Skip to main content
Log in

De Sitter Relativity: a New Road to Quantum Gravity?

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

The Poincaré group generalizes the Galilei group for high-velocity kinematics. The de Sitter group is assumed to go one step further, generalizing Poincaré as the group governing high-energy kinematics. In other words, ordinary special relativity is here replaced by de Sitter relativity. In this theory, the cosmological constant Λ is no longer a free parameter, and can be determined in terms of other quantities. When applied to the whole universe, it is able to predict the value of Λ and to explain the cosmic coincidence. When applied to the propagation of ultra-high energy photons, it gives a good estimate of the time delay observed in extragalactic gamma-ray flares. It can, for this reason, be considered a new paradigm to approach the quantum gravity problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Padmanabhan, T.: Class. Quantum Gravity 4, L107 (1987)

    Article  ADS  Google Scholar 

  2. Amelino-Camelia, G.: Lect. Not. Phys. 541, 1 (2000). gr-qc/9910089

    Article  ADS  MathSciNet  Google Scholar 

  3. Protheroe, R.J., Meyer, H.: Phys. Lett. B 493, 1 (2000)

    Article  ADS  Google Scholar 

  4. Ahluwalia, D.V.: Mod. Phys. Lett. A 17, 1135 (2002). gr-qc/0205121

    Article  ADS  MathSciNet  Google Scholar 

  5. Jacobson, T., Liberati, S., Mattingly, D.: Phys. Rev. D 66, 081302 (2002). hep-ph/0112207

    Article  ADS  Google Scholar 

  6. Brandenberger, R.H., Martin, J.: Int. J. Mod. Phys. A 17, 3663 (2002). hep-th/0202142

    Article  MATH  ADS  Google Scholar 

  7. Myers, R.C., Pospelov, M.: Phys. Rev. Lett. 90, 211601 (2003). hep-ph/0301124

    Article  ADS  MathSciNet  Google Scholar 

  8. Albert, J., et al. (for the MAGIC Collaboration), Ellis, J., Mavromatos, N.E., Nanopoulos, D.V., Sakharov, A.S., Sarkisyan, E.K.G.: Probing quantum gravity using photons from a Mkn 501 flare observed by MAGIC. astro-ph/0708.2889

  9. Magueijo, J., Smolin, L.: Phys. Rev. Lett. 88, 190403 (2002). hep-th/0112090

    Article  ADS  Google Scholar 

  10. Amelino-Camelia, G.: Int. J. Mod. Phys. D 11, 35 (2002). gr-qc/0012051

    Article  MATH  ADS  MathSciNet  Google Scholar 

  11. Kowalski-Glikman, J.: Lect. Notes Phys. 669, 131 (2005). hep-th/0405273

    Article  ADS  Google Scholar 

  12. Kowalski-Glikman, J.: In: Oriti, D. (ed.) Approaches to Quantum Gravity—Toward a New Understanding of Space, Time, and Matter. Cambridge University Press, Cambridge (2006). gr-qc/0603022

    Google Scholar 

  13. Das, A., Kong, O.W.C.: Phys. Rev. D 73, 124029 (2006). gr-qc/0603114

    Article  ADS  Google Scholar 

  14. Aldrovandi, R., Beltrán Almeida, J.P., Pereira, J.G.: Class. Quantum Gravity 24, 1385 (2007). gr-qc/0606122

    Article  MATH  ADS  Google Scholar 

  15. Guo, H.Y., Huang, C.G., Xu, Z., Zhuo, B.: Phys. Lett. A 331, 1 (2004). hep-th/0403171

    Article  MATH  ADS  MathSciNet  Google Scholar 

  16. Inönü, E., Wigner, E.P.: Proc. Natl. Acad. Sci. 39, 510 (1953)

    Article  MATH  ADS  Google Scholar 

  17. Inönü, E.: In: Gürsey, F. (ed.) Group theoretical concepts and methods in elementary particle physics, Istanbul Summer School of Theoretical Physics. Gordon and Breach, New York (1962)

    Google Scholar 

  18. Gilmore, R.: Lie Groups, Lie Algebras, and Some of Their Applications. Wiley, New York (1974)

    MATH  Google Scholar 

  19. Gürsey, F.: In: Gürsey, F. (ed.) Group theoretical concepts and methods in elementary particle physics, Istanbul Summer School of Theoretical Physics. Gordon and Breach, New York (1962)

    Google Scholar 

  20. Bacry, H., Lévy-Leblond, J.M.: J. Math. Phys. 9, 1605 (1968)

    Article  MATH  ADS  Google Scholar 

  21. Duval, C., Burdet, G., Künsle, H.P.K., Perrin, M.: Phys. Rev. D 31, 1841 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  22. Aldrovandi, R., Barbosa, A.L., Crispino, L.C.B., Pereira, J.G.: Class. Quantum Gravity 16, 495 (1999)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  23. Aldrovandi, R., Beltrán Almeida, J.P., Mayor, C.S.O., Pereira, J.G.: Lorentz transformations in de Sitter relativity. gr-qc/0709.3947

  24. Girelli, F., Livine, E.R.: J. Phys. Conf. Ser. 67, 012030 (2007). gr-qc/0612111

    Article  ADS  Google Scholar 

  25. Mansouri, F.: Phys. Lett. B 538, 239 (2002). hep-th/0203150

    Article  MATH  ADS  Google Scholar 

  26. Aldrovandi, R., Beltrán Almeida, J.P., Pereira, J.G.: J. Geom. Phys. 56, 1042 (2006). gr-qc/0403099

    Article  MATH  ADS  MathSciNet  Google Scholar 

  27. Narlikar, J.V.: An Introduction to Cosmology, 3rd edn. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  28. Aldrovandi, R., Beltrán Almeida, J.P., Mayor, C.S.O., Pereira, J.G.: In: Adenier, G., Khrennikov, A., Lahti, P., Man’ko, V.I., Nieuwenhuizen, T. (eds.) Quantum Theory: Reconsideration of Foundations 4. AIP Conference Proceedings, vol. 962, p. 175 (2007). gr-qc/0710.0610

  29. Weinberg, S.: Gravitation and Cosmology. Wiley, New York (1972), p. 371

    Google Scholar 

  30. Coleman, S.: Aspects of Symmetry. Cambridge University Press, Cambridge (1985)

    MATH  Google Scholar 

  31. Ciufolini, I., Wheeler, J.A.: Gravitation and Inertia. Princeton University Press, Princeton (1995), p. 28

    MATH  Google Scholar 

  32. Riess, A.G., et al.: Astrophys. J. 116, 1009 (1998)

    Google Scholar 

  33. Perlmutter, S., et al.: Astrophys. J. 517, 565 (1999)

    Article  ADS  Google Scholar 

  34. de Bernardis, P., et al.: Nature 404, 955 (2000)

    Article  ADS  Google Scholar 

  35. Hanany, S., et al.: Astrophys. J. Lett. 545, 5 (2000)

    Article  ADS  Google Scholar 

  36. Carroll, S.M.: Living Rev. Relativ. 4, 1 (2001). astro-ph/0004075

    ADS  Google Scholar 

  37. Pathria, R.K.: Statistical Mechanics, 2nd edn. Butterworth-Heinemann, Oxford (1996)

    MATH  Google Scholar 

  38. Møller, C.: The Theory of Relativity, 2nd edn. Clarendon, Oxford (1966)

    Google Scholar 

  39. Guillemin, V., Sternberg, S.: Geometric Asymptotics. AMS, Providence (1977)

    MATH  Google Scholar 

  40. Hawking, S.W., Ellis, G.F.R.: The Large Scale Structure of Space-Time. Cambridge University Press, Cambridge (1973)

    MATH  Google Scholar 

  41. Aldrovandi, R., Pereira, J.G.: An Introduction to Geometrical Physics. World Scientific, Singapore (1995)

    MATH  Google Scholar 

  42. Faraoni, V., Cooperstock, F.I.: Eur. J. Phys. 19, 419 (1998). physics/9807056

    Article  MATH  Google Scholar 

  43. McLenaghan, R.G.: Ann. Inst. H. Poincaré 20, 153 (1974)

    MATH  MathSciNet  Google Scholar 

  44. Sonego, S., Faraoni, V.: J. Math. Phys. 33, 625 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  45. Noonan, T.W.: Class. Quantum Gravity 12, 1087 (1995)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  46. Espósito Miguel, W.R., Pereira, J.G.: Int. J. Mod. Phys. D 10, 41 (2001). gr-qc/0006098

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. G. Pereira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aldrovandi, R., Pereira, J.G. De Sitter Relativity: a New Road to Quantum Gravity?. Found Phys 39, 1–19 (2009). https://doi.org/10.1007/s10701-008-9258-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-008-9258-5

Keywords

Navigation