Skip to main content
Log in

On the Traversal Time of Barriers

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

Fifty years ago Hartman studied the barrier transmission time of wave packets (J Appl Phys 33:3427–3433, 1962). He was inspired by the tunneling experiments across thin insulating layers at that time. For opaque barriers he calculated faster than light propagation and a transmission time independent of barrier length, which is called the Hartman effect. A faster than light (FTL or superluminal) wave packet velocity was deduced in analog tunneling experiments with microwaves and with infrared light thirty years later. Recently, the conjectured zero time of electron tunneling was claimed to have been observed in ionizing helium inside the barrier. The calculated and measured short tunneling time arises at the barrier front. This tunneling time was found to be universal for elastic fields as well as for electromagnetic fields. Remarkable is that the delay time is the same for the reflected and the transmitted waves in the case of symmetric barriers. Several theoretical physicists predicted this strange nature of the tunneling process. However, even with this background many members of the physics community do not accept a FTL signal velocity interpretation of the experimental tunneling results. Instead a luminal front velocity was calculated to explain the FTL experimental results frequently. However, Brillouin stated in his book on wave propagation and group velocity that the front velocity is given by the group velocity of wave packets in the case of physical signals, which have only finite frequency bandwidths. Some studies assumed barriers to be cavities and the observed tunneling time does represent the cavity lifetime. We are going to discus these continuing misleading interpretations, which are found in journals and in textbooks till today.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Boyd, R.W., Guthier, D.J.: Controlling the velocity of light pulses. Science 326, 1074 (2009)

    Article  ADS  Google Scholar 

  2. Nimtz, G.: Tunneling confronts special relativity. Found. Phys. 41, 1193–1199 (2011)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  3. Longhi, S., Marano, M., Laporta, P., Belmonte, M.: Superluminal optical pulse Propagation at1.5 \(\mu \)m in periodic fiber Bragg gratings. Phys. Rev. E 64, 055602(R)(4) (2001)

  4. Winful, H.G.: Energy storage in superluminal barrier tunneling: origin of the Hartman. Effect. Opt. Express 10, 1491–1496 (2002)

    Article  ADS  Google Scholar 

  5. Winful, H.G.: Group delay, stored energy, and the tunneling of evanescent electromagnetic waves. Phys. Rev. E 68(1), 016615 (2003)

    Article  ADS  Google Scholar 

  6. Winful, H.G.: Nature of superluminal barrier tunneling. Phys. Rev. Lett. 90(2), 023901 (2003)

    Article  ADS  Google Scholar 

  7. Winful, H.G.: Delay time and the Hartman effect. Phys. Rev. Lett. 91, 260401 (2003)

    Article  ADS  Google Scholar 

  8. Winful, H.G.: Mechanism for superluminal tunneling. Nature 424, 638–639 (2003)

    Article  ADS  Google Scholar 

  9. Winful, H.G.: Apparent superluminality and the generalized Hartman effect in double-barrier tunneling. Phys. Rev. E 72, 046608 (2005)

    Article  ADS  Google Scholar 

  10. Winful, H.G.: Tunneling time, the Hartman effect, and superluminality: a proposed resolution of an old paradox. Phys. Rep. 436, 1–69 (2006)

    Article  ADS  Google Scholar 

  11. Yao, H.Y., Chen, N.C., Chang, T.H., Winful, H.G.: Frequency-dependent cavity lifetime and apparent superluminality in Fabry–Perot-like interferometers. Phys. Rev. A 86, 053832 (2012)

    Article  ADS  Google Scholar 

  12. Hartman, T.E.: Tunneling of a Wave Packet. J. Appl. Phys. 33, 3427–3433 (1962)

    Article  ADS  Google Scholar 

  13. Eckle, P., Pfeiffer, A., Cirelli, C., Staudte, A., Dörner, A., Müller, H., Büttiker, M., Keller, J.: Attosecond ionization and tunneling delay time measurements in helium. Science 322, 1525–1529 (2008)

    Article  ADS  Google Scholar 

  14. Yakaboylu, E., Klaiber, M., Bauke, H., Hatsagortsyan, K., Keitel, C.: Relativistic features and time delay of laser-induced tunnel ionization. Phys. Rev. A 88, 063421 (2013)

    Article  ADS  Google Scholar 

  15. Nimtz, G.: On virtual phonons, photons, and electrons. Found. Phys. 39, 1346 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  16. Brillouin, L.: Wave Propagation in Periodic Structures, 2nd edn. Dover Publications, New York (1953)

    MATH  Google Scholar 

  17. Brillouin, L.: Wave Propagation and Group Velocity. Academic Press, New York (1960)

    MATH  Google Scholar 

  18. Harris, F.J.: On the use of windows for harmonic analysis with the discrete fourier transform. Proc. IEEE. 66, 51–84 (1978)

    Article  ADS  Google Scholar 

  19. Hund, F.: Zur Deutung von Molekülspektren III. Z. Physik 43, 805–826 (1927)

    Article  ADS  Google Scholar 

  20. Sommerfeld, A.: Vorlesungen über Theoretische Physik, vol. VI. Dieterich’sche Verlagsbuchhandlung, Berlin (1950)

    MATH  Google Scholar 

  21. Kapuscik, E., Henryk Niewodniczanski Institute of Nuclear Physics, Krakow; Mielke, E, Universidad Autonoma Metropolitana-Iztapalapa, Mexico. Private communications.

  22. de Carvalho, C.A.A., Nussenzveig, H.M.: Time delay. Phys. Rep. 364, 83174 (2002)

    Article  Google Scholar 

  23. McColl, L.A.: Note on transmission and reflection of wave packets by potential barriers. Phys. Rev. 40, 621–626 (1932)

    Article  ADS  Google Scholar 

  24. Franz, W.: Duration of the tunneling single process. Phys. Status Solidi 22, K139–K140 (1967)

    Article  ADS  Google Scholar 

  25. Fletcher, J.R.: Time delay in tunneling through a potential barrier. J. Phys. C 18, L55 (1985)

    Article  ADS  Google Scholar 

  26. Collins, S., Lowe, D., Barker, J.E.: The quantum mechanical tunneling time problem—revisited. J. Phys. C 20, 6213–6232 (1987)

    Article  ADS  Google Scholar 

  27. Low, F., Mende, P.: A note on the tunneling time problem. Ann. Phys. 210, 380–387 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  28. Wang, Z.-Y., Xiong, C.-D.: heoretical evidence for the superluminality of evanescent modes. Phys. Rev. A 75(4), 042105 (2007)

    Article  ADS  Google Scholar 

  29. Chiao, R.Y., Steinberg, A.M.: Tunneling times and superluminality, pp. 345–405. Progress in Optics, XXXVII (1997)

  30. Steinberg, A. M.: How much time does a tunneling particle spend in the barrier region? Phys. Rev. Lett. 74, 2405–2408 (1995)

  31. Sexl, R.U., Urbantke, H.K.: Relativity, Groups. Particles. Springer, Wien (2001)

    Book  MATH  Google Scholar 

  32. Fayngold, M.: Special Relativity and Motions Faster than Light. Wiley, Weinheim (2002)

    Book  Google Scholar 

  33. Chiao, R. Y., Kwiat, P. G., Steinberg A. M.: Faster than light? Scientific American, August, pp. 38–46 (1993)

  34. Haibel, A., Nimtz, G.: Universal relationship of time and frequency in photonic tunneling. Ann. Phys. (Leipzig) 10, 707–712 (2001)

    Article  ADS  Google Scholar 

  35. Esposito, S.: Universal photonic tunneling time. Phys. Rev. E 64(8), 026609 (2001)

    Article  ADS  Google Scholar 

  36. Olkhovsky, V., Recami, E.: Recent developements in the time anlysis of tunneling processes. Phys. Rep. 214, 339 (1992)

    Article  ADS  Google Scholar 

  37. Olkhovsky, V., Recami, E., Jakiel, J.: Unified time analysis of photon and particle tunneling. Phys. Rep. 398, 133 (2004)

  38. Recami, E.: Superluminal tunneling through successive barriers: does QM predict infinite group-velocities? J. Mod. Opt. 51, 913 (2004)

    ADS  MATH  MathSciNet  Google Scholar 

  39. Barbero, A., Hernandez-Figueroa, H., Recami, E.: Propagation speed of evanescent modes. Phys. Rev. E. 62, 8628 (2000)

    Article  ADS  Google Scholar 

  40. Aharanov, Y., Erez, N., Reznik, B.: Superoscillations and tunneling times. Phys. Rev. A 65, 052124–1 (2002)

    Article  ADS  Google Scholar 

  41. Merzbacher, E.: Quantum Mechanics. Wiley, New York (1970)

    Google Scholar 

  42. Twareque Ali, S.: Evanescent waves in quantum elecgrodynamics. Phys. Rev. D 7, 1668–1673 (1073)

    Google Scholar 

  43. Carniglia, C.K., Mandel, L.: Quantization of evanescent modes. Phys. Rev. D 3, 280–291 (1971)

    Article  ADS  Google Scholar 

  44. Nimtz, G.: Do evanescent modes volate causality? Lect. Notes Phys. 702, 506–531 (2006)

    Article  Google Scholar 

  45. Steinberg, A.M., Kwiat, P.G., Chiao, R.Y.: Measurement of the single-photon tunneling time. Phys. Rev. Lett. 71, 708–711 (1993)

    Article  ADS  Google Scholar 

  46. Nimtz, G., Heitmann, W.: Superluminal photonic tunneling and quantum electronics. Prog. Quantum Electron. 21, 81–108 (1997)

    Article  ADS  Google Scholar 

  47. Anderson, M.: Light seems to defy its own speed limit. New Scientist, 16. August (2007)

  48. Spielmann, Ch., Szipöcs, R., Stingl, A., Krausz, F.: Tunneling of optical pulses through photonic band gaps. Phys. Rev. Lett. 73, 2308 (1994)

    Article  ADS  Google Scholar 

  49. Enders, A., Nimtz, G.: Evanescent-mode propagation and quantum tunneling. Phys. Rev. E 48, 632 (1993)

    Article  ADS  Google Scholar 

  50. Longhi, S., Laporta, A., Belmonte, M., Recami, E.: Measurement of superluminal optical tunneling times in double-barrier photonic band gaps. Phys. Rev. E 65, 046610 (2002)

    Article  ADS  Google Scholar 

  51. Aichmann, H., Nimtz, G., Spieker, H.: Photonische Tunnelzeiten. Verhandlungen der Deutschen Physikalischen Gesellschaft 7, 1258 (1995)

    Google Scholar 

  52. Vetter, R.-M.: Simulationen von Tunnelstrukturen. http://kups.ub.uni-koeln.de/910/

  53. Nimtz, G.: On superluminal tunneling. Progr. Quantum Electron. 27, 417 (2003)

    Article  ADS  Google Scholar 

  54. Goos, F., Hänchen, H.: Ein neuer und fundamentaler Versuch zur Totalreflexion. Annalen Physik 6, 333 (1947)

    Article  ADS  Google Scholar 

  55. Haibel, A., Nimtz, G., Stahlhofen, A.A.: Frustrated total reflection: The double-prism revisited. Phys. Rev. E 61, 047601 (2003)

    Google Scholar 

  56. Feynman, R.P.: Quantum Electrodynamics. W A Benjamin, Reading (1961)

    Google Scholar 

  57. Gehring, G.M., Liapis, A.C., Lukishova, S.G., Boyd, R.W.: Time-domain measurements of reflection delay in frustrated total internal reflection. Phys. Rev. Lett. 111, 030404 (2013)

    Article  ADS  Google Scholar 

  58. Gruschinski, Nimtz, G., Stahlhofen, A.: Resonance-like Goos-Hänchen shift induced by nano-metal films. Ann. Phys. (Berlin) 17, 917–921 (2008)

  59. Shannon, C.E.: A mathematical theory of communication. Bell Sys. Tech. J. 27, 379 and 623 (1948)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Günter Nimtz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aichmann, H., Nimtz, G. On the Traversal Time of Barriers. Found Phys 44, 678–688 (2014). https://doi.org/10.1007/s10701-014-9804-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-014-9804-2

Keywords

Mathematics Subject Classification

Navigation