 80(3), 336–371.

    Google Scholar 

  • Chevallard, Y. (1991). La transposition didactique: Du savoir savant au savoir enseigné. Grenoble: La Pensée Sauvage Éditions.

    Google Scholar 

  • Clark, D.B., Sampson, V.D., Stegmann, K., Marttunen, M., Kollar, I., Janssen, J., Weinberger, A., Menekse, M., Erkens, G. & Laurinen, L. (2010). Scaffolding scientific argumentation between multiple students in online learning environments to support the development of 21st century skills. In Ertl, B. (Ed.). E-collaborative knowledge construction: Learning from computer-supported and virtual environments (pp. 1–39). New York: IGI Global.

    Google Scholar 

  • Diéguez Lucena, A. (2005). Filosofía de la ciencia. Madrid: Biblioteca Nueva.

    Google Scholar 

  • Driver, R.A., Newton, P. & Osborne, J.F. (2000). Establishing the norms of scientific argument in classrooms. Science Education, 84(3), 287–312.

    Google Scholar 

  • Duschl, R.A. (1990). Restructuring science education: The importance of theories and their development. New York: Teachers College Press.

    Google Scholar 

  • Duschl, R.A. (1998). La valoración de argumentaciones y explicaciones: Promover estrategias de retroalimentación. Enseñanza de las Ciencias, 16(1), 3–20.

    Google Scholar 

  • Duschl, R.A. (2008). Quality argumentation and epistemic criteria. In Erduran, S. & Jiménez-Aleixandre, M.P. (Eds.). Argumentation in science education: Perspectives from classroom-based research (pp. 159–175). Dordrecht: Springer.

    Google Scholar 

  • Duschl, R.A., Ellenbogen, K. & Erduran, S. (1999). Understanding dialogic argumentation among middle school science students. Paper presented at the American Educational Research Association Annual Conference, Montreal, Canada, April.

    Google Scholar 

  • Duschl, R.A & Grandy, R. (Eds.) (2008). Teaching scientific inquiry: Recommendations for research and implementation. Rotterdam: Sense Publishers.

    Google Scholar 

  • Duschl, R.A. & Osborne, J.F. (2002). Supporting and promoting argumentation discourse. Studies in Science Education, 38(1), 39–72.

    Google Scholar 

  • Erduran, S. & Jiménez-Aleixandre, M.P. (Eds.) (2008). Argumentation in science education: Perspectives from classroom-based research. Dordrecht: Springer.

    Google Scholar 

  • Erduran, S., Simon, S. & Osborne, J.F. (2004). TAPping into argumentation: Developments in the application of Toulmin’s argument pattern for studying science discourse. Science Education, 88(6), 915–933.

    Google Scholar 

  • Fagúndez Zambrano, T.J. & Castells Llavanera, M. (2009). La enseñanza universitaria de la física: Los objetos materiales y la construcción de significados científicos. Actualidades Investigativas en Educación, 9(2), 1–27.

    Google Scholar 

  • Føllesdal, D. & Walløe, L. (1986). Rationale Argumentation: Ein Grundkurs in Argumentations- und Wissenschaftstheorie. Berlin: Walter de Gruyter. (Norwegian original from 1977.)

    Google Scholar 

  • Galagovsky, L. (Ed.) (2008). ¿Qué tienen de “naturales” las ciencias naturales? Buenos Aires: Biblos.

    Google Scholar 

  • García Romano, L. & Valeiras, N. (2010). Lectura y escritura en el aula de ciencias: Una propuesta para reflexionar sobre la argumentación. Alambique, 63, 57–64.

    Google Scholar 

  • Giere, R.N. (1988). Explaining science: A cognitive approach. Chicago: University of Chicago Press.

    Google Scholar 

  • Giere, R.N., Bickle, J. & Mauldin, R.F. (2005). Understanding scientific reasoning (5th edition). Belmont: Wadsworth Publishing Company.

    Google Scholar 

  • Harpine, W.D. (1985). Can rhetoric and dialectic serve the purposes of logic? Philosophy and Rhetoric, 18(2), 96–112.

    Google Scholar 

  • Henao, B.L. & Stipcich, M.S. (2008). Educación en ciencias y argumentación: La perspectiva de Toulmin como posible respuesta a las demandas y desafíos contemporáneos para la enseñanza de las ciencias experimentales. Revista Electrónica de Enseñanza de las Ciencias, 7(1), 47–62.

    Google Scholar 

  • Hodson, D. (2009). Teaching and learning about science: Language, theories, methods, history, traditions and values. Rotterdam: Sense Publishers.

    Google Scholar 

  • Islas, S.M., Sgro, M.R. & Pesa, M.A. (2009). La argumentación en la comunidad científica y en la formación de profesores de física. Ciência & Educação, 15(2), 291–304.

    Google Scholar 

  • Izquierdo-Aymerich, M. (2005). Hacia una teoría de los contenidos escolares. Enseñanza de las Ciencias, 23(1), 111–122.

    Google Scholar 

  • Izquierdo-Aymerich, M. & Adúriz-Bravo, A. (2003). Epistemological foundations of school science. Science & Education, 12(1), 27–43.

    Google Scholar 

  • Izquierdo-Aymerich, M., Sanmartí, N., Espinet, M., García, M.P. & Pujol, R.M. (1999). Caracterización y fundamentación de la ciencia escolar. Enseñanza de las Ciencias, extra issue, 79–92.

    Google Scholar 

  • Jiménez-Aleixandre, M.P. (2010). 10 ideas clave: Competencias en argumentación y uso de pruebas. Barcelona: Graó.

    Google Scholar 

  • Jiménez-Aleixandre, M.P., Bugallo Rodríguez, A. & Duschl, R.A. (2000). “Doing the lesson” or “doing science”: Arguments in high school genetics. Science Education, 84, 757–792.

    Google Scholar 

  • Jiménez-Aleixandre, M.P. & Díaz de Bustamante, J. (2003). Discurso de aula y argumentación en la clase de ciencias: Cuestiones teóricas y metodológicas. Enseñanza de las Ciencias, 21(3), 359–370.

    Google Scholar 

  • Jiménez-Aleixandre, M.P. & Erduran, S. (2008). Argumentation in science education: An overview. In Erduran, S. & Jiménez-Aleixandre, M.P. (Eds.) Argumentation in science education: Perspectives from classroom-based research (pp. 3–27). Dordrecht: Springer.

    Google Scholar 

  • Jiménez-Aleixandre, M.P. & Federico-Agraso, M. (2009). Justification and persuasion about cloning: Arguments in Hwang’s paper and journalistic reported versions. Research in Science Education, 39(3), 331–347.

    Google Scholar 

  • Kelly, G.J. & Bazerman, C. (2003). How students argue scientific claims: A rhetorical-semantic analysis. Applied Linguistics, 24(1), 28–55.

    Google Scholar 

  • Kelly, G.J. & Chen, C. (1999). The sound of music: Constructing science as sociocultural practices through oral and written discourse. Journal of Research in Science Teaching, 36(8), 883–915.

    Google Scholar 

  • Kelly, G.J. & Takao, A. (2002). Epistemic levels in argument: An analysis of university oceanography students’ use of evidence in writing. Science Education, 86(3), 314–342.

    Google Scholar 

  • Khine, M.S. (Ed.) (2012). Perspectives on scientific argumentation: Theory, practice and research. Dordrecht: Springer.

    Google Scholar 

  • Kirschner, P.A., Sweller, J. & Clark, R.E. (2006). Why minimal guidance during instruction does not work: An analysis of the failure of constructivist discovery, problem-based, experiential, and inquiry-based teaching. Educational Psychologist, 41(2), 75–86.

    Google Scholar 

  • Konstantinidou, A., Cerveró, J.M. & Castells, M. (2010). Argumentation and scientific reasoning: The “double hierarchy” argument. In Taşar, M.F. & Çakmakci, G. (Eds.). Contemporary science education research: Scientific literacy and social aspects of science (pp. 61–70). Ankara: Pegem Akademi.

    Google Scholar 

  • Kuhn, D. (1992). Thinking as argument. Harvard Educational Review, 62(2), 155–179.

    Google Scholar 

  • Kuhn, D (1993). Science as argument. Science Education, 77(3), 319–337.

    Google Scholar 

  • Kuhn, D. (2010). Teaching and learning science as argument. Science Education, 94(5), 810–824.

    Google Scholar 

  • Kuhn Berland, L. & Reiser, B. (2009). Making sense of argumentation and explanation. Science Education, 93(1), 26–55.

    Google Scholar 

  • Kuhn Berland, L. & Reiser, B. (2011). Classroom communities’ adaptation of the practice of scientific argumentation. Science Education, 95(2), 191–216.

    Google Scholar 

  • Lawson, A.E. (2003). The nature and development of hypothetico-predictive argumentation with implications for science teaching. International Journal of Science Education, 25(11), 1387–1408.

    Google Scholar 

  • Lawson, A.E. (2005). What is the role of induction and deduction in reasoning and scientific inquiry? Journal of Research in Science Teaching, 42(6), 716–740.

    Google Scholar 

  • Lawson, A.E. (2009). Basic inferences of scientific reasoning, argumentation, and discovery. Science Education, 94(2), 336–364.

    Google Scholar 

  • Lehrer, R. & Schauble, L. (2006). Cultivating model-based reasoning in science education. In Sawyer, R.K. (Ed.). Cambridge handbook of the learning sciences (pp. 371–387). Cambridge: Cambridge University Press.

    Google Scholar 

  • Lemke, J. (1990). Talking science: Language, learning, and values. Norwood: Ablex.

    Google Scholar 

  • Linhares Queiroz, S. & Passos Sá, L. (2009). O espaço para a argumentação no ensino superior de química. Educación Química, 20(2), 104–110.

    Google Scholar 

  • Martins, I. (2009). Argumentation in texts from a teacher education journal: An exercise of analysis based upon the Bakhtinian concepts of genre and social language. Educación Química, 20(2), 26–36.

    Google Scholar 

  • Mason, L. & Scirica, F. (2006). Prediction of students’ argumentation skills about controversial topics by epistemological understanding. Learning and Instruction, 16, 492–509.

    Google Scholar 

  • Matthews, M. (1994/2014). Science teaching: The role of history and philosophy of science, New York: Routledge.

    Google Scholar 

  • Matthews, M. (2000). Time for science education: How teaching the history and philosophy of pendulum motion can contribute to science literacy. New York: Plenum Publishers.

    Google Scholar 

  • McDonald, C. (2010). The influence of explicit nature of science and argumentation instruction on preservice primary teachers’ views on nature of science. Journal of Research in Science Teaching, 47(9), 1137–1164.

    Google Scholar 

  • Monk, M. & Osborne, J.F. (1997). Placing the history and philosophy of science on the curriculum: A model for the development of pedagogy. Science Education, 81(4), 405–424.

    Google Scholar 

  • Newton, P., Driver, R. & Osborne, J.F. (1999). The place of argumentation in the pedagogy of school science. International Journal of Science Education, 21(5), 553–576.

    Google Scholar 

  • Nielsen, J.A. (2011). Dialectical features of students’ argumentation: A critical review of argumentation studies in science education. Research in Science Education, on-line first.

    Google Scholar 

  • NRC [National Research Council] (1995). National science education standards. Washington, DC: National Academy Press.

    Google Scholar 

  • Nussbaum, E.M., Sinatra, G.M. & Owens, M.C. (2012). The two faces of scientific argumentation: Applications to global climate change. In Khine, M.S. (Ed.) Perspectives on scientific argumentation: Theory, practice and research (pp. 17–37). Dordrecht: Springer.

    Google Scholar 

  • Ogunniyi, M.B. (2007). Teachers’ stances and practical arguments regarding a science-indigenous knowledge curriculum: Part 1. International Journal of Science Education, 29(8), 963–986.

    Google Scholar 

  • Ogunniyi, M.B. & Hewson, M.G. (2008). Effect of an argumentation-based course on teachers’ disposition towards a science-indigenous knowledge curriculum. International Journal of Environmental and Science Education, 3(4), 159–177.

    Google Scholar 

  • Osborne, J. (2005). The role of argument in science education. In Boersma, K. Goedhart, M., de Jong, O. & Eijkelhof, H. (Eds.). Research and the quality of science education (pp. 367–380). Dordrecht: Springer.

    Google Scholar 

  • Osborne, J.F. (2010). Arguing to learn in science: The role of collaborative, critical discourse. Science, 328, 463–466.

    Google Scholar 

  • Osborne, J.F., Erduran, S., Simon, S. & Monk, M. (2001). Enhancing the quality of argument in school science. School Science Review, 82(301), 63–70.

    Google Scholar 

  • Osborne, J.F., MacPherson, A., Patterson, A. & Szu, E. (2012). Introduction. In Khine, M.S. (Ed.). Perspectives on scientific argumentation: Theory, practice and research (pp. 3–16). Dordrecht: Springer

    Google Scholar 

  • Osborne, J.F. & Patterson, A. (2011). Scientific argument and explanation: A necessary distinction? Science Education, 95(4), 627–638.

    Google Scholar 

  • Padilla, C. (2012). Escritura y argumentación académica: Trayectorias estudiantiles, factores docentes y contextuales. Magis, 5(10), 31–57.

    Google Scholar 

  • Plantin, C. (2005). L’argumentation: Histoire, théories et perspectives. Paris: PUF.

    Google Scholar 

  • Plantin, C. (2011). “No se trata de convencer sino de convivir”: L’ère post-persuasion. Rétor, 1(1), 59–83.

    Google Scholar 

  • Pontecorvo, C. & Girardet, H. (1993). Arguing and reasoning in understanding historical topics. Cognition and Instruction, 11(3 & 4), 365–395.

    Google Scholar 

  • Revel Chion, A., Adúriz-Bravo, A. & Meinardi, E. (2009). Análisis histórico-epistemológico de las concepciones de salud desde una perspectiva didáctica: Narrando la “historia” de la peste negra medieval. Enseñanza de las Ciencias, extra issue, 168–172.

    Google Scholar 

  • Revel Chion, A., Couló, A., Erduran, S., Furman, M., Iglesia, P. & Adúriz-Bravo, A. (2005). Estudios sobre la enseñanza de la argumentación científica escolar. Enseñanza de las Ciencias, extra issue VII Congreso Internacional sobre Investigación en la Didáctica de las Ciencias, Oral presentations, Section 4.1., n/pp.

    Google Scholar 

  • Reygadas, P. & Haidar, J. (2001). Hacia una teoría integrada de la argumentación. Estudios sobre las Culturas Contemporáneas, VII(13), 107–139.

    Google Scholar 

  • Ruiz, F.J., Márquez, C. & Tamayo, O.E. (2011). Teachers’ change of conceptions on argumentation and its teaching. In E-book ESERA 2011, Strand 6, pp. 86–92. doi: http://lsg.ucy.ac.cy/esera/e_book/base/ebook/strand6/ebook-esera2011_RUIZ-06.pdf

  • Sadler, T.D. (Ed.) (2011). Socioscientific issues in the classroom: Teaching, learning and research. Dordrecht: Springer.

    Google Scholar 

  • Salmon, M.H. (1995). Introduction to logic and critical thinking. Fort Worth: Harcourt Brace.

    Google Scholar 

  • Samaja, J. (1999). Epistemología y metodología: Elementos para una teoría de la investigación científica (3rd edition). Buenos Aires: EUDEBA.

    Google Scholar 

  • Sampson, V.D, & Clark, D.B. (2006). Assessment of argument in science education: A critical review of the literature. In Barab, A., Hay, K.E. & Hickey, D.T. (Eds.). Proceedings of the Seventh International Conference of the Learning of Science: Making a difference (pp. 655–661). Mahwah: Lawrence Erlbaum.

    Google Scholar 

  • Sampson, V.D. & Clark, D.B. (2007). Incorporating scientific argumentation into inquiry-based activities with online personally-seeded discussions. The Science Scope, 30(6), 43–47.

    Google Scholar 

  • Sampson, V.D. & Clark, D.B. (2008). Assessment of the ways students generate arguments in science education: Current perspectives and recommendations for future directions. Science Education, 92(3), 447–472.

    Google Scholar 

  • Sandoval, W.A. (2003). Conceptual and epistemic aspects of students’ scientific explanations. Journal of the Learning Sciences, 12(1), 5–51.

    Google Scholar 

  • Sandoval, W.A. & Millwood, K.A. (2005). The quality of students’ use of evidence in written scientific explanations. Cognition and Instruction, 23(1), 23–55.

    Google Scholar 

  • Sandoval, W.A. & Millwood, K.A. (2008). What can argumentation tell us about epistemology. In Erduran, S. & Jiménez-Aleixandre, M.P. (Eds.). Argumentation in science education: Perspectives from classroom-based research (pp. 71–88). Dordrecht: Springer.

    Google Scholar 

  • Sandoval, W.A. & Reiser, B. (2004). Explanation-driven inquiry: Integrating conceptual and epistemic scaffolds for scientific inquiry. Science Education, 88(3), 345–372.

    Google Scholar 

  • Sanmartí, N. (Ed.) (2003). Aprendre ciències tot aprenent a escriure ciència. Barcelona: Edicions 62.

    Google Scholar 

  • Santibáñez, C. (2012). Teoría de la argumentación como epistemología aplicada. Cinta de Moebio, 43, 24–39.

    Google Scholar 

  • Sasseron, L.H. & Carvalho, A.M.P. (2011). Construindo argumentação na sala de aula: A presença do ciclo argumentativo, os indicadores de alfabetização científica e o padrão de Toulmin. Ciência & Educação, 17(1), 97–114.

    Google Scholar 

  • Schwarz, B.B., Neuman, Y., Gil, J. & Ilya, M. (2003). Construction of collective and individual knowledge in argumentative activity: An empirical study. The Journal of the Learning Sciences, 12(2), 221–258.

    Google Scholar 

  • Siegel, H. (1995). Why should educators care about argumentation. Informal Logic, 17(2), 159–176.

    Google Scholar 

  • Smith, P. (2003). An introduction to formal logic. Cambridge: Cambridge University Press.

    Google Scholar 

  • Stadler, F. (Ed.) (2004). Induction and deduction in the sciences. Dordrecht: Kluwer.

    Google Scholar 

  • Sutton, C. (1996). Beliefs about science and beliefs about language. International Journal of Science Education, 18(1), 1–18.

    Google Scholar 

  • Tiberghien, A. (2008). Preface. In Erduran, S. & Jiménez-Aleixandre, M.P. (Eds.). Argumentation in science education: Perspectives from classroom-based research (pp. ix-xv). Dordrecht: Springer.

    Google Scholar 

  • Tindale, C.W. (1999). Acts of arguing: A rhetorical model of argument. Albany: State University of New York Press.

    Google Scholar 

  • Toulmin, S.E. (1958). The uses of argument. Cambridge: Cambridge University Press.

    Google Scholar 

  • Toulmin, S.E. (2001). Return to reason. Cambridge: Harvard University Press.

    Google Scholar 

  • Toulmin, S.E. (2003). The uses of argument (updated edition). Cambridge: Cambridge University Press.

    Google Scholar 

  • van Eemeren, F.H. & Houtlosser, P. (2003). The development of the pragma-dialectical approach to argumentation. Argumentation, 17, 387–403.

    Google Scholar 

  • von Aufschnaiter, C., Erduran, S., Osborne, J.F. & Simon, S. (2008). Arguing to learn and learning to argue: Case studies of how students’ argumentation relates to their scientific knowledge. Journal of Research in Science Teaching, 45(1), 101–131.

    Google Scholar 

  • Walton, D.N. (1996). Argumentation schemes for presumptive reasoning. Mahwah: Lawrence Erlbaum Associates.

    Google Scholar 

  • Westbury, I., Hopmann, S. & Riquarts, K. (Eds.) (2000). Teaching as a reflective practice: The German Didaktik tradition. Mahwah: Lawrence Erlbaum Associates.

    Google Scholar 

  • Windschitl, M., Thompson, J. & Braaten, M. (2008). Beyond the scientific method: Model-based inquiry as a new paradigm of preference for school science investigations. Science Education, 92(5), 941–967.

    Google Scholar 

  • Wolpert, L. (1992). The unnatural nature of science: Why science does not make common sense. London: Faber and Faber.

    Google Scholar 

  • Zeidler, D.L. (Ed.) (2003). The role of moral reasoning on socioscientific issues and discourse in science educationn Dordrecht: Kluwer.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agustín Adúriz-Bravo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Adúriz-Bravo, A. (2014). Revisiting School Scientific Argumentation from the Perspective of the History and Philosophy of Science. In: Matthews, M. (eds) International Handbook of Research in History, Philosophy and Science Teaching. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7654-8_45

Download citation

Publish with us

Policies and ethics