Skip to main content
Log in

Learning Plants: Semiosis Between the Parts and the Whole

  • Original Paper
  • Published:
Biosemiotics Aims and scope Submit manuscript

Abstract

In this article, I explore plant semiosis with a focus on plant learning. I distinguish between the scales and levels of learning conceivable in phytosemiosis, and identify organism-scale learning as the distinguishing question for plant semiosis. Since organism-scale learning depends on organism-scale semiosis, I critically review the arguments regarding whole-plant functional cycles. I conclude that they have largely relied on Uexküllian biases that have prevented an adequate interpretation of modern plant neurobiology. Through an examination of trophic growth in plant roots, I expose some conceptual difficulties in attributing functional cycles to whole-plants. I conclude that the mapping of resource areas in the root system is a learning activity requiring higher-scale sign activity than is possible at the cellular scale, strongly suggesting the presence of organism-scale functional cycles. I do, however, question whether all perception-action cycles in organisms are accompanied with organism-scale semiosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. We shall ignore intracellular semiotics and signal transduction in this paper as this is a component of all life and therefore not essential to understanding phytosemiosis (or zoosemiosis). Mycosemiosis may be a different case, however, owing to the different role that cells play in fungi (see Hoffmeyer 2008, p. 224–225).

  2. It may be that, in some cases, there are actually two scales here: the single cell scale and the organ scale. However, they shall be treated as a single ontological type for the purpose of this paper.

  3. The capacity for a particular instance of some plant hormone or neurotransmitter to act as a iconic sinsign e-moting the plant into an activity occurs on a different scale than the capacity of the plant to form a class of situations for which the iconic sinsign is but a replica. The class is a legisign, and it may be an evolutionarily inherited sign type that is not itself available to change during the course of somatic development.

  4. To coordinate the movement of sugars, plants use action potentials along long tubules interspaced with chemically mediated signalling across plasmodesmata, in a system that formally converges with animal neurotransmission (Baluška et al. 2005)

References

  • Baluška, F. (2010). Recent surprising similarities between plant cells and neurons. Plant Signalling & Behavior, 5(2), 87–89.

    Article  Google Scholar 

  • Baluška, F., & Mancuso, S. (2009a). Plants and animals: Convergent evolution in action? In F. Baluška (Ed.), Plant-environment interactions: Signalling and communication in plants. Berlin: Springer.

    Chapter  Google Scholar 

  • Baluška, F., & Mancuso, S. (2009b). Plant neurobiology: from sensory biology, via plant communication, to social plant behavior. Cognitive Processing, 10(1), 3–7.

    Article  Google Scholar 

  • Baluška, F., Mancuso, S., Volkmann, D., & Barlow, P. (2004). Root apices as plant command centres: the unique ‘brain-like’ status of the root apex transition zone. Biologia, Bratislava, 59(13), 7–19.

    Google Scholar 

  • Baluška, F., Volkmann, D., & Menzel, D. (2005). Plant synapses: actin-based domains for cell-to-cell communication. Trends in Plant Science, 10(3), 106–111.

    Article  PubMed  Google Scholar 

  • Baluška, F., Mancuso, S., Volkmann, D., & Barlow, P. (2009). The ‘root-brain’ hypothesis of Charles and Francis Darwin: revival after more than 125 years. Plant Signalling & Behavior, 4(12), 1121–1127.

    Article  Google Scholar 

  • Barlow, P., & Lück, J. (2007). Structuralism and semiosis: Highways for the symbolic representation of morphogenetic events in plants. In G. Witzany (Ed.), Biosemiotics in transdisciplinary contexts (pp. 157–161). Vilnius: Umweb.

    Google Scholar 

  • Bateson, G. (1972). Steps to an ecology of mind. New York: Ballantine Books.

    Google Scholar 

  • Bateson, G. (1979). Mind and nature: A necessary unity. Toronto: Bantam Books.

    Google Scholar 

  • Brenner, E. D., Stahlberg, R., Mancuso, S., Vivanco, J., Baluška, F., & Van Volkenburgh, E. (2006). Plant neurobiology: an integrated view of plant signalling. Trends in Plant Science, 11(8), 413–419.

    Article  CAS  PubMed  Google Scholar 

  • Callaway, R. M. (2002). The detection of neighbors by plants. Trends in Ecology & Evolution, 17, 104–105.

    Article  Google Scholar 

  • Callaway, R. M., & Mahall, B. E. (2007). Plant ecology: family roots. Nature, 448, 145–147.

    Article  CAS  PubMed  Google Scholar 

  • Calvo Garzon, P., & Keijzer, F. (2009). Cognition in plants. In F. Baluška (Ed.), Plant-environment interactions: Signalling and communication in plants. Berlin: Springer.

    Google Scholar 

  • Calvo Garzon, P., & Keijzer, F. (2011). Plants: adaptive behavior, root-brains, and minimal cognition. Adaptive Behavior, 19(3), 155–171.

    Article  Google Scholar 

  • Cvrčková, F., Lipavaská, H., & Zárský, V. (2009). Plant intelligence: why, why not or where? Plant Signalling and Behavior, 4(5), 394–399.

    Article  Google Scholar 

  • Darwin, C. (1880). The power of movements in plants. Edinburgh: John Murray.

    Google Scholar 

  • de Kroon, H. (2007). Ecology - how do roots interact? Science, 318, 1562–1563.

    Article  PubMed  Google Scholar 

  • Deacon, T. (1997). The symbolic species: The co-evolution of language and the brain. New York: W.W. Norton & Company.

    Google Scholar 

  • Deely, J. (2009). Physiosemiosis and phytosemiosis. In J. Deely (Ed.), Basics of semiotics (5th ed., pp. 83–104). Bloomington: Indiana University Press.

    Google Scholar 

  • Dudley, S. A., & File, A. L. (2007). Kin recognition in an annual plant. Biological Letters, 3, 435–438.

    Article  Google Scholar 

  • Firn, R. (2004). Plant intelligence: an alternative point of view. Annals of Botany, 93(4), 345–351.

    Article  PubMed  Google Scholar 

  • Griffiths, P. E., & Gray, R. D. (1994). Developmental systems and evolutionary explanation. The Journal of Philosophy, 91(6), 277–304.

    Article  Google Scholar 

  • Gruntman, M., & Novoplansky, A. (2004). Physiologically mediated self-non-self discrimination in roots. Proceedings of the National Academy of Sciences, 101, 525–531.

    Article  Google Scholar 

  • Heil, M., & Ton, J. (2008). Long-distance signalling in plant defence. Trends in Plant Science, 13(6), 264–272.

    Article  CAS  PubMed  Google Scholar 

  • Heil, M., & Walters, D. R. (2009). Ecological consequences of plant defence signalling. Advances in Botanical Research, 51, 667–716.

    CAS  Google Scholar 

  • Hoffmeyer, J. (1992). Some semiotic aspects of the psycho-physical relation: The endo-exosemiotic boundary. In T. A. Sebeok & J. Umiker-Sebeok (Eds.), Biosemiotics: The semiotic web 1991 (pp. 101–123). Berlin: Mouton de Gruyter.

    Google Scholar 

  • Hoffmeyer, J. (2008). Biosemiotics: An examination into the signs of life and the life of signs. Scranton: University of Scranton Press.

    Google Scholar 

  • Jablonka, E., & Lamb, M. J. (2006). Evolution in four dimensions: Genetic, epigenetic, behavioral, and symbolic variation in the history of life. Cambridge: MIT Press.

    Google Scholar 

  • Jonas, H. (1966). The phenomenon of life: Toward a philosophical biology. Evanston: Northwestern University Press.

    Google Scholar 

  • Karban, R. (2008). Plant behaviour and communication. Ecology Letters, 11, 727–739.

    Article  PubMed  Google Scholar 

  • Krampen, M. (2001). No plant - no breath. Semiotica, 134(1), 415–421.

    Google Scholar 

  • Krampen, M. (2010). Phytosemiotics. In D. Favareau (Ed.), Essential readings in biosemiotics (Vol. 3, pp. 257–278). Dordrecht: Springer.

    Google Scholar 

  • Kull, K. (2000). An introduction to phytosemiotics: semiotic botany and vegetative signs systems. Semiotica, 127(1), 326–350.

    Google Scholar 

  • Kull, K. (2009). Vegetative, animal, and cultural semiosis: The semiotic threshold zones. Cognitive semiotics(4), 8–27.

  • Lillo, C. (2008). Signalling cascades integrating light-enhanced nitrate metabolism. Biochemical Journal, 415, 11–19.

    Article  CAS  PubMed  Google Scholar 

  • Masi, E., Ciszak, M., Stefano, G., Renna, L., Azzarello, E., Pandolfi, C., et al. (2009). Spatiotemporal dynamics of the electrical network activity in the root apex. Proceedings from the National Academy of Science, 106(10), 4048–4053.

    Article  CAS  Google Scholar 

  • Maturana, H. R., & Varela, F. J. (1992). The Tree of Knowledge: The Biological Roots of Human Understanding (R. Paolucci, Trans. Revised ed.). Boston: Shambhala.

  • Mazer, S. J., & Gorchov, D. L. (1996). Parental effects on progeny phenotype in plants: distinguishing genetic and environmental causes. Evolution, 50(1), 44–53.

    Article  Google Scholar 

  • Nozue, K., & Maloof, J. N. (2006). Diurnal regulation of plant growth. Plant, Cell & Environment, 29, 396–408.

    Article  CAS  Google Scholar 

  • Odling-Smee, J., Laland, K. N., & Feldman, M. W. (2003). Niche construction: The neglected process in evolution. Princeton: Princeton University Press.

    Google Scholar 

  • Orians, C. (2005). Herbivores, vascular pathways, and systemic induction: facts and artifacts. Journal of Chemical Ecology, 31, 2231–2242.

    Article  CAS  Google Scholar 

  • Oyama, S. (2000). The ontogeny of information: Developmental systems and evolution (2nd ed.). Durham: Duke University Press.

    Book  Google Scholar 

  • Rossiter, M. C. (1996). Incidence and consequences of inherited environmental effects. Annual Review of Ecology and Systematics, 27, 451–476.

    Article  Google Scholar 

  • Schaffer, R., Landfraf, J., Accerbi, M., Simon, V., Larson, M., & Wisman, E. (2001). Microarray analysis of diurnal and circadian-regulated genes in Arabidopsis. The Plant Cell, 13(1), 113–123.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Servaites, J. C., Schrader, L. E., & Jung, D. M. (1979). Energy-dependent loading of amino acids and sucrose in the phloem of soybean. Plant Physiology, 64, 546–550.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sheets-Johnstone, M. (1999). The primacy of movement. Amsterdam: John Benjamins.

    Google Scholar 

  • Stjernfelt, F. (2007). Diagrammatology: An investigation on the borderlines of phenomenology, ontology, and semiotics. Dordrecht: Springer.

    Book  Google Scholar 

  • Stjernfelt, F. (2012). The evolution of semiotic self-control: Sign evolution as the ongoing refinement of the basic argument structure of biological metabolism. In T. Schillhab, F. Stjernfelt, & T. Deacon (Eds.), The symbolic species evolved. Dordrecht: Springer.

    Google Scholar 

  • Trewavas, A. (2003). Aspects of plant intelligence. Annals of Botany, 92, 1–20.

    Article  CAS  PubMed  Google Scholar 

  • Trewavas, A. (2004). Aspects of plant intelligence: an answer to firn. Annals of Botany, 93(4), 353–357.

    Article  PubMed  Google Scholar 

  • Trewavas, A. (2005). Plant intelligence. Naturwissenschaften, 92, 401–413.

    Article  CAS  PubMed  Google Scholar 

  • Trewavas, A. (2009). What is plant behaviour? Plant, Cell & Environment, 32, 606–616.

    Article  Google Scholar 

  • von Uexküll, T. (1981). Medicine and semiotics. Semiotica, 61(3), 201–217.

    Google Scholar 

  • von Uexküll, J. (2010). A foray into the worlds of animals and humans with, a theory of meaning. Minneapolis: University of Minnesota Press.

    Google Scholar 

  • Weber, B. H., & Depew, D. J. (Eds.). (2003). Evolution and learning: The Baldwin effect reconsidered. Cambridge: MIT Press.

    Google Scholar 

  • Witzany, G. (2008). The biosemiotics of plant communication. The American Journal of Semiotics, 24(1), 39–56.

    Article  Google Scholar 

  • Witzany, G., & Baluška, F. (Eds.). (2012). Biocommunication of plants (Vol. 14). Dordrecht: Springer.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramsey Affifi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Affifi, R. Learning Plants: Semiosis Between the Parts and the Whole. Biosemiotics 6, 547–559 (2013). https://doi.org/10.1007/s12304-013-9164-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12304-013-9164-x

Keywords

Navigation