Skip to main content
Log in

Relativistic Bohmian Trajectories and Klein-Gordon Currents for Spin-0 Particles

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

It is generally believed that the de Broglie-Bohm model does not admit a particle interpretation for massive relativistic spin-0 particles, on the basis that particle trajectories cannot be defined. We show this situation is due to the fact that in the standard (canonical) representation of the Klein-Gordon equation the wavefunction systematically contains superpositions of particle and anti-particle contributions. We argue that by working in a Foldy-Wouthuysen type representation uncoupling the particle from the anti-particle evolutions, a positive conserved density for a particle and associated density current can be defined. For the free Klein-Gordon equation the velocity field obtained from this current density appears to be well-behaved and sub-luminal in typical instances. As an illustration, Bohmian trajectories for a spin-0 boson distribution are computed numerically for free propagation in situations in which the standard velocity field would take arbitrarily high positive and negative values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. This expression was first obtained in Ref. [17]; see [18] for a brief review on weak values, including a discussion on the current density.

  2. De Broglie wittingly notes the similarity between his reasoning and Bohr’s argumentation, see p. 135 in [23].

References

  1. De Broglie, L.: J. Phys. Radium 8, 225 (1927)

    Article  Google Scholar 

  2. Bohm, D.: Phys. Rev. 85, 166–180 (1952)

    Article  ADS  MathSciNet  Google Scholar 

  3. Bohm, D., Hiley, B.J.: The Undivided Universe. Routledge, London (1993)

    MATH  Google Scholar 

  4. Horton, G., Dewdney, C., Ne’eman, U.: Found. Phys. 32, 463 (2002)

    Article  MathSciNet  Google Scholar 

  5. Holland, P.R.: Phys. Rep. 224, 95 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  6. Kyprianidis, T.: Phys. Lett. A 111, 111 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  7. Nikolic, H.: Found. Phys. 38, 869 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  8. Cufaro-Petronia, N., Dewdney, C., Holland, P., Kyprianidis, T., Vigier, J.P.: Phys. Lett. A 106, 368 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  9. Horton, G., Dewdney, C., Nesteruk, A.: J. Phys. A: Math. Gen. 33, 7337 (2000)

    Article  ADS  Google Scholar 

  10. Holland, P.: Eur. Phys. J. Plus 134, 434 (2019)

    Article  Google Scholar 

  11. Vollick, D.N.: Can. J. Phys. 99, 100 (2021)

    Article  ADS  Google Scholar 

  12. Foldy, L.L., Wouthuysen, S.A.: Phys. Rev. 78, 29 (1950)

    Article  ADS  Google Scholar 

  13. Case, K.M.: Phys. Rev. 95, 1323 (1954)

    Article  ADS  MathSciNet  Google Scholar 

  14. Feschbach, H., Villars, F.: Rev. Mod. Phys. 30, 24 (1958)

    Article  ADS  MathSciNet  Google Scholar 

  15. Zou, L., Zhang, P., Silenko, A.J.: Phys. Rev. A 101, 032117 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  16. Hoffmann, S.E.: J. Phys. A: Math. Theor. 52, 225301 (2019)

    Article  ADS  Google Scholar 

  17. Leavens, C.R.: Found. Phys. 35, 469 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  18. Matzkin, A.: Found. Phys. 49, 298 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  19. Greiner, W.: Relativistic Quantum Mechanics. Springer, Berlin (1996)

    Google Scholar 

  20. Mostafazadeh, A.: Class. Quantum Grav. 20, 155 (2003)

    Article  ADS  Google Scholar 

  21. Alkhateeb, M., Gutiérrez de la Cal, X., Pons, M., Sokolovski, D., Matzkin, A.: Phys. Rev. A 103, 042203 (2021)

    Article  ADS  Google Scholar 

  22. Holland, P.R.:The Quantum Theory of Motion (Cambridge University Press, Cambridge, England, 1993), Sec. 12.1

  23. L. de Broglie, Non-linear wave mechanics (Elsevier, Amsterdam, 1960),Ch. 9, Sec. 2. [originally published as L. de Broglie, Une interprétation causale et non linéaire de la Mécanique ondulatoire: la théorie de la double solution (Gauthier-Villars, Paris, 1956)]

  24. Nikolic, H.: Found. Phys. Lett. 17, 363 (2004)

    Article  MathSciNet  Google Scholar 

  25. Matzkin, A., Nurock, V.: Studies in Hist. and Phil. of Science B 39, 17 (2008)

  26. Matzkin, A.: Found. Phys. 39, 903 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  27. Newton, T.D., Wigner, E.P.: Rev. Mod. Phys. 21, 400 (1949)

    Article  ADS  Google Scholar 

  28. Costella, J.P., McKellar, B.H.J.: Am. J. Phys. 63, 1119 (1995)

    Article  ADS  Google Scholar 

  29. Kowalski, K., Rembielinski, J.: Phys. Rev. A 84, 012108 (2011)

    Article  ADS  Google Scholar 

  30. Wienczek, A., Moore, C., Jentschura, U.D.: Phys. Rev. A 106, 012816 (2022)

    Article  ADS  Google Scholar 

  31. Bialynicki-Birula, I., Bialynicka-Birula, Z.: Phys. Rev. Lett. 122, 159301 (2019)

    Article  ADS  Google Scholar 

  32. Silenko, A.J., Zhang, P., Zou, L.: Phys. Rev. Lett. 122, 159302 (2019)

    Article  ADS  Google Scholar 

  33. Rembielinski, J., Smolinski, K.A.: EPL 88, 10005 (2009)

    Article  ADS  Google Scholar 

  34. J. S Bell, “Quantum mechanics for cosmologists”, reprinted in J. S Bell, Speakable and unspeakable in quantum mechanics, 2nd edition(Cambridge University Press, Cambridge, England, 2004), Ch. 15

  35. Durr, D., Goldstein, S., Norsen, W., Struyve Zanghi, N.: Proc. R. Soc. A.470 20130699 (2014)

  36. Drezet, A.: Found Phys 49, 1166 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  37. Durr, D., Goldstein, S., Tumulka, R., Zanghi, N.: J. Phys. A: Math. Gen. 36, 4143 (2003)

    Article  ADS  Google Scholar 

  38. Struyve, W.: Rep. Prog. Phys. 73, 106001 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  39. Nikolic, H.: Int. J. Mod. Phys. A 25, 1477 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Matzkin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alkhateeb, M., Matzkin, A. Relativistic Bohmian Trajectories and Klein-Gordon Currents for Spin-0 Particles. Found Phys 52, 104 (2022). https://doi.org/10.1007/s10701-022-00625-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10701-022-00625-2

Keywords

Navigation