Skip to main content
Log in

Protein Folding and Evolution are Driven by the Maxwell Demon Activity of Proteins

  • Published:
Acta Biotheoretica Aims and scope Submit manuscript

Abstract

In this paper we propose a theoretical model of protein folding and protein evolution in which a polypeptide (sequence/structure) is assumed to behave as a Maxwell Demon or Information Gathering and Using System (IGUS) that performs measurements aiming at the construction of the native structure. Our model proposes that a physical meaning to Shannon information (H) and Chaitin's algorithmic information (K) parameters can be both defined and referred from the IGUS standpoint. Our hypothesis accounts for the interdependence of protein folding and protein evolution through mutual influencing relationships mediated by the IGUS. In brief, IGUS activity in protein folding determines long term tendencies that emerge at the evolutionary time-scale.Thus, protein evolution is a consequence of measurements executed by proteins at the cellular level, where the IGUS imposes a tendency to attain a highly unique stable native form that promotes the updating of the information content. The folding kinetics observed is, thus, the outcome of an evolutionary process where the polypeptide-IGUS drives the evolution of its linear sequence. Finally, we describe protein evolution as an entropic process that tends to increase the content of mutual algorithmic information between the sequence and the structure. This model enables one: 1. To comprehend that full determination of the three-dimensional structure by the linear sequence is a tendency where satisfaction is only possible at thermodynamic equilibrium .2. To account for the observed randomness of the amino acid sequences. 3. To predict an alternation of periods of selection and neutral diffusion during protein evolutionary time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Andrade, E.(2000).From external to internal measurement: A form theory approach to evolution.BioSystems 57:49–62.

    Google Scholar 

  • Anfinsen, C.B.(1973).Principles that govern the folding of protein chains.Science 181: 223–230.

    Google Scholar 

  • Ansari, A., J. Berendzen, S. Bowne, H. Frauenfelder, I. Iben, T. Sauke, E. Shyamsunder and R. Young (1985).Protein states and proteinquakes. Proceedings of the National Academy of Science USA 82:5000–5004.

    Google Scholar 

  • Arndt, K., J. Pelletier, K. Müller, T. Alber, S. Michnick and A. Plückthun (2000).A heterodimeric coiled-coil peptide pair selected in vivo from a designed library-versus-library. Journal of Molecular Biology 295:627–639.

    Google Scholar 

  • Baker, D. and D. Agard (1994).Kinetics versus thermodynamics in protein folding. Biochemistry 33:7505–7509.

    Google Scholar 

  • Baldwin, R. (1994).Matching speed and stability. Nature 369:183–184.

    Google Scholar 

  • Bennett, C.(1981).The thermodynamics of computation-a Review. In: Leff H.S. and A.F. Rex (Eds).Maxwell’ s demon Entropy,Infromation,Computing.Princeton University Press, Princeton. pp 213–248.

    Google Scholar 

  • Bennett, C.(1988).Demons, engines and the second law. Scientific American 255:108–117.

    Google Scholar 

  • Brack, A. and L. Orgel (1975).β ?structures of alternating polypeptides and their possible prebiotic significance. Nature 256:383–387.

    Google Scholar 

  • Bryngelson, J. and P. Wolynes (1987).Spin glasses and statistical mechanics of protein folding. Proceedings of the National Academy of Science USA 84:7524–7528.

    Google Scholar 

  • Bryngelson, J., N. Onuchic, N. Socci and P. Wolynes (1995). Funnels, pathways, and the energy landscape of protein folding: a synthesis.Proteins: Structure, Function and Genetics 21: 167–195.

    Google Scholar 

  • Bryson, J., S. Betz, H. Lu, D. Suich, H. Zhou, K. O'Neil and W. DeGrado (1995).Protein Design: a hierarchic approach.Science 270:935–940.

    Google Scholar 

  • Chaitin, G.J.(1975).Randomness and mathematical proof. Scientific American 232:47–52.

    Google Scholar 

  • Clarke, J., S. Hamill and C. Johnson (1997).Folding and stability of a fibronectin Type III domain of human tenascin. Journal of Molecular Biology 270:771–778.

    Google Scholar 

  • Clarke, J., E. Cota, S. Fowler and S. Hamill (1999).Folding studies of immunoglobulin-like β-sandwich proteins suggest that they share a common folding pathway.Structure 7: 1145–1153.

    Google Scholar 

  • Crick, F.(1970).Central Dogma of molecular biology.Nature 227:561–563.

    Google Scholar 

  • De Souza, S., M. Long, L. Schoenbach, S. Roy and W. Gilbert (1996).Intron positions correlate with module boundaries in ancient proteins. Proceedings of the National Academy of Science USA 93:14632–14636.

    Google Scholar 

  • De Souza, S., M. Long., R. Klein., S. Roy., S. Lin and W. Gilbert (1998).Toward a resolution of the introns early/late debate: Only phase zero introns are correlated with the structure of ancient proteins. Proceedings of the National Academy of Science USA 95:5094–5099.

    Google Scholar 

  • Dewey, T.(1997).Algorithmic complexity and thermodynamics of sequence-structure relationships in proteins. Physical Review E 56:4545–4552.

    Google Scholar 

  • Dewey, T. and M. Delle Donne (1998).Non equilibrium thermodynamics of molecular evolution. Journal of Theoretical Biology 193:593–599.

    Google Scholar 

  • Di Giulio, M.(1998).Reflections on the origin of the genetic code: a hypothesis. Journal of Theoretical Biology 191:191–196.

    Google Scholar 

  • Doollittle, R. and P. Bork (1993).Mobile modules in protein evolution.Scientific American 269:50–56.

    Google Scholar 

  • Ebeling, W. and M. Jimenez-Montaño (1980).On grammars, complexity and information measures of biological macromolecules.Mathematical Biosciences 52:53–71.

    Google Scholar 

  • Eftink, M., A. Anusiem and R. Biltonen (1983).Enthalpy-entropy compensation and heat capacity changes for protein-ligand interactions: general thermodynamics models and data for the binding of nucleotides to Ribonuclease A.Biochemistry 22:3884–3896.

    Google Scholar 

  • Eigen, M. and R. Winkler-Oswatitsch (1992).Steps towards Life. A Perspective on Evolution. Translation by Paul Woolley.Oxford Universtity Press, Oxford.

    Google Scholar 

  • Eigen, M., W. Gardiner, P. Schuster and R. Winkler-Oswatitsch (1981).The origin of genetic information.Scientific American 244:78–94.

    Google Scholar 

  • Elber, R. and M. Karplus (1987).Multiple conformational states of proteins: a molecular dynamics analysis of myoglobin.Science 235:318–321.

    Google Scholar 

  • Ferguson, N., A. Capaldi, R. James, C. Kleanthous and S. Radford (1999).Rapid folding with and without populated intermediaries in the homologous four-helix proteins Im7 and Im9. Journal of Molecular Biology 286:1597–1608.

    Google Scholar 

  • Foote, J. and C. Milstein (1994).Conformational isomerism and the diversity of antibodies. Proceedings of the National Academy of Science USA 91:10370–10374.

    Google Scholar 

  • Fox, S.(1984).Proteinoid experiments and evolutionary theory.In: Ho, M.W. and P.T. Saunders (Eds).Beyond Neo-Darwinism. An Introduction to the New Evolutionary Paradigm.Academic Press, London.pp.15–60.

    Google Scholar 

  • Fox, S. and K. Matsuno (1989).Self-Organization of the protocell was a forward process. Journal of Theoretical Biology 101:321–323.

    Google Scholar 

  • Frauenfelder, H. and B. McMahon (1998).Dynamics and function of proteins: the search for general concepts.Proceedings of the National Academy of Science USA 95:4795–4797.

    Google Scholar 

  • Frauenfelder, H. and P. Wolynes (1994).Biomolecules: where the physics of complexity and simplicity meet.Physics Today 47:58–64.

    Google Scholar 

  • Frauenfelder, H., S. Sligar and P. Wolynes (1991).The Energy Landscapes and Motion of Proteins.Science 254:1598–1603.

    Google Scholar 

  • Freire, E.(1999).The propagation of binding interactions to remote sites in proteins: analysis of the binding of the monoclonal antibody D1.3 to lysozyme. Proceedings of the National Academy of Science USA 96:10118–10122.

    Google Scholar 

  • Gerstein, M.,A. Lesk and C. Chothia.(1994).Structural mechanisms for domain movements in proteins.Biochemistry 33:6739–6749.

    Google Scholar 

  • Gibney, B.,F. Rabal., J. Skalicky., J. Wand and L. Dutton.(1999).Iterative protein redesign. Journal of American Chemical Society 121:4952–4960.

    Google Scholar 

  • Go, M. (1981).Correlations of DNA exonic regions with protein structural units in haemoglobin.Nature:291:90–92.

    Google Scholar 

  • Govindarajan, S. and R. Goldstein (1998).On the thermodynamic hypothesis of protein folding. Proceedings of the National Academy of Science USA 95:5545–5549.

    Google Scholar 

  • Gutin, A.,V. Abkevich and E. Shakhnovich (1995).Evolution-like selection of fast-folding model proteins.Proceedings of the National Academy of Science USA 92:1282–1286.

    Google Scholar 

  • Handel, T.,S. Williams and W. DeGrado (1993).Metal ion-depent modulation of the dynamics of a designed protein.Science 261:879–885.

    Google Scholar 

  • Hoffmeyer, J. and C. Emmeche (1991).Code duality and the semiotics of nature. In: Anderson, M.and F. Merrell (Eds).On Semiotic Modeling.Mouton de Gruyter, Berlin and New York.pp.117–166.

    Google Scholar 

  • Isogai, Y.,A. Ishii., T. Fujisawa., M. Ota and K. Nishikawa.(2000).Redesign of artificial globins: effects of residue replacements at hydrophobic sites on the structural properties. Biochemistry 39:5683–5690.

    Google Scholar 

  • James, L.,P. Roversi and D. Tawfik (2003).Antibody multispecifiity mediated by conformational diversity.Science 299:1362–1367.

    Google Scholar 

  • Jukes, T.H.(1974).On the possible origin and evolution of the genetic code. Origins of Life 5: 331–350.

    Google Scholar 

  • Kim, D.,H. Gu and D. Baker (1998).The sequences of small proteins are not extensively optimized for rapid folding by natural selection.Proceedings of the National Academy of Science USA 95:4982–4986.

    Google Scholar 

  • Kumar, S., M. Buyong, C.J. Tsai, N. Sinha and R. Nussinov (2000).Folding and binding cascades: dynamic landscapes and population shifts. Protein Science 9:10–19.

    Google Scholar 

  • Laurents, D.,S. Corrales, M. Elías-Arnanz, P. Sevilla, M. Rico and S. Padmanabahan (2000). Folfing Kinetics of Phage 434 Cro protein.Biochemistry 39:13963–13973.

    Google Scholar 

  • Leopold, P.,M. Montal and N. Onuchic (1992).Protein folding funnels: a kinetic approach to the sequence-structure relationship.Proceedings of the National Academy of Science USA 89:8721–8725.

    Google Scholar 

  • Levinthal, C.(1969).How to fold graciously. In: DeBrunner P., J. Tsibiris and E. Munck (Eds). Mossbauer Spectroscopy in Biological Systems: Proceedings of a meeting held at Allerton House,Monticello,Illinois.University of Illinois Press, Urbana.pp.22–24.

    Google Scholar 

  • Liautard, J.P.(1999).Analytical background and discussion of the chaperone model of prion diseases.Acta Biotheoretica 47:219–238.

    Google Scholar 

  • Mirny, L. and E. Shakhnovich.(1999).Universally conserved positions in protein folds: reading evolutionary signals about stability, folding, kinetics and function.Journal of Molecular Biology 291:177–196.

    Google Scholar 

  • Monod, J.(1970).El azar y la necesidad: Ensayo sobre la filosofía natural de la biología moderna. 5 a edición. Tusquets Editores, Barcelona.

    Google Scholar 

  • Nakajima, T.(1999).Biological probability: cognitive processes of generating probabilities of events in biological systems.Journal of Theoretical Biology 200:77–95.

    Google Scholar 

  • Onuchic, J.,P. Wolynes, Z. Luther-Schulten and N. Socci (1995).Toward an Outline of the Topography of a Realistic Protein-Folding Funnel.Proceedings of the National Academy of Science USA 92:3626–3630.

    Google Scholar 

  • Pande, S.,A. Grosberg and T. Tanaka (1994).Non-randomness in protein sequences: evidence for a physically driven stage of evolution?Proceedings of the National Academy of Science USA 91:12972–12975.

    Google Scholar 

  • Pattee, H.H.(1967).Quantum mechanics, heredity and the origin of life.Journal of Theoretical Biology. 17:410–420.

    Google Scholar 

  • Pattee, H.H.(1995).Evolving self-reference: matter, symbols, and semantic closure. Communication and Cognition-Artificial Intelligence (Special issue Self-reference in biological and cognitive systems)12:9–27.

    Google Scholar 

  • Pereira de Aráujo, A.F.(1999).Folding protein models with a simple hydrophobic energy function: the fundamental importance of monomer inside/outside segregation. Proceedings of the National Academy of Science USA 96:12482–12487.

    Google Scholar 

  • Plaxco, K. and M. Gross (1997).The importance of being unfolded.Nature 386:657–659

    Google Scholar 

  • Plaxco, K.,K. Simons, I. Ruczinski and D. Baker (2000).Topology, stability, sequence, and length: defining the determinants of two-state protein folding kinetics.Biochemistry 39: 11177–11183.

    Google Scholar 

  • Plaxco, K.,C. Spitzafaden, I. Campbell and C. Dobson (1997).A comparison of the folding kinetics and thermodynamics of two homologous fibronectin Type III modules.Journal of Molecular Biology 270:763–770.

    Google Scholar 

  • Plaxco, K.,L. Guijarro, C. Morton, M. Pitkeathly, L. Campbell and C. Dobson (1998).The folding kinetics and thermodynamics of the Fyn-SH3 domain.Biochemistry 37:2529–2535.

    Google Scholar 

  • Radford, S.E. and C.M. Dobson (1995).Insights into protein folding using physical techniques: studies of lysozyme and α-lactalbumin.Philosophical Transactions of the Royal Society London B Biological Sciences 348:17–25 Reprinted in: Dobson, C.M.(2000). The nature and significance of protein folding. In: Mechanism of protein folding. Oxford University Press, London. pp. 14.

    Google Scholar 

  • Réat, V.,H. Patzelt, M. Ferrand, C. Pfister, D. Oesterhelt and G. Zaccai (1998).Dynamics of different functional parts of bacteriorhodopsin:H-2H labeling and neutron scattering. Proceedings of the National Academy of Science USA 95:4970–4975.

    Google Scholar 

  • Root-Berstein, R. and P. Dillon (1997).Molecular complementarity I:the complementarity theory of the origin and evolution of life.Journal of Theoretical Biology 188:447–479.

    Google Scholar 

  • Sali, A.,E. Shakhnivich and M. Karplus (1994).How does a protein fold?Nature 369:248–251.

    Google Scholar 

  • Salthe, S.(1993).Development and Evolution.Complexity and Change in Biology.The MIT Press, Cambridge, Massachussetts.

    Google Scholar 

  • Sato, S.,S. Xiang and D. Raleigh (2001).On the relationship between protein stability and folding kinetics: a comparative study of the N-terminal domains of RNase HI, E. coli and Bacillus stearothermophilus L9.Journal of Molecular Biology 312:569–577.

    Google Scholar 

  • Schreiber, G.,A. Buckle and A. Fersht (1994).Stability and function: Two constraints in the evolution of barstar and other proteins.Structure 2:945–951.

    Google Scholar 

  • Schultes, E.,P. Hraber and T. LaBean (1999).Estimating the contributions of selection and self-organization in RNA secondary structure.Journal of Molecular Evolution 49:76–83.

    Google Scholar 

  • Shakhnovich, E.(1997).Theoretical studies of protein-folding thermodynamics and kinetics. Current Opinion of Structural Biology 7:29–40.

    Google Scholar 

  • Shakhnovich, E. and A. Gutin (1993).Engineering of stable and fast-folding sequences of model proteins.Proceedings of the National Academy of Science USA 90:7195–7199.

    Google Scholar 

  • Strait, B. and G. Dewey (1996).The Shannon information entropy of protein sequences. Biophysical Journal 71:148–155.

    Google Scholar 

  • Tsai, C.J.,B. Ma and R. Nussinov (1999).Folding and binding cascades: Shifts in energy landscapes.Proceedings of the National Academy of Science USA 96:9970–9972.

    Google Scholar 

  • Vendruscolo, M. and E. Paci (2003).Protein folding: bringing theory and experiment closer together.Current Opinion in Structural Biology 13:82–87.

    Google Scholar 

  • Vendruscolo, M.,E. Paci., M. Karplus and C.M. Dobson (2003).Structures and relative free energies of partially folded states of proteins.Proceedings of the National Academy of Science USA 100:14817–14821.

    Google Scholar 

  • Volkenstein, M.V.(1994).Physical Approaches to Biological Evolution.Springer Verlag, Berlin.

    Google Scholar 

  • Wedemayer, G.,P. Patten, L. Wang, P. Schultz and R. Stevens (1997).Structural insights into the evolution of an antibody combining site.Science 276:1665–1669.

    Google Scholar 

  • Weiss, O.,M.A. Jiménez-Montaño and H. Herzel (2000).Information content of protein sequences.Journal of Theoretical Biology 206:379–386.

    Google Scholar 

  • White, S.H. and R.E Jacobs (1993).The evolution of proteins from random amino acids sequences. I. Evidence from the lengthwise distribution of amino acids in modern proteins. Journal of Molecular Evolution 36:79–95.

    Google Scholar 

  • Wong, J.(1975).A co-evolution theory of the genetic code.Proceedings of the National Academy of Science USA 72:1909–1912.

    Google Scholar 

  • Yin, J.,S. Andryski., A. Beuscher IV., R. Stevens and P. Schultz (2003).Structural evidence for substrate strain in antibody catalysis.Proceedings of the National Academy of Science USA 100:856–861.

    Google Scholar 

  • Yockey, H.P.(1992).Information Theory and Molecular Biology.Cambridge University Press, Cambridge.

    Google Scholar 

  • Zhou, Y. and M. Karplus (1999).Interpreting the folding kinetics of helical proteins.Nature 401:400–403.

    Google Scholar 

  • Zurek, W.H. (1989a).Algorithmic randomness and physical entropy.Physical Review A 40 (8): 4731–4751.

    Google Scholar 

  • Zurek, W.H. (1989b).Thermodynamic cost of the computation,algorithmic complexity and the information metric.Nature 341:119–124.

    Google Scholar 

  • Zurek, W.H. (1990).Algorithmic information content,Church-Turing Thesis,Physical Entropy,and Maxwell’ s demon.In:Zurek, W.H.(Ed.).Complexity,Entropy,and the Physics of Information.SFI Studies in the Sciences of Complexity, Vol. VIII.Addison-Wesley, Redwood City,CA.pp.73–89.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balbín, A., Andrade, E. Protein Folding and Evolution are Driven by the Maxwell Demon Activity of Proteins. Acta Biotheor 52, 173–200 (2004). https://doi.org/10.1023/B:ACBI.0000043441.74099.0c

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:ACBI.0000043441.74099.0c

Navigation