Skip to main content
Log in

A measure of ambiguity (Knightian uncertainty)

  • Published:
Theory and Decision Aims and scope Submit manuscript

Abstract

Uncertain or ambiguous events cannot be objectively measured by probabilities, i.e. different decision-makers may disagree about their likelihood of occurrence. This paper proposes a new decision-theoretical approach on how to measure ambiguity (Knightian uncertainty) that is analogous to axiomatic risk measurement in finance. A decision-theoretical measure of ambiguity is a function from choice alternatives (acts) to non-negative real numbers. Our proposed measure of ambiguity is derived from a novel assumption that ambiguity of any choice alternative can be decomposed into a left-tail ambiguity (uncertainty in the realization of relatively undesirable outcomes) and a right-tail ambiguity (uncertainty in the realization of relatively desirable outcomes). This decomposability assumption is combined with two standard assumptions: ambiguity sources (events) are independent (separable) from outcomes (consequences) and any elementary increase in uncertainty (increasing a more desirable outcome in a binary act) necessarily increases ambiguity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. The subjective expected utility of act f is \(\frac{1}{2}\sqrt 9 + { }\frac{1}{2}\sqrt 0 = 1.5\) and that of act h is \(\frac{1}{2}\sqrt 4 + \frac{1}{2}\sqrt 1 = 1.5\).

  2. The max–min utility of act f is \(0.4\sqrt 9 + 0.6\sqrt 0 = 1.2\) and that of act h is \(0.4\sqrt 4 + 0.6\sqrt 1 = 1.4\).

  3. The max–min utility of act f is \(0.4*9 + 0.6*0 = 3.6\) and that of act h is \(0.4*4 + 0.6*1 = 2.2\).

  4. We do not use notation xEy or xEy for denoting this binary act because this notation becomes ambiguous when event E is a union of several events (cf. the proof of Proposition 1 in the “Appendix”).

  5. cf. Walley (1991), Dow and Werlang (1994), Marinacci (2000).

  6. A capacity is a normalized and monotone set function, i.e. it satisfies \(w\left( \emptyset \right) = 0\), \(w\left( S \right) = 1\) and \(w\left( A \right) \le w\left( B \right)\) if \(A \subseteq B\).

  7. The lower Choquet integral can be also interpreted as the conventional (i.e., upper) Choquet integral with dual capacity \(1 - w\left( {S\backslash E} \right)\).

  8. Since \(A\notin {\mathbb{C}}\) then we must have \(\varphi \left(A\right)\ne 0\); since y > w then \(v\left(y\right)-v\left(w\right)\ne 0\).

  9. Theorem 1 in Debreu (1960, p. 18) proves that a function satisfying the Thomsen–Blaschke condition can be written in an additively separable form. Such a function can be always rewritten in a multiplicatively separable form by taking exponentiation.

References

  • Aczél, J. (1966). Lectures on functional equations and their applications. London: Academic Press.

    Google Scholar 

  • Artzner, P., Delbaen, F., Eber, J.-M., & Heath, D. (1999). Coherent measures of risk. Mathematical Finance, 9, 203–227.

    Article  Google Scholar 

  • Bachmann, R., Elstner, S., & Sims, E. R. (2013). Uncertainty and economic activity: evidence from business survey data. American Economic Journal: Macroeconomics, 5(2), 217–249.

    Google Scholar 

  • Baker Scott, R., Bloom, N., & Davis, S. J. (2016). Measuring economic policy uncertainty. The Quarterly Journal of Economics, 131(4), 1593–1636.

    Article  Google Scholar 

  • Blaschke, W., & Bol, G. (1938). Geometrie der Gewebe: Topologische Fragen der Differentialgeometrie. Berlin: Springer.

    Google Scholar 

  • Bloom, N. (2009). The impact of uncertainty shocks. Econometrica, 77(3), 623–685.

    Article  Google Scholar 

  • Choquet, G. (1953). Theory of capacities. Annales de l’Institut Fourier, 5, 131–295.

    Article  Google Scholar 

  • Cинцoв Д.M. (1903) Зaмeтки пo фyнкциoнaльнoмy иcчиcлeнию” Кaзaнь : типo-лит. Имп. yн-тa

  • Debreu, G. (1960). Topological methods in cardinal utility. In K. Arrow, S. Karlin, & P. Suppes (Eds.), Mathematical Methods in Social Sciences (pp. 16–26). Stanford: Stanford University Press.

    Google Scholar 

  • Dow, J., & Werlang, S. (1994). Nash equilibrium under Knightian uncertainty: breaking down backward induction. Journal of Economic Theory, 64, 305–324.

    Article  Google Scholar 

  • Ellsberg, D. (1961). Risk, ambiguity, and the savage axioms. Quarterly Journal of Economics, 75, 643–669.

    Article  Google Scholar 

  • Epstein, L., & Zhang, J. (2001). Subjective probabilities on subjectively unambiguous events. Econometrica, 69, 265–306.

    Article  Google Scholar 

  • Ghirardato, P., & Marinacci, M. (2002). Ambiguity made precise: a comparative foundation. Journal of Economic Theory, 102, 251–289.

    Article  Google Scholar 

  • Ghirardato, P., Maccheroni, F., & Marinacci, M. (2004). Differentiating ambiguity and ambiguity attitude. Journal of Economic Theory, 118, 133–173.

    Article  Google Scholar 

  • Gilboa, I., & David, S. (1989). Maxmin expected utility with a non-unique prior. Journal of Mathematical Economics, 18, 141–153.

    Article  Google Scholar 

  • Gini, C. (1912). Variabilità e Mutabilità, contributo allo studio delle distribuzioni e delle relazione statistiche. Studi Economici-Giuridici dela Regia Università di Cagliari, 3, 3–159.

    Google Scholar 

  • Grant, S., & Quiggin, J. (2005). Increasing uncertainty: a definition. Mathematical Social Sciences, 49(2), 117–141.

    Article  Google Scholar 

  • Gul, F., & Pesendorfer, W. (2014). Expected uncertain utility theory. Econometrica, 82(1), 1–39.

    Article  Google Scholar 

  • Jewitt, I., & Sujoy, M. (2017). Ordering ambiguous acts. Journal of Economic Theory, 171, 213–267.

    Article  Google Scholar 

  • Klibanoff, P., Marinacci, M., & Mukerji, S. (2005). A smooth model of decision making under ambiguity. Econometrica, 73, 1849–1892.

    Article  Google Scholar 

  • Knight, F. (1921). Risk, Uncertainty, and Profit. New York: Houghton Mifflin.

    Google Scholar 

  • Laplace, P.-S. (1812). Théorie analytique des probabilités. Courcier, Paris

  • Machina, M. (1982). ’Expected utility’ analysis without the independence axiom. Econometrica, 50, 277–323.

    Article  Google Scholar 

  • Marinacci, M. (2000). Ambiguous games. Games and Economic Behavior, 31, 191–219.

    Article  Google Scholar 

  • Quiggin, J. (1981). Risk perception and risk aversion among Australian farmers. Australian Journal of Agricultural Recourse Economics, 25, 160–169.

    Article  Google Scholar 

  • Rockafellar, R. T., Uryasev, S., & Zabarankin, M. (2006). Generalized deviations in risk analysis. Finance and Stochastics, 10(1), 51–74.

    Article  Google Scholar 

  • Sarin, R., & Wakker, P. (1998). Revealed likelihood and Knightian uncertainty. Journal of Risk and Uncertainty, 16(3), 223–250.

    Article  Google Scholar 

  • Savage, L. J. (1954). The foundations of statistics. New York: Wiley.

    Google Scholar 

  • Schmeidler, D. (1989). Subjective probability and expected utility without additivity. Econometrica, 57(3), 571–587.

    Article  Google Scholar 

  • Segal, U. (1987). The Ellsberg paradox and risk aversion: an anticipated utility approach. International Economic Review, 28(1), 175–202.

    Article  Google Scholar 

  • von Neumann, J., & Morgenstern, O. (1947). Theory of games and economic behavior (2nd ed.). Princeton: Princeton University Press.

    Google Scholar 

  • Wakker, P. P. (1993). Unbounded utility for Savage’s “foundations of statistics,” and other models. Mathematics of Operations Research, 18, 446–485.

    Article  Google Scholar 

  • Walley, P. (1991). Statistical reasoning with imprecise probabilities. London: Chapman and Hall.

    Book  Google Scholar 

Download references

Acknowledgements

Pavlo Blavatskyy is a member of the Entrepreneurship and Innovation Chair, which is part of LabEx Entrepreneurship (University of Montpellier, France) and funded by the French government (Labex Entreprendre, ANR-10-Labex-11-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavlo Blavatskyy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Proof of proposition 1

Let us first demonstrate that uncertainty measure (1) satisfies assumptions 1–3.

Necessity of assumption 1 If outcome \(x \in X\) lies outside the range of outcomes of act \(f \in {\mathcal{F}}\) then

$$ \beta \left( {f \wedge x{ }} \right) + \beta \left( {f \vee x} \right) = \beta \left( {f{ }} \right) + \beta \left( {\varvec{x}} \right) = \beta \left( f \right) $$
(3)

with the second equality due to the fact that \(\beta \left( {\varvec{x}} \right) = 0\) for measure (1). If outcome \(x \in X\) lies inside the range of outcomes of act \(f \in {\mathcal{F}}\) then let \(x_{i} \in X\) denote the smallest outcome of act \(f \in {\mathcal{F}}\) that is greater than \(x \in X\). Act \(f \wedge x\) is then \(\left\{ {x_{1} ,E_{1} ; \ldots ;x_{i - 1} ,E_{i - 1} ;x,{ }\mathop \cup \limits_{j = i}^{n} E_{j} } \right\}\) and act \(f \vee x\) is then \(\left\{ {x,{ }\mathop \cup \limits_{j = 1}^{i - 1} E_{j} ;x_{i} ,E_{i} ; \ldots ;x_{n} ,E_{n} } \right\}\). Using formula (1) we can write the uncertainty measure of act \(f \wedge x\) as

$$ \beta \left( {f \wedge x{ }} \right) = \mathop \sum \limits_{j = 2}^{i - 1} \left[ {v\left( {x_{j} } \right) - v\left( {x_{j - 1} } \right)} \right]\varphi \left( {\mathop \cup \limits_{k = j}^{n} E_{k} } \right) + \left[ {v\left( x \right) - v\left( {x_{i - 1} } \right)} \right]\varphi \left( {\mathop \cup \limits_{k = i}^{n} E_{k} } \right) $$
(4)

and the uncertainty measure of act \(f \vee x\) as

$$ \beta \left( {f \vee x} \right) = \mathop \sum \limits_{j = i + 1}^{n} \left[ {v\left( {x_{j} } \right) - v\left( {x_{j - 1} } \right)} \right]\varphi \left( {\mathop \cup \limits_{k = j}^{n} E_{k} } \right) + \left[ {v\left( {x_{i} } \right) - v\left( x \right)} \right]\varphi \left( {\mathop \cup \limits_{k = i}^{n} E_{k} } \right) $$
(5)

Summing Eqs. (4) and (5) together yields

$$ \beta \left( {f \wedge x{ }} \right) + \beta \left( {f \vee x} \right) = \mathop \sum \limits_{j = 2}^{n} \left[ {v\left( {x_{j} } \right) - v\left( {x_{j - 1} } \right)} \right]\varphi \left( {\mathop \cup \limits_{k = j}^{n} E_{k} } \right) = \beta \left( f \right) $$
(6)

Therefore, uncertainty measure (1) satisfies assumption 1.

Necessity of assumption 2 Let us consider any three events \(A,B,C \in\)  ∑ such that \(A,B,C \notin {\mathbb{C}}\) and any four outcomes \(x,y,z,w \in X\) such that x > w, y > w and z > w. If uncertainty measure takes form (1) then equality \(\beta \left( {x,A,w} \right)\)\(= \beta \left( {y,B,w} \right)\) can be written as

$$ \left[ {v\left( x \right) - v\left( w \right)} \right]\varphi \left( A \right) = \left[ {v\left( y \right) - v\left( w \right)} \right]\varphi \left( B \right) $$
(7)

and equality \(\beta \left( {y,C,w} \right) = \beta \left( {z,A,w} \right)\) can be written as

$$ \left[ {v\left( y \right) - v\left( w \right)} \right]\varphi \left( C \right) = \left[ {v\left( z \right) - v\left( w \right)} \right]\varphi \left( A \right) $$
(8)

Multiplying Eqs. (7) by (8) and cancelling common termsFootnote 8 yields Eq. (9).

$$ \left[ {v\left( x \right) - v\left( w \right)} \right]\varphi \left( C \right) = \left[ {v\left( z \right) - v\left( w \right)} \right]\varphi \left( B \right) $$
(9)

According to formula (1), the right-hand side of Eq. (9) is \(\beta \left( {z,B,w} \right)\) and the left-hand side of Eq. (9) is \(\beta \left( {x,C,w} \right)\). Therefore, uncertainty measure (1) satisfies assumption 2.

Necessity of assumption 3 Let us consider any three outcomes \(x,y,z \in {\text{X}}\) such that \(x > y > z\) and any event \(E \in\)∑. If uncertainty measure takes form (1) then inequality \( \beta \left( {x,E,z} \right) \ge \beta \left( {y,E,z} \right)\) holds whenever

$$ \left[ {v\left( x \right) - v\left( z \right)} \right]\varphi \left( E \right) \ge \left[ {v\left( y \right) - v\left( z \right)} \right]\varphi \left( E \right) $$
(10)

If \(x > y\) and desirability function is increasing then \(v\left( x \right) > v\left( y \right)\). Thus, inequality (10) holds with a strict inequality if event \(E \notin {\mathbb{C}}\). If \(E \in {\mathbb{C}}\) then \(\varphi \left( E \right) = 0\) and both sides of inequality (10) are equal to zero. Therefore, uncertainty measure (1) satisfies assumption 3.

Let us now prove the sufficiency of assumptions 1–3.

Setting outcome \(x = x_{2}\) in assumption 1 yields

$$ \beta \left( f \right) = \beta \left( {x_{1} ,E_{2} ,x_{2} } \right) + \beta \left( {x_{2} ,E_{1} \cup E_{2} ; \ldots ;x_{n} ,E_{n} } \right) $$
(11)

Setting outcome \(x = x_{3}\) in assumption 1 yields

$$ \beta \left( {x_{2} ,E_{1} \cup E_{2} ; \ldots ;x_{n} ,E_{n} } \right) = \beta \left( {x_{2} ,E_{1} \cup E_{2} ,x_{3} } \right) + \beta \left( {x_{3} ,E_{1} \cup E_{2} \cup E_{3} ; \ldots ;x_{n} ,E_{n} } \right) $$
(12)

Plugging Eqs. (12) into (11) yields

$$ \beta \left( f \right) = \beta \left( {x_{1} ,E_{2} ,x_{2} } \right) + \beta \left( {x_{2} ,E_{1} \cup E_{2} ,x_{3} } \right) + \beta \left( {x_{3} ,E_{1} \cup E_{2} \cup E_{3} ; \ldots ;x_{n} ,E_{n} } \right) $$
(13)

Iterating the above procedure for outcomes \(x_{4} , \ldots ,x_{n - 1}\) we get that uncertainty of any act \(f \in {\mathcal{F}}\) can be decomposed into uncertainties of a chain of binary acts:

$$ \beta \left( f \right) = \mathop \sum \limits_{j = 1}^{n - 1} \beta \left( {x_{j} ,\mathop \cup \limits_{i = 1}^{j} E_{i} ,x_{j + 1} } \right) $$
(14)

For any binary act \(\left\{ {y,E,z} \right\}\), z > y, and outcome \(x \in \left( {y,z} \right)\) assumption 1 implies

$$ \beta \left( {y,E,z} \right) = \beta \left( {y,E,x} \right) + \beta \left( {x,E,z} \right) $$
(15)

Equation (15) can be rearranged as Eq. (16).

$$ \beta \left( {x,E,z} \right) = \beta \left( {y,E,z} \right) - \beta \left( {y,E,x} \right) $$
(16)

Equation (16) is known as additive Sincov functional equation (e.gAczél 1966; Cинцoв 1903) and it is solved as follows. Since the left-hand side of Eq. (16) is independent of outcome y then the difference of two uncertainty measures on the right-hand side of Eq. (16) must be also independent of y. In other words, we can evaluate the difference of two uncertainty measures on the right-hand side of Eq. (16) for any fixed outcome y. Therefore, uncertainty of a binary act can be written as

$$ \beta \left( {x,E,z} \right) = \rho \left( {E,z} \right) - \rho \left( {E,x} \right) $$
(17)

where \(\rho \left( {E,z} \right) \equiv \beta \left( {\overline{y},E,z} \right)\) for some fixed outcome \(\overline{y} \in X\). Using Eq. (17) we can rewrite Eq. (14) as follow

$$ \beta \left( f \right) = \mathop \sum \limits_{j = 1}^{n - 1} \left[ {\rho \left( {\mathop \cup \limits_{i = 1}^{j} E_{i} ,x_{j + 1} } \right) - \rho \left( {\mathop \cup \limits_{i = 1}^{j} E_{i} ,x_{j} } \right)} \right] $$
(18)

where \(\rho :{ }\)\(\times X \to {\mathbb{R}}_{ + }\) is an arbitrary function.

If assumption 2 holds then according to theorem 1 in Debreu (1960, p. 18) uncertainty of any binary act can be written as a multiplicativelyFootnote 9 separable function of sources of uncertainty (events) and outcomes. In other words, there exist functions \(v_{1} :XxX \to {\mathbb{R}}\) and \(\varphi_{1} :\)\(xX \to {\mathbb{R}}\) such that

$$ \beta \left( {x,A,w} \right) = v_{1} \left( {x,w} \right)*\varphi_{1} \left( {A,w} \right) $$
(19)

for all x > w and \(A \in\). Using Eqs. (17) and (19) we can then write Eq. (20).

$$ \beta \left( {x,E,z} \right) = \rho \left( {E,z} \right) - \rho \left( {E,x} \right) = \beta \left( {z,S\backslash E,x} \right) = v_{1} \left( {z,x} \right)*\varphi_{1} \left( {S\backslash E,x} \right) $$
(20)

Rearranging Eq. (20) yields (21).

$$ \rho \left( {E,z} \right) = \rho \left( {E,x} \right) + v_{1} \left( {z,x} \right)*\varphi_{1} \left( {S\backslash E,x} \right) $$
(21)

The left-hand side of Eq. (21) is independent of outcome x. Hence, the whole right-hand side of Eq. (21) can be evaluated for any fixed value of outcome x so that

$$ \rho \left( {E,z} \right) = \tilde{\rho }\left( E \right) + v\left( z \right)*\varphi \left( {S\backslash E} \right) $$
(22)

where \(\tilde{\rho }\left( E \right) \equiv \rho \left( {E,\overline{x}} \right)\), \(v\left( z \right) \equiv v_{1} \left( {z,\overline{x}} \right)\) and \(\varphi \left( {S\backslash E} \right) \equiv \varphi_{1} \left( {S\backslash E,\overline{x}} \right)\) for some fixed outcome \(\overline{x} \in X\). Using Eq. (22) we can rewrite Eq. (18) as

$$ \beta \left( f \right) = \mathop \sum \limits_{j = 1}^{n - 1} \left[ {v\left( {x_{j + 1} } \right) - v\left( {x_{j} } \right)} \right]\varphi \left( {\mathop \cup \limits_{i = j + 1}^{n} E_{i} } \right) $$
(23)

If assumption 3 holds then for any three outcomes \(x,y,z \in {\text{X}}\) such that \(x > y > z\) and any event \(E \in\)∑ the following inequality holds

$$ \beta \left( {x,E,z} \right) \ge \beta \left( {y,E,z} \right) $$
(24)

Moreover, this inequality (24) holds with a strict inequality if and only if \(E \notin {\mathbb{C}}\). Using Eq. (23) we can rewrite inequality (24) as inequality (10). Three cases are possible. First, if \(\varphi \left( E \right) > 0\) then we must have \(v\left( x \right) > v\left( y \right)\) for all \(x > y\). Second, if \(\varphi \left( E \right) < 0\) then we must have \(v\left( x \right) < v\left( y \right)\) for all \(x > y\). Thus, either desirability function is increasing and \(\varphi :\)\(\to {\mathbb{R}}_{ + }\) or desirability function is decreasing and \(\varphi :\)\(\to {\mathbb{R}}_{ - }\). The latter case is easily transformed into the former by defining a new function \(\tilde{v}\left( x \right) = - v\left( x \right)\) for all x ∊ X and \(\tilde{\varphi }\left( E \right) = - \varphi \left( E \right)\) for all events E ∊ . Third, if \(\varphi \left( E \right) = 0\) then inequality (10) holds as equality. According to assumption 3 this is only possible when \(E \in {\mathbb{C}}\). Thus, \(\varphi \left( E \right) = 0\) for all events \(E \in {\mathbb{C}}\). Q.E.D.

1.2 Proof of proposition 2

Let us consider an act f that constitutes an elementary increase in uncertainty over an act \(g = \left( {x_{1} ,E_{1} ; \ldots ;x_{n} ,E_{n} } \right)\) in the sense of Grant and Quiggin (2005, p. 121, definition 1). In this case, act f takes the form

$$ f = \left( {x_{1} - b,E_{1} ; \ldots ;x_{i - 1} - b,E_{i - 1} ;x_{i} + a,E_{i} ; \ldots ;x_{n} + a,E_{n} } \right) $$

for some \(i \in \left\{ {2, \ldots ,n - 1} \right\}\) and \( a,b > 0\). Uncertainty measure (1) of such act f is given by

$$ \begin{aligned} \beta \left( f \right) & = \mathop \sum \limits_{j = 2}^{i - 1} \left[ {v\left( {x_{j} - b} \right) - v\left( {x_{j - 1} - b} \right)} \right]\varphi \left( {\mathop \cup \limits_{k = j}^{n} E_{k} } \right) + \left[ {v\left( {x_{i} + a} \right) - v\left( {x_{i - 1} - b} \right)} \right]\varphi \left( {\mathop \cup \limits_{k = i}^{n} E_{k} } \right) \\ & \;\;\; + \mathop \sum \limits_{j = i + 1}^{n} \left[ {v\left( {x_{j} + a} \right) - v\left( {x_{j - 1} + a} \right)} \right]\varphi \left( {\mathop \cup \limits_{k = j}^{n} E_{k} } \right) \\ \end{aligned} $$

For a linear desirability function, \(v\left( x \right) = x\) this uncertainty measure simplifies into

$$ \begin{aligned} \beta \left( f \right) & = \mathop \sum \limits_{j = 2}^{n} \left[ {x_{j} - x_{j - 1} } \right]\varphi \left( {\mathop \cup \limits_{k = j}^{n} E_{k} } \right) + \left[ {a + b} \right]\varphi \left( {\mathop \cup \limits_{k = i}^{n} E_{k} } \right) \\ & = \beta \left( g \right) + \left[ {a + b} \right]\varphi \left( {\mathop \cup \limits_{k = i}^{n} E_{k} } \right) \\ \end{aligned} $$

If \(\mathop \cup \limits_{k = i}^{n} E_{k} \in {\mathbb{C}}\) then \(\varphi \left( {\mathop \cup \limits_{k = i}^{n} E_{k} } \right) = 0\) and \(\beta \left( f \right) = \beta \left( g \right)\). If \(\mathop \cup \limits_{k = i}^{n} E_{k} \notin {\mathbb{C}}\) then \(\varphi \left( {\mathop \cup \limits_{k = i}^{n} E_{k} } \right) > 0\) and \(\beta \left( f \right) > \beta \left( g \right)\) because \(a + b > 0\). Thus, \(\beta \left( f \right) \ge \beta \left( g \right)\) for a linear desirability function \(v\left( x \right) = x\). Q.E.D.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blavatskyy, P. A measure of ambiguity (Knightian uncertainty). Theory Decis 91, 153–171 (2021). https://doi.org/10.1007/s11238-020-09798-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11238-020-09798-6

Keywords

Navigation