Skip to main content
Log in

Objectivity and objective time derivatives in continuum physics

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

The role played by objectivity in continuum physics is reexamined in an attempt to establish fully its deep connection with classical and relativistic time derivatives. The way of distinguishing one element in the class of objective time derivatives may depend on the particular problem of interest; this is emphasized in conjunction with material relaxation phenomena described via hidden variable evolution equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Truesdell and W. Noll, in Encyclopedia of Physics, S. Flügge, ed. (Berlin, 1965), Vol. III/3.

  2. A. C. Eringen, in Continuum Physics, A. C. Eringen, ed. (New York, 1975), Vol. II.

  3. D. G. B. Edelen and J. A. McLennan, Int. J. Engng. Sci. 11, 813 (1973).

    Article  MATH  Google Scholar 

  4. B. D. Coleman and M. E. Gurtin, J. Chem. Phys. 47, 597 (1967).

    Article  ADS  Google Scholar 

  5. G. A. Kluitenberg, Physica 68, 75 (1973);87A, 302 (1977).

    Article  ADS  Google Scholar 

  6. G. A. Maugin, J. Mécan. 18, 541 (1979).

    MATH  MathSciNet  Google Scholar 

  7. F. Sidoroff, Arch. Mech. 27, 807 (1975).

    MATH  MathSciNet  Google Scholar 

  8. A. Morro, Arch. Mech. 32, 145, 193 (1980).

    MATH  MathSciNet  Google Scholar 

  9. F. Bampi and A. Morro, Acta Phys. Polon. B 10, 1081 (1979).

    Google Scholar 

  10. F. Bampi and A. Morro, Wave Motion 2, 153 (1980).

    Article  MATH  MathSciNet  Google Scholar 

  11. C. Truesdell and R. A. Toupin, in Encyclopedia of Physics, S. Flügge, ed. (Berlin, 1960), Vol. III/1.

  12. G. A. Maugin, J. Phys. A 7, 465 (1974).

    Article  MathSciNet  ADS  Google Scholar 

  13. I. Müller, Arch. Rat. Mech. Anal. 45, 241 (1972).

    Article  MATH  Google Scholar 

  14. L. H. Söderholm, Int. J. Engng. Sci. 14, 523 (1976).

    Article  Google Scholar 

  15. C. C. Wang, Arch. Rat. Mech. Anal. 58, 381 (1975).

    Article  MATH  Google Scholar 

  16. C. Truesdell, Meccanica 11, 196 (1976).

    Article  MATH  ADS  Google Scholar 

  17. A. Bressan, Rend. Sem. Mat. Univ. Padova 34, 74 (1964).

    MATH  MathSciNet  Google Scholar 

  18. A. Bressan, Nuovo Cimento B 66, 201 (1967).

    ADS  Google Scholar 

  19. L. E. Bragg, Arch. Rat. Mech. Anal. 18, 127 (1965).

    Article  MATH  MathSciNet  Google Scholar 

  20. J. G. Oldroyd, Proc. R. Soc. Lond. A 316, 1 (1970).

    Article  MathSciNet  ADS  Google Scholar 

  21. L. Söderholm, Arch. Rat. Mech. Anal. 39, 89 (1970).

    Article  MATH  Google Scholar 

  22. G. Lianis, Nuovo Cimento B 14, 57 (1973).

    MathSciNet  ADS  Google Scholar 

  23. G. Lianis and J. G. Papastavridis, Nuovo Cimento B 38, 37 (1977).

    MathSciNet  ADS  Google Scholar 

  24. R. J. Atkin and N. Fox, Z. Angew. Math. Phys. 24, 853 (1973).

    Article  MATH  MathSciNet  Google Scholar 

  25. J. C. Maxwell, Scientific Papers (Cambridge, 1890), Vol. 2, pp. 56 and 62.

  26. R. A. Grot and A. C. Eringen, Int. J. Engng. Sci. 4, 611 (1966).

    Article  Google Scholar 

  27. A. C. Pipkin and R. S. Rivlin, Arch. Rat. Mech. Anal. 4, 129 (1959/60).

    MATH  MathSciNet  Google Scholar 

  28. R. S. Rivlin, Arch. Rat. Mech. Anal. 4, 262 (1959/60).

    Article  Google Scholar 

  29. G. A. Maugin, Ondes et Radiations Gravitationnelles (Editions CNRS, Paris, 1974), p. 331.

    Google Scholar 

  30. S. Helgason, Differential Geometry, Life Groups, and Symmetric Spaces (New York, 1978), p. 8.

  31. A. C. Eringen, Foundations of Micropolar Thermoelasticity (Wien, 1970).

  32. A. Morro, Meccanica 12, 194 (1977).

    Article  ADS  Google Scholar 

  33. S. Zaremba, Bull. Int. Acad. Sci. Cracovia 1903, 594, 614.

    Google Scholar 

  34. G. Jaumann, Sitzgsber. Akad. Wiss. Wien (IIa) 120, 385 (1911).

    MATH  Google Scholar 

  35. B. Carter and H. Quintana, Proc. R. Soc. Lond. A 331, 57 (1972).

    MATH  MathSciNet  ADS  Google Scholar 

  36. G. A. Maugin, J. Math. Phys. 19, 1198, 1206 (1978).

    Article  MATH  ADS  Google Scholar 

  37. F. B. Estabrook and H. D. Wahlquist, J. Math. Phys. 5, 1629 (1964).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  38. E. Massa, Gen. Rel. Grav. 5, 555, 573 (1974).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  39. C. Truesdell, J. Mech. Anal. 1, 125 (1952);2, 593 (1953).

    MATH  MathSciNet  Google Scholar 

  40. T. Tokuoka, Z. Angew. Math. Mech. 57, 107 (1977).

    MATH  MathSciNet  Google Scholar 

  41. J. Mandel, Plasticité classique et viscoplasticité (Wien, 1971).

  42. F. Bampi and A. Morro, J. Phys. A (to appear).

  43. G. A. Maugin, in Continuum Physics, A. C. Eringen, ed. (New York, 1975), Vol. III.

  44. L. D. Landau and E. M. Lifshitz, Electrodynamics of continuous media (Oxford, 1960).

  45. R. A. Grot, in Continuum Physics, A. C. Eringen, ed. (New York, 1975), Vol. III.

  46. P. Calvini and M. Carrassi, Nuovo Cimento B 47, 121 (1978).

    ADS  Google Scholar 

  47. G. Lianis and J. G. Papastavridis, Found. Phys. 9, 673 (1979).

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This research is supported by the Istituto di Matematica Applicata del CNR, Genova through the project Conservazione del Suolo-Dinamica dei Litorali.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bampi, F., Morro, A. Objectivity and objective time derivatives in continuum physics. Found Phys 10, 905–920 (1980). https://doi.org/10.1007/BF00708688

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00708688

Keywords

Navigation