Skip to main content
Log in

Connected modal logics

  • Original Article
  • Published:
Archive for Mathematical Logic Aims and scope Submit manuscript

Abstract

We introduce the concept of a connected logic (over S4) and show that each connected logic with the finite model property is the logic of a subalgebra of the closure algebra of all subsets of the real line R, thus generalizing the McKinsey-Tarski theorem. As a consequence, we obtain that each intermediate logic with the finite model property is the logic of a subalgebra of the Heyting algebra of all open subsets of R.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aiello M., van Benthem J., Bezhanishvili G.: Reasoning about space: the modal way. J. Logic Comput. 13(6), 889–920 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bezhanishvili G., Gehrke M.: Completeness of S4 with respect to the real line: revisited. Ann. Pure Appl. Logic 131(1–3), 287–301 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bezhanishvili G., Mines R., Morandi P.J.: Topo-canonical completions of closure algebras and Heyting algebras. Algebra Universalis 58(1), 1–34 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bezhanishvili, G., Morandi, P.J.: One-point order-compactifications. Houston J. Math. (2011). To appear

  5. Blackburn P., de Rijke M., Venema Y.: Modal logic. Cambridge University Press, Cambridge (2001)

    MATH  Google Scholar 

  6. Chagrov A., Zakharyaschev M.: Modal logic, volume 35 of Oxford Logic Guides. The Clarendon Press Oxford University Press, New York (1997)

    Google Scholar 

  7. Engelking R.: General topology. PWN—Polish Scientific Publishers, Warsaw (1977)

    MATH  Google Scholar 

  8. Esakia L.: Topological Kripke models. Soviet Math. Dokl. 15, 147–151 (1974)

    MATH  Google Scholar 

  9. Esakia, L.: On the theory of modal and superintuitionistic systems (Russian). In: Logical inference (Moscow, 1974), pp. 147–172. “Nauka”, Moscow (1979)

  10. Esakia L.: Heyting Algebras I. Duality theory (Russian). “Metsniereba”, Tbilisi (1985)

  11. Esakia, L.: McKinsey’s modal system half a century later (Russian). In: Methodology and philosophy of science, vol. II, pp. 95–98, Moscow-Obninsk. RGNF Press (1995)

  12. Esakia L., Meskhi V.: Five critical modal systems. Theoria 43(1), 52–60 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  13. Fine K.: An ascending chain of S4 logics. Theoria 40(2), 110–116 (1974)

    Article  MathSciNet  Google Scholar 

  14. Jankov V.: On the relation between deducibility in intuitionistic propositional calculus and finite implicative structures (Russian). Dokl. Akad. Nauk SSSR 151, 1293–1294 (1963)

    MathSciNet  Google Scholar 

  15. Jónsson B., Tarski A.: Boolean algebras with operators. I. Am. J. Math. 73, 891–939 (1951)

    Article  MATH  Google Scholar 

  16. McKinsey J., Tarski A.: The algebra of topology. Ann. Math. 45, 141–191 (1944)

    Article  MathSciNet  Google Scholar 

  17. Rautenberg W.: Splitting lattices of logics. Arch. Math. Logik Grundlag. 20(3-4), 155–159 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  18. Shehtman V.: Everywhere” and “here”. J. Appl. Non-Classic. Logics Issue Memory George Gargov 9(2–3), 369–379 (1999)

    MATH  MathSciNet  Google Scholar 

  19. van Benthem, J., Bezhanishvili, G.: Modal logics of space. In: Handbook of spatial logics, pp. 217–298. Springer, Dordrecht (2007)

  20. van Benthem J., Bezhanishvili G., Gehrke M.: Euclidean hierarchy in modal logic. Studia Logica 75(3), 327–344 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  21. Wolter F.: The structure of lattices of subframe logics. Ann. Pure Appl. Logic 86(1), 47–100 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  22. Zakharyaschev, M., Wolter, F., Chagrov, A.: Advanced modal logic. In: Handbook of philosophical logic, vol. 3, pp. 83–266. Kluwer Acad. Publ., Dordrecht (2001)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guram Bezhanishvili.

Additional information

Dedicated to Leo Esakia on his 75th birthday. David Gabelaia’s research was supported by the Georgian National Science Foundation Grant for Young Researchers # 148.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bezhanishvili, G., Gabelaia, D. Connected modal logics. Arch. Math. Logic 50, 287–317 (2011). https://doi.org/10.1007/s00153-010-0214-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00153-010-0214-7

Keywords

Mathematics Subject Classification (2000)

Navigation