Skip to main content

The Nature of Progress in Mathematics: The Significance of Analogy

  • Chapter
The Growth of Mathematical Knowledge

Part of the book series: Synthese Library ((SYLI,volume 289))

Abstract

Mathematicians of all stripes, whether intuitionists or structuralists, have acknowledged the fundamental role played by analogy in mathematical invention. Thus for Poincaré analogy is the inventor’s principal “guide” (Poincaré 1900, 127). He himself tells us that he was able to find the representation of a category of Fuchsian functions in terms of a series, because he was guided by an analogy with elliptic functions. Consequently, analogy plays an essential role in progress, or in “the future of mathematics, ” as he put it in a paper delivered at the International Congress of Mathematicians in 1908. Virtually every breakthrough relies on analogies, either within a given field of mathematics or between different fields. Indeed, the analogy that presents itself between a given problem and a more extended class of other problems opens up a generalization of the terms as well as of the solution of the given problem. Poincaré went on to point out that a generalization “is not a new result, it is rather a new force” (Poincaré 1908, 169). It is a force primarily because it provides an economy of thought. Every mathematician knows the importance of being able to encompass a large set of facts and results that are apparently different from one another, or that belong to distinct domains of mathematics, in one single glance. Hilbert’s school too emphasized the fruitfiilness of “übersichtlichkeit.” Artin, for instance, has written that the true happiness of the mathematician is not to hold on to the logical sequence, but to “see at one glance the whole architecture in every direction.”1

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Artin, E. (1953). “Review of N. Bourbaki.” Bulletin of the American Mathematical Society. Vol. 59: 474–9.

    Article  Google Scholar 

  • Bélaval, Y. (1960). Leibniz critique des Descartes. Paris: Gallimard.

    Google Scholar 

  • Bochnak, J., Coste M., Coste-Roy, M. F. (1987). Géométrie algébrique réele. Berlin: Springer-Verlag.

    Google Scholar 

  • Bouligand, G. (1944). Les aspects intuitifs de la mathématique. Paris: Gallimard.

    Google Scholar 

  • Davis, P. J. and Hersh, R. (1985). L’univers mathématique. Paris: Gauthier-Villars. French translation of (Davis and Hersh 1981).

    Google Scholar 

  • Davis, P. J. and Hersh, R. (1981). The Mathematical Experience. Boston: Birkhäuser.

    Google Scholar 

  • Descartes, R. (1953). Oeuvres et Lettres. Bibliothèque de la Pléiade. Paris: Gallimard.

    Google Scholar 

  • Fraïssé, R. (1982). “Les axiomatiques ne sont-elles qu’un jeu?” in Penser les mathématiques. Paris: Editions de Seuil. 39–57.

    Google Scholar 

  • Frege, G. (1879). Begriffsschrift. Halle.

    Google Scholar 

  • Frege, G. (1884). Die Grundlagen der Arithmetik. Breslau: Verlag Wilhelm Koebner. French translation (1969). Paris: Le Seuil.

    Google Scholar 

  • Hadamard, J. (1959). Essai sur la psychologie de l’invention dans le domaine mathématique. Paris: Librairie scientifique Albert Blanchard.

    Google Scholar 

  • Hilbert, D. (1900). “Sur les problèmes futurs des mathématiques.” Compte rendu de 2e International Congress of Mathematics. Paris: International Congress of Mathematics (1900). Paris: Gauthier-Villars (1902). 58–114.

    Google Scholar 

  • Hilbert, D. (1917). “Axiomatishes Denken.” Mathematische Annalen. Vol. 78: 405–15.

    Article  Google Scholar 

  • Hintikka, J. and Remes, U. (1974). The Method of Analysis. Dordrecht-Boston: Reidel.

    Book  Google Scholar 

  • Leibniz, G. W. (1962). Leibnizens mathematische Schriften. C. I. Gerhardt. (Ed.). Hildesheim: Georg Olms.VAN

    Google Scholar 

  • Leibniz, G. W. (1960–1). Die philosophische Schriften von G. W. Leibniz. G. I. Gerhardt. (Ed.). Hildesheim: Georg Olms.VAN

    Google Scholar 

  • Leibniz, G. W. (1961). Opuscules et fragments inédits de Leibniz. L. Couturat. (Ed.). Hildesheim: Georg OlmsVAN.

    Google Scholar 

  • Poincaré, H. (1900). “Du rôle de l’intuition et de la logique en mathématiques.” Compte rendu de 2e International Congress of Mathematics. Paris: International Congress of Mathematics (1900). Paris: Gauthier-Villars (1902). 115–130.

    Google Scholar 

  • Poincaré, H. (1902). La science et l’hypothèse. Paris: Flammarion.

    Google Scholar 

  • Poincaré, H. (1908). “L’avenir des mathématiques.” in International Congress of Mathematics (1908). Atti del IV Congresso internazionale dei mathematici. Roma: Academia dei Lincei. 167–182.

    Google Scholar 

  • Polya, G. (1967). La découverte des mathématiques. Paris: Dunod.

    Google Scholar 

  • Robinson, A. (1952). “On the Application of Symbolic Logic to Algebra.” in (Robinson 1979, Vol. 1, 3–11).

    Google Scholar 

  • Robinson, A. (1965). “Formalism 64.” in (Robinson 1979, Vol. II, 505–23).

    Google Scholar 

  • Robinson, A. (1969). “From a Formalist’s Point of View.” Dialectica. Vol. 23: 45–49.

    Article  Google Scholar 

  • Robinson, A. (1979). Selected Papers. Keisler, Körner, Luxemburg, and Young. (Eds.). New Haven: Yale University PressVAN.

    Google Scholar 

  • Salanskis J. M. and Sinaceur, H. (Eds.). (1992). Le labyrinthe du continu. Paris: Springer-Verlag France.

    Google Scholar 

  • Sinaceur, H. (1985). “La théorie d’Artin et Schreier et l’analyse non standard d’Abraham Robinson.” Archive for the history of exact sciences. Vol. 34, No. 3: 257–264.

    Article  Google Scholar 

  • Sinaceur, H. (1988). “Ars inveniendi et théorie des modèles.” Dialogue. Vol. 23: 591–613.

    Article  Google Scholar 

  • Sinaceur, H. (1991a). Corps et modèles. Essai sur l’histoire de l’algèbre réelle. Collection Mathesis. Paris: Vrin.

    Google Scholar 

  • Sinaceur, H. (1991b). “Logique: mathématique ordinaire ou épistémologie effective?” in Hommage à Jean- Toussaint Desanti. Mauvezin: Trans-Europ-Repress.

    Google Scholar 

  • Sinaceur, H. (1992). “Du rôle de l’analyse des concepts selon Gödel et de son rapport à la théorie des modèles.” Actes du colloque Kurt Gödel. Neuchatel 1991. Travaux de logique. Centre national de la recherche scientifique. Université de Neuchatel. Vol. 7: 11–35.

    Google Scholar 

  • Sinaceur, H. (1994). Jean Cavaillès. Philosophie mathématique. Paris: Presses Universitaires de France.

    Google Scholar 

  • Sinaceur, H. (1998). “Différents aspects du formalisme.” Actes du colloque Les années 30, réaffirmation du formalisme. Saint-Malo, 7–9 April 1994. Paris: Vrin.

    Google Scholar 

  • Stewart, I. (1989). Les mathématiques. Paris: Belin. French translation of (Stewart 1987).

    Google Scholar 

  • Stewart, I. (1987). The Problems of Mathematics. Oxford: Oxford University Press.

    Google Scholar 

  • Tarski, A. (1931). “Sur les ensembles définissables de nombres réels.” in (Tarski 1986, Vol. I. 517–48).

    Google Scholar 

  • Tarski, A. (1948/51). “A Decision Method for Elementary Algebra and Geometry.” in (Tarski 1986, Vol. III, 297–368).

    Google Scholar 

  • Tarski, A. (1986). Collected papers. S. R. Givant and R. N. McKenzie. (Eds.). Boston: BirkhäuserVAN.

    Google Scholar 

  • Timmermans, B. (1995). La résolution des problèmes de Descartes à Kant. L’analyse à l’age de la révolution scientifique. Paris: Presses Universitaires de France.

    Google Scholar 

  • Weyl, H. (1932). “Topologie und abstrakte Algebra als zwei Wege des mathematischen Verständnisses.” in (Weyl 1968, Vol. III, 348–358).

    Google Scholar 

  • Weyl, H. (1951). “A Half-Century of Mathematics.” in (Weyl 1968, Vol. IV, 464–96).

    Google Scholar 

  • Weyl, H. (1968). Gesammelte Abhandlungen. Chandrasekharan. (Ed.). Berlin: Springer-Verlag.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Benis-Sinaceur, H. (2000). The Nature of Progress in Mathematics: The Significance of Analogy. In: Grosholz, E., Breger, H. (eds) The Growth of Mathematical Knowledge. Synthese Library, vol 289. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9558-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9558-2_19

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5391-6

  • Online ISBN: 978-94-015-9558-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics