Skip to main content
Log in

Characterizing Entropy in Statistical Physics and in Quantum Information Theory

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

A new axiomatic characterization with a minimum of conditions for entropy as a function on the set of states in quantum mechanics is presented. Traditionally unspoken assumptions are unveiled and replaced by proven consequences of the axioms. First the Boltzmann–Planck formula is derived. Building on this formula, using the Law of Large Numbers—a basic theorem of probability theory—the von Neumann formula is deduced. Axioms used in older theories on the foundations are now derived facts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Åberg, J.: Truly work-like work extraction via a single-shot analysis. Nat. Commun. 4, 1925 (2013)

    Article  Google Scholar 

  2. Aczél, J., Forte, B., Ng, C.T.: Why the Shannon and Hartley entropies are ‘Natural’. Adv. Appl. Probab. 6, 131–146 (1974)

    Article  MATH  Google Scholar 

  3. Anders, J., Shabbir, S., Hilt, S., Lutz, E.: Landauer’s principle in the quantum domain. Electron. Proc. Theor. Comput. Sci. 26, 13–18 (2010)

    Article  Google Scholar 

  4. Bhatia, R.: Matrix Analysis. Springer, New York (1997)

  5. Boltzmann, L.: Analytischer Beweis des zweiten Hauptsatzes der mechanischen Wärmetheorie aus den Sätzen über das Gleichgewicht der lebendigen Kraft. Sitzb. der Wiener Akad. LXIII, 712–732 (1871)

  6. Boltzmann, L.: Weitere Studien über das Wärmegleichgewicht unter Gasmolekülen. Sitzb. der Wiener Akad. LXVI, 275–370 (1872)

  7. Boltzmann, L.: Über die Beziehung zwischen dem zweiten Hauptsatze der mechanischen Wärmetheorie und der Wahrscheinlichkeitsrechnung respektive den Sätzen über das Wärmegleichgewicht. Sitzb. der Wiener Akad. LXXVI, 373–435 (1877)

  8. Bratteli, O., Robinson, D.W.: Operator Algebras and Quantum Statistical Mechanics II. Springer, New York (1981)

    Book  MATH  Google Scholar 

  9. Brönnimann, D.: Die Entwicklung des Wahrscheinlichkeitsbegriffs von 1654 bis 1718. ftp://stat.ethz.ch/Masters.../Daniel Broennimann-Wahrschkeit

  10. Cohen, E.G.D., Thirring, W.: The Boltzmann Equation. Springer, Wien (1973)

  11. Cohen-Tannoudji, C., Guéry-Odelin, D.: Advances in Atomic Physics. World Scientific, Singapore (2011)

  12. Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley Interscience, Hoboken (2006)

    MATH  Google Scholar 

  13. Dahlsten, O.C.O., Renner, R., Rieper, E., Vedral, V.: Inadequacy of von Neumann entropy for characterizing extractable work. New J. Phys. 13(5), 053015 (2011), arXiv:0908.0424

  14. Dupuis, F., et al.: Generalized entropies. In: Proceedings of the XVIIth International Conference on Mathematics and Physics, Aalborg, Denmark (2012). arXiv:1211.3141

  15. Egloff, D., et al.: Laws of thermodynamics beyond the von Neumann regime. arXiv:1207.0434

  16. Einstein, A.: Beiträge zur Quantentheorie. Verh. Deutsch. Phys. Ges. 12, 820–828 (1914)

    Google Scholar 

  17. Gallavotti, G., Reiter, W.L., Yngvason, J. (eds.).: Boltzmann’s Legacy. European Mathematical Society Publ. House (2008)

  18. Gibbs, J.W.: Elementary Principles in Statistical Mechanics. Yale University Press (1902), republicated by Dover Publ., Inc. N.Y. (1960)

  19. Ingarden, R.S., Kossakowski, A., Ohya, M.: Information Dynamics and Open Systems. Kluwer Academic Publishers (1997)

  20. Klein, M.J.: The Development of Boltzmann’s Statistical Ideas. In: Cohen, E.G.D., Thirring, W. (eds.) The Boltzmann Equation. Springer, Wien (1973)

  21. Lieb, E.H., Yngvason, J.: A guide to entropy and the second law of thermodynamics. Not. Am. Math. Soc. 45, 571–581 (1999), Erratum 314, 699 (1999)

  22. Lieb, E.H., Yngvason, J.: The physics and mathematics of the second law of thermodynamics. Phys. Rep. 310, 1–96 (1999), Erratum 314, 699 (1999)

  23. Lieb, E.H., Yngvason, J.: A fresh look at entropy and the second law of thermodynamics. Phys. Today 310, 32–37 (2000)

  24. Lieb, E.H., Yngvason, J.: The Mathematical Structure of the Second Law of Thermodynamics. arXiv:math-ph/0204007

  25. Nagaoka, H., Hayashi, M.: An information-spectrum approach to classical and quantum hypothesis testing for simple hypotheses. IEEE Trans. Inf. Theory 53(2), 534–549 (2007)

    Article  MathSciNet  Google Scholar 

  26. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge Inversity Press, Cambridge, UK (2000)

    MATH  Google Scholar 

  27. Ochs, W.: A new axiomatic characterization of the von Neumann entropy. Rep. Math. Phys. 3, 109–120 (1975)

    Article  MathSciNet  ADS  Google Scholar 

  28. Planck, M.: Über das Gesetz der Energieverteilung im Normalspektrum. Ann. Phys. 4(4), 553–563 (1901)

    Article  MATH  Google Scholar 

  29. Planck, M.: Vorlesungen über die Theorie der Wärmestrahlung. Barth, Leipzig (1906)

    MATH  Google Scholar 

  30. Renner, R.: Security of quantum key distribution. Dissertation. arXiv:0512258v2

  31. Ruskai, M.B.: Inequalities for quantum entropy: a review with conditions for equality. J. Math. Phys. 43, 4358–4375 (2002)

  32. Schrödinger, E.: Statistical Thermodynamics. Cambridge University Press, London (1946)

    MATH  Google Scholar 

  33. Shannon, C.F.: A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423, 623–656, July, October (1948)

  34. Shannon, C.F., Weaver, W.: The Mathematical Theory of Communication. University of Illinois Press, Chicago (1949)

    MATH  Google Scholar 

  35. Szilard, L.: Über die Ausdehnung der phänomenologischen Thermodynamik auf die Schwankungserscheinungen. Zeitschrift für Physik. XXXII(10), 753–788 (1925)

  36. Tomamichel, M.: A Framework for Non-Asymptotic Quantum Information Theory. Dissertation, arXiv:1203.2142

  37. Tomamichel, M., Colbeck, R., Renner, R.: A fully quantum asymptotic equipartition property. IEEE Trans. Inf. Theory 55(12), 5840–5847 (2009)

    Article  MathSciNet  Google Scholar 

  38. Uhlmann, A.: Sätze über Dichtematrizen. Wiss. Z. Karl-Marx-Univ. 20, 633–637 (1971)

    MathSciNet  Google Scholar 

  39. Uhlmann, A.: Wiss. Z. Karl-Marx-Univ. Endlich-dimensionale Dichtematrizen I 21, 421–452 (1972)

    MathSciNet  Google Scholar 

  40. Uhlmann, A.: Wiss. Z. Karl-Marx-Univ. Endlich-dimensionale Dichtematrizen II 22, 139–177 (1973)

    MathSciNet  Google Scholar 

  41. von Neumann, J.: Gött. Nachr. Thermodynamik quantenmechanischer Gesamtheiten 1, 273–291 (1929)

    Google Scholar 

  42. von Neumann, J.: Mathematische Grundlagen der Quantenmechanik. Springer, Berlin (1932)

    MATH  Google Scholar 

  43. Wehrl, A.: How chaotic is a state of a quantum system? Rep. Math. Phys. 6, 15–28 (1974)

    Article  MathSciNet  ADS  Google Scholar 

  44. Wehrl, A.: General properties of entropy. Rev. Mod. Phys. 50, 221–260 (1978)

    Article  MathSciNet  ADS  Google Scholar 

  45. Wehrl, A.: Information-Theoretical Aspects of Quantum-Mechanical Entropy. Univ. Vienna preprint UWThPh-1990-20, unpublished (1990)

Download references

Acknowledgments

The author thanks the referees for important hints, and he gives many thanks to Elliott Lieb and Jakob Yngvason for discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard Baumgartner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baumgartner, B. Characterizing Entropy in Statistical Physics and in Quantum Information Theory. Found Phys 44, 1107–1123 (2014). https://doi.org/10.1007/s10701-014-9832-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-014-9832-y

Keywords

Mathematics Subject Classification

Navigation