Skip to main content
Log in

Nonlocal forces of inertia in cosmology

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

This paper reviews the origin of inertia according to Mach's principle and Weber's law of gravitation. The resulting theory is based on simultaneous nonlocal gravitational interactions between particles in the solar system and others in the remote universe beyond the Milky Way galaxy. It explains the precession of the perihelion of Mercury. A most important implication of the Mach-Weber theory of the force of inertia is the necessity for a large amount of uniformly distributed matter in the galactic universe. This matter could be the source of the cosmic background radiation. Nonlocal inertia forces are compatible with a static universe and also with an expanding universe but the latter would demand slow changes in the mass of particles and the gravitational constant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Aharonov and D. Bohm, “Significance of electromagnetic potentials in quantum theory,”Phys. Rev. 115, 485 (1959).

    Google Scholar 

  2. G. Moellenstedt and W. Bayh, “Messung der kontinuierlichen Phasenschiebung im kraftfreiem Raum durch das magnetische Vektor Potential,”Naturwissenschaften 49, 81 (1962).

    Google Scholar 

  3. J. S. Bell,Speakable and Unspeakable in Quantum Mechanics (Cambridge University Press, New York, 1987).

    Google Scholar 

  4. A. Aspect, J. Dalibard, and G. Roger, “Experimental test of Bell's inequalities using time-varying analyzers,”Phys. Rev. Lett. 49, 1804 (1982).

    Google Scholar 

  5. J. P. Wesley,Phys. Essays 7, 240 (1994).

    Google Scholar 

  6. P. Graneau,Ampére-Neumann Electrodynamics of Metals, 2nd edn. (Hadronic Press, Palm Harbor, 1994).

    Google Scholar 

  7. P. Graneau, “Nonlocal action in the induction motor,”Found. Phys. Lett. 4, 499 (1991).

    Google Scholar 

  8. P. Graneau, “Electromagnetic jet-propulsion in the direction of current flow,”Nature 295, 311 (1982).

    Google Scholar 

  9. P. Graneau, “First indication or Ampère tension in solid electric conductors,”Phys. Lett. A 97, 253 (1993).

    Google Scholar 

  10. P. Graneau, “Wire explosions,’Phys. Lett A 120, 77 (1987).

    Google Scholar 

  11. P. T. Pappas, “The original Ampère force and Biot-Savart and Lorentz forces,”Nuovo Cimento B 76, 189 (1983).

    Google Scholar 

  12. P. G. Moyssides and P. T. Pappas, “Rigorous quantitative test of Biot-Savart-Lorentz forces,”J. Appl. Phys. 59, 19 (1986).

    Google Scholar 

  13. P. Graneau, “Railgun Recoil and relativity,”J. Phys. D 20, 391 (1987).

    Google Scholar 

  14. P. G. Moyssides, “Experimental verification of the Biot-Savart-Lorentz and Ampère force laws in a closed circuit, revisited,”IEEE Trans. Magn. 25, 4313 (1989).

    Google Scholar 

  15. A. K. T. Assis, “On the mechanism of railguns,”Galilean Electrodynam. 3, 93 (1992).

    Google Scholar 

  16. J. Nasilowski, “A note on longitudinal Ampère forces in gaseous conductors,”Phys. Lett. A 111, 315 (1985).

    Google Scholar 

  17. T. E. Phipps, Jr., “New evidence for Ampère longitudinal forces,”Phys. Essays 3, 198 (1990).

    Google Scholar 

  18. T. E. Phipps and T. E. Phipps, Jr., “Observation of Ampère forces in mercury,”Phys. Lett. A 146, 6 (1990).

    Google Scholar 

  19. A. K. T. Assis, “On Mach's principle,”Found. Phys. Lett. 2, 301 (1989).

    Google Scholar 

  20. W. Weber,Wilhelm Weber's Werke, 6 volumes (Springer, Berlin, 1892–4); see especially Vol. 4, p. 479.

    Google Scholar 

  21. M. F. Tisserand, “Sur le mouvement des planètes autour du soleil, d'après la loi électrodynamique de Weber,”C. R. Acad. Sci. (Paris) 75, 760 (1872).

    Google Scholar 

  22. P. Graneau, “Interconnecting action-at-a-distance,”Phys. Essays 3, 340 (1990).

    Google Scholar 

  23. E. Schrödinger, “Die Erfüllbarkeit der Relativitätsforderung in der klassischen Mechanik,”Ann. Phys. (Leipzig) 77, 325 (1925).

    Google Scholar 

  24. A. Einstein, “Prinzipielles zur allgemeinen Relativitätstheorie,”Ann. Phys. (Leipzig) 55, 241 (1918).

    Google Scholar 

  25. E. Mach,The Science of Mechanics (Open Court, La Salle, 1960).

    Google Scholar 

  26. L. I. Schiff, “Observational basis of Mach's principle,”Rev. Mod. Phys. 36, 510 (1964).

    Google Scholar 

  27. A. K. T. Assis, “Centrifugal electrical force,”Commun. Theor. Phys. 18, 475 (1992).

    Google Scholar 

  28. A. K. T. Assis, “Changing the inertial mass of a charged body,”J. Phys. Soc. Japan 62, 1418 (1993).

    Google Scholar 

  29. D. W. Sciama, “On the origin of inertia,”Mon. Not. R. Astron. Soc. 113, 34 (1953).

    Google Scholar 

  30. G. B. Brown,Retarded Action-at-a-distance (Cortney Publications, Luton, 1982).

    Google Scholar 

  31. H. J. Treder,Die Relativitaet der Tragheit (Akademie-Verlag, Berlin, 1972).

    Google Scholar 

  32. W. F. Edwards, “Inertia and an alternative approach to the theory of interactions,”Proc. Utah Acad. Sci., Arts, Lett. 51 (2), 1 (1974).

    Google Scholar 

  33. J. B. Barbour and B. Bertotti, “Gravity and intertia in a Machian framework,”Nuovo Cimento B 38, 1 (1977).

    Google Scholar 

  34. P. B. Eby, “Perihelion precession as a Machian effect,”Lett. Nuovo Cimento 18, 93 (1977).

    Google Scholar 

  35. A. Ghosh, “Velocity-dependent intertial induction: a possible tired-light mechanism,”Apeiron 9–10, 35 (1991).

    Google Scholar 

  36. A. P. French,Newtonian Mechanics (Norton, New York, 1971).

    Google Scholar 

  37. T. E. Phipps, “Should Mach's principle be taken seriously?”Spec. Sci. Technol. 1, 499 (1978).

    Google Scholar 

  38. P. Gerber, “Die räumliche und zietliche ausbreitung der gravitation,”Z. Math. II 43, 93 (1898).

    Google Scholar 

  39. H. Seeliger, “Bemerkung zu P. Gerbers Aufsatz: ‘Die Fortplanzungsgeschwindligkeit der Gravitation,”Ann. Phys. (Leipzig) 53, 31 (1917).

    Google Scholar 

  40. J. P. Wesley,Selected Topics in Advanced Fundamental Physics (Benjamin Wesly, Blumberg, 1991) pp. 185–189.

    Google Scholar 

  41. P. Graneau, “Some cosmological consequences of Mach's principle,”Hadronic J. Suppl. 5, 335 (1990).

    Google Scholar 

  42. E. Harrison, “Newton and the infinite universe,”Phys. Today 39, 24 (1986).

    Google Scholar 

  43. A. K. T. Assis, “On the absortion of gravity,”Apeiron 13, 3 (1992).

    Google Scholar 

  44. A. K. T. Assis, “A steady-state cosmology,” inProgress in New Cosmologies: Beyond the Big Bang, H. C. Arp, C. R. Keys, and K. Rudnicki, eds. (Plenum, New York, 1993), pp. 153–167.

    Google Scholar 

  45. H. Arp, G. R. Burbidge, F. Hoyle, J. Narlikar, and C. Wickramasinghe, “The extragalactic universe—an alternative view”nature 346, 807 (1990).

    Google Scholar 

  46. A. A. Penzias and R. W. Wilson, “A measurement of excess antenna temperature at 4080 mc/s,”Astrophys. J. 142, 419 (1965).

    Google Scholar 

  47. A. K. T. Assis,Weber's Electrodynamics (Kluwer Academic, Dordrecht, 1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Assis, A.K.T., Graneau, P. Nonlocal forces of inertia in cosmology. Found Phys 26, 271–283 (1996). https://doi.org/10.1007/BF02058089

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02058089

Keywords

Navigation