Skip to main content
Log in

Untangling Entanglement

  • Published:
Foundations of Physics Aims and scope Submit manuscript

In this paper recent work that attempts to link quantum entanglement to (i) thermodynamic energy, (ii) thermodynamic entropy and (iii) information is reviewed. With respect to the first two links the paper is essentially expository. The final link is elaborated on: it is argued that the value of the entanglement of a bipartite system in a pure state is equal to the value of the irreducible uncertainty (i.e. irreducibly missing information) about its subsystems and that this suggests that entanglement gives rise to irreducible uncertainty. (The exact meaning of the phrase “irreducible uncertainty”, as used here, is explained in the body of the paper. Roughly speaking, it is the uncertainty about the post-measurement state of a system that cannot be removed at the pre-measurement stage.) This analysis is used to make a further connection between entanglement and statistical mechanical entropy: it is argued that these properties are indirectly linked, in so far as both give rise to forms of uncertainty (albeit rather different forms of uncertainty about rather different things).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Einstein A., Podolsky B., Rosen N. (1935) “Can quantum-mechanical description of physical reality be considered complete?”. Phys. Rev. Lett. 47, 777–780

    MATH  ADS  Google Scholar 

  2. E. Schrödinger, “The present situation in quantum mechanics,” (trans. J. D. Trimmer) reprinted in Quantum Theory and Measurement, J. A. Wheeler and W. H. Zurek, eds. (Princeton University Press, Princeton, 1983), pp. 152–167.

  3. E. Schrödinger, “Discussion of probability relations between separated systems,” Proc. Cambridge Philos. Soc. 31, 555–563 (1935) and 32, 446–451 (1936).

  4. Bell J.S. (1964) “On the Einstein–Podolsky–Rosen paradox”. Phys. 1, 195–200

    Google Scholar 

  5. Ghirardi G., Marinatto L. (2004) “General criterion for the entanglement of two indistinguishable particles”. Phys. Rev. A 70: 012109

    Article  ADS  Google Scholar 

  6. Schumacher B. (1995) “On quantum coding”. Phys. Rev. A 51: 2738–2747

    Article  ADS  MathSciNet  Google Scholar 

  7. Popescu S., Rohrlich D. (1997) “Thermodynamics and the measure of entanglement”. Phys. Rev. A 56(5): R3319–R3321

    Article  ADS  MathSciNet  Google Scholar 

  8. Bennett C.H., Bernstein H.J., Popescu S., Schumacher B. (1996) “Concentrating partial entanglement by local operations”. Phys. Rev. A 53(4): 2046–2052

    Article  ADS  Google Scholar 

  9. Donald M.J., Horodecki M., Rudolph O. (2002) “The uniqueness theorem for entanglement measures”. J. Math. Phys. 43, 4252–4272

    Article  MATH  ADS  MathSciNet  Google Scholar 

  10. Vedral V., Kashefi E. (2002) “Uniqueness of the entanglement measure for bipartite pure states and thermodynamics”. Phys. Rev. Lett. 89(3): 037903

    Article  ADS  Google Scholar 

  11. Giles R. (1964) Mathematical Foundations of Thermodynamics. Pergamon, New York

    MATH  Google Scholar 

  12. Vedral V., Plenio M.B. (1998) “Entanglement measures and purification procedures”. Phys. Rev. A 57: 1619–1633

    Article  ADS  Google Scholar 

  13. Horodecki M., Horodecki P., Horodecki R. (1998) “Mixed-state entanglement and distillation: is there a ‘bound’ entanglement in nature?”. Phys. Rev. Lett. 80, 5239–5242

    Article  MATH  ADS  MathSciNet  Google Scholar 

  14. Horodecki P., Horodecki R., Horodecki M. (1998) “Entanglement and thermodynamical analogies”. Acta Physica Slovaca 48, 141–156

    Google Scholar 

  15. Peres A. (1993) Quantum Theory: Concepts and Methods. Kluwer Academic, Dordrecht

    MATH  Google Scholar 

  16. Rohrlich D. (2001) “Thermodynamical analogues in quantum information theory”. Opt. Spectrosc. 91(3): 363–367

    Article  ADS  MathSciNet  Google Scholar 

  17. Shenker O.R. (1999) “Is –kTr(ρ ln ρ) the entropy in quantum mechanics?”. Brit. J. Phil. Sci. 50, 33–48

    Article  MATH  MathSciNet  Google Scholar 

  18. Henderson L. (2003) “The von Neumann entropy: a reply to Shenker”. Brit. J. Phil. Sci. 54, 291–296

    Article  MATH  Google Scholar 

  19. Horodecki R., Horodecki M., Horodecki P. (2001) “Balance of information in bipartite quantum-communication systems: entanglement-energy analogy”. Phys. Rev. A 63: 022310

    Article  ADS  MathSciNet  Google Scholar 

  20. Horodecki K., Horodecki M., Horodecki P., Oppenheim J. (2005) “Information theories with adversaries, intrinsic information, and entanglement”. Found. Phys. 35(12): 2027–2040

    Article  MATH  MathSciNet  Google Scholar 

  21. Nielsen M.A., Chuang I.L. (2000) Quantum Computation and Quantum Information. Cambridge University Press, Cambridge,

    MATH  Google Scholar 

  22. Hughston L.P., Jozsa R., Wootters W.K. (1993) “A complete classification of quantum ensembles having a given density matrix”. Phys. Lett. A 183, 14–18

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter M. Ainsworth.

Additional information

Communicated by Alwyn van der Merwe

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ainsworth, P.M. Untangling Entanglement. Found Phys 37, 144–158 (2007). https://doi.org/10.1007/s10701-006-9095-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-006-9095-3

Keywords

Navigation