Skip to main content
Log in

Harmonic choice model

  • Published:
Theory and Decision Aims and scope Submit manuscript

Abstract

For decades, discrete choice modelling was practically dominated by only two models: multinomial probit and logit. This paper presents a novel alternative—harmonic choice model. It is qualitatively similar to multinomial probit and logit: if one choice alternative greatly exceeds all (falls below at least one of) other alternatives in terms of utility then it is chosen with probability close to one (zero). Compared to probit and logit, the new model has relatively flat tails and it is steeper in the neighborhood of zero (when all alternatives yield the same utility and the decision maker chooses among them at random).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data and code are available in the online supplementary appendix.

References

  • Ballinger, P., & Wilcox, N. (1997). Decisions, error and heterogeneity. Economic Journal, 107, 1090–1105.

    Article  Google Scholar 

  • Blavatskyy, P. (2023). “Additive Choice Model” mimeo

  • Blavatskyy, P. (2018). Fechner’s strong utility model for choice among n>2 alternatives: Risky lotteries, Savage acts, and intertemporal payoffs. Journal of Mathematical Economics, 79, 75–82.

    Article  Google Scholar 

  • Buschena, D., & Zilberman, D. (2000). Generalized expected utility, heteroscedastic error, and path dependence in risky choice. Journal of Risk and Uncertainty, 20, 67–88.

    Article  Google Scholar 

  • Butler, D. J., & Loomes, G. C. (2007). Imprecision as an account of the preference reversal phenomenon. American Economic Review, 97(1), 277–297.

    Article  Google Scholar 

  • Butler, D. J., & Loomes, G. C. (2011). Imprecision as an account of violations of independence and betweenness. Journal of Economic Behavior and Organization, 80, 511–522.

    Article  Google Scholar 

  • Camerer, C. (1989). An experimental test of several generalized utility theories. Journal of Risk and Uncertainty, 2, 61–104.

    Article  Google Scholar 

  • Carbone, E., & Hey, J. (1995). A comparison of the estimates of EU and non-EU preference functionals using data from pairwise choice and complete ranking experiments. Geneva Papers on Risk and Insurance Theory, 20, 111–133.

    Article  Google Scholar 

  • Carbone, E., & Hey, J. D. (2000). Which error story is best?. Journal of Risk and Uncertainty, 20(2), 161–176

  • Debreu, G. (1960). Individual choice behavior: a theoretical analysis. By R. Duncan Luce. American Economic Review, 50, 186–188.

    Google Scholar 

  • Dogan, S., & Yıldız, K. (2021). Odds supermodularity and the Luce rule. Games and Economic Behavior, 126, 443–452.

    Article  Google Scholar 

  • Estes, W. K. (1960). A random-walk model for choice behavior. In K. J. Arrow, S. Karlin, & P. Suppes (Eds.), Mathematical methods in the social sciences (pp. 265–327). Stanford UP.

    Google Scholar 

  • Falmagne, J.-C. (1985). Elements of psychophysical Theory. Oxford UP.

    Google Scholar 

  • Fechner, G. (1860). Elements of psychophysics. Holt, Rinehart and Winston.

    Google Scholar 

  • Fudenberg, D., Iijima, R., & Strzalecki, T. (2015). Stochastic choice and revealed perturbed utility. Econometrica, 83(6), 2371–2409.

    Article  Google Scholar 

  • Goeree, J., & Holt, C. (2001). Ten little treasures of game theory and ten intuitive contradictions. American Economic Review, 91(5), 1402–1422.

    Article  Google Scholar 

  • Harless, D., & Camerer, C. (1994). The predictive utility of generalized expected utility theories. Econometrica, 62, 1251–1289.

    Article  Google Scholar 

  • Hey, J. (1995). Experimental investigations of errors in decision making under risk. European Economic Review, 39, 633–640.

    Article  Google Scholar 

  • Hey, J., & Carbone, E. (1995). Stochastic Choice with Deterministic Preferences: An Experimental Investigation. Economics Letters, 47, 161–167.

    Article  Google Scholar 

  • Hey, J. D., & Orme, C. (1994). Investigating generalisations of expected utility theory using experimental data. Econometrica, 62, 1291–1326.

    Article  Google Scholar 

  • Holt, C., & Laury, S. (2002). Risk aversion and incentive effects. American Economic Review, 92(5), 1644–1655.

    Article  Google Scholar 

  • Loomes, G., Moffatt, P., & Sugden, R. (2002). A microeconomic test of alternative stochastic theories of risky choice. Journal of Risk and Uncertainty, 24, 103–130.

    Article  Google Scholar 

  • Loomes, G., & Sugden, R. (1995). Incorporating a stochastic element into decision theories. European Economic Review, 39, 641–648.

    Article  Google Scholar 

  • Luce, R. D. (1959). Individual choice behavior. John Wiley and sons.

    Google Scholar 

  • Luce, R. D., & Suppes, P. (1965). “Preference, utility, and subjective probability” in Handbook of Mathematical Psychology (Vol. III, pp. 249–410). John Wiley and sons.

    Google Scholar 

  • McFadden, D. (1976). Quantal choice analysis: A survey. Annals of Economic and Social Measurement, 5, 363–390.

    Google Scholar 

  • McKelvey, R., & Palfrey, T. (1995). Quantal response equilibria for normal form games. Games and Economic Behavior, 10, 6–38.

    Article  Google Scholar 

  • Savage, L. J. (1954). The foundations of statistics. Wiley.

    Google Scholar 

  • Starmer, Ch., & Sugden, R. (1989). Probability and juxtaposition effects: An experimental investigation of the common ratio effect. Journal of Risk and Uncertainty, 2, 159–178.

    Article  Google Scholar 

  • Vuong, Q. H. (1989). Likelihood Ratio Tests for Model Selection and Non-nested Hypotheses. Econometrica, 57, 307–333.

    Article  Google Scholar 

  • Wilcox, N. (2008). Stochastic models for binary discrete choice under risk: A critical primer and econometric comparison. In J. C. Cox & G. W. Harrison (Eds.), Research in experimental economics Vol. 12: Risk Aversion in Experiments (pp. 197–292). Emerald.

    Chapter  Google Scholar 

  • Wilcox, N. (2010). ‘Stochastically more risk averse:’ A contextual theory of stochastic discrete choice under risk. Journal of Econometrics, 162, 89–104.

    Article  Google Scholar 

Download references

Funding

Pavlo Blavatskyy is a member of the Entrepreneurship and Innovation Chair, which is part of LabEx Entrepreneurship (University of Montpellier, France) and is funded by the French government (Labex Entreprendre, ANR-10-Labex-11-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavlo R. Blavatskyy.

Ethics declarations

Conflict of interest

The author declares that he has no relevant or material financial interests that relate to the research described in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Proof of Proposition 1

If the choice set contains at least three elements, then we can select three alternatives A, B, C ∊ Ω. If the independence from irrelevant alternatives (6) holds, then we must have

$$O\left(A|\Omega \right)-O\left(B|\Omega \right)=O\left(A,B\right)-O\left(B,A\right)$$
$$O\left(B|\Omega \right)-O\left(C|\Omega \right)=O\left(B,C\right)-O\left(C,B\right)$$
$$O\left(C|\Omega \right)-O\left(A|\Omega \right)=O\left(C,A\right)-O\left(A,C\right)$$

Adding these three equations together yields

$$O\left(A,B\right)+O\left(B,C\right)+O\left(C,A\right)=O\left(A,C\right)+O\left(C,B\right)+O\left(B,A\right)$$

Using the definition of choice odds (5) we can rewrite this equation as

$$\frac{P\left(B,A\right)}{P\left(A,B\right)}+\frac{P\left(C,B\right)}{P\left(B,C\right)}+\frac{P\left(A,C\right)}{P\left(C,A\right)}=\frac{P\left(C,A\right)}{P\left(A,C\right)}+\frac{P\left(B,C\right)}{P\left(C,B\right)}+\frac{P\left(A,B\right)}{P\left(B,A\right)}$$

Finally, using probabilistic completeness, we can rewrite this equation as

$$\frac{1-P\left(A,B\right)}{P\left(A,B\right)}+\frac{1-P\left(B,C\right)}{P\left(B,C\right)}+\frac{1-P\left(C,A\right)}{P\left(C,A\right)}=\frac{1-P\left(A,C\right)}{P\left(A,C\right)}+\frac{1-P\left(C,B\right)}{P\left(C,B\right)}+\frac{1-P\left(B,A\right)}{P\left(B,A\right)}$$

Simplifying and rearranging then yields (3). \(\square\)

Proof of Proposition 2

Consider first the case when binary choice probability function \(P:\Omega \times \Omega \to \left(\mathrm{0,1}\right)\) satisfies (3) for any A,B,C ∊ Ω. Using probabilistic completeness (4), we can rewrite (3) as follows:

$$\frac{1}{P\left(A,B\right)}+\frac{1}{P\left(B,C\right)}+\frac{1}{1-P\left(A,C\right)}=\frac{1}{1-P\left(A,B\right)}+\frac{1}{1-P\left(B,C\right)}+\frac{1}{P\left(A,C\right)}$$

Rearranging this equation yields

$$\frac{1}{P\left(A,B\right)}-\frac{1}{1-P\left(A,B\right)}=\frac{1}{1-P\left(B,C\right)}-\frac{1}{P\left(B,C\right)}-\left[\frac{1}{P\left(A,C\right)}+\frac{1}{1-P\left(A,C\right)}\right]$$

The left-hand side of this equation does not depend on C. Hence, the right-hand side must also not depend on C. Let us then fix C and define a real-valued function

$$u\left(.\right)\equiv \frac{1}{1-P\left(.,C\right)}-\frac{1}{P\left(.,C\right)}$$

We obtain then

$$\frac{1}{P\left(A,B\right)}-\frac{1}{1-P\left(A,B\right)}=u\left(B\right)-u\left(A\right)$$

Rearranging yields quadratic equation

$${P}^{2}\left(A,B\right)\left[u\left(B\right)-u\left(A\right)\right]+P\left(A,B\right)\left[u\left(A\right)-u\left(B\right)-2\right]+1=0$$

If \(u\left(A\right)=u\left(B\right)\) then we have an immediate solution \(P\left(A,B\right)=1/2\). Otherwise, the solution to this quadratic equation is given by

$$P\left(A,B\right)=\frac{1}{2}+\frac{\sqrt{1+{\left[u\left(A\right)-u\left(B\right)\right]}^{2}/4}-1}{u\left(A\right)-u\left(B\right)}$$

Note that utility function \(u\left(.\right)\) is unique up to addition of a constant. If we fix the third alternative to be C’, then this corresponds to a different real-valued utility function:

$$u^{\prime}\left(.\right)\equiv \frac{1}{1-P\left(.,C^{\prime}\right)}-\frac{1}{P\left(.,C^{\prime}\right)}=u\left(A\right)-u\left(C^{\prime}\right)$$

Reversely, if there is utility function \(u:\Omega \to {\mathbb{R}}\) such that binary choice probability is given by (7) for any A,B ∊ Ω, then a relatively straightforward algebra yields

$$\frac{1}{P\left(A,B\right)}=\frac{1}{P\left(B,A\right)}+u\left(B\right)-u\left(A\right)$$
$$\frac{1}{P\left(B,C\right)}=\frac{1}{P\left(C,B\right)}+u\left(C\right)-u\left(B\right)$$
$$\frac{1}{P\left(C,A\right)}=\frac{1}{P\left(A,C\right)}+u\left(A\right)-u\left(C\right)$$

Adding these three equations together and rearranging then yields (3). \(\square\)

Proof of Proposition 3

Let us consider four choice alternatives A,B,C,D ∊ Ω such that P(A,B) ≥ P(C,D).

If condition (3) holds for A,B,C ∊ Ω, then we have

$$\frac{1}{P\left(A,B\right)}+\frac{1}{P\left(B,C\right)}+\frac{1}{P\left(C,A\right)}=\frac{1}{P\left(A,C\right)}+\frac{1}{P\left(C,B\right)}+\frac{1}{P\left(B,A\right)}$$

If condition (3) holds for B,C,D ∊ Ω, then we have

$$\frac{1}{P\left(D,B\right)}+\frac{1}{P\left(B,C\right)}+\frac{1}{P\left(C,D\right)}=\frac{1}{P\left(D,C\right)}+\frac{1}{P\left(C,B\right)}+\frac{1}{P\left(B,D\right)}$$

Subtracting one of these equalities from another then yields

$$\frac{1}{P\left(A,B\right)}-\frac{1}{P\left(C,D\right)}+\frac{1}{P\left(D,C\right)}-\frac{1}{P\left(B,A\right)}=\frac{1}{P\left(A,C\right)}-\frac{1}{P\left(B,D\right)}+\frac{1}{P\left(D,B\right)}-\frac{1}{P\left(C,A\right)}$$

If P(A,B) ≥ P(C,D), then \(\frac{1}{P\left(A,B\right)}-\frac{1}{P\left(C,D\right)}\le 0\). Moreover, if probabilistic completeness holds, then we also have \(\frac{1}{P\left(D,C\right)}-\frac{1}{P\left(B,A\right)}\le 0\). Therefore, we must have

$$\frac{1}{P\left(A,C\right)}-\frac{1}{P\left(B,D\right)}+\frac{1}{P\left(D,B\right)}-\frac{1}{P\left(C,A\right)}\le 0$$

If probabilistic completeness holds, then this inequality can be rearranged as

$$\frac{1}{P\left(A,C\right)}-\frac{1}{1-P\left(A,C\right)}\le \frac{1}{P\left(B,D\right)}-\frac{1}{1-P\left(B,D\right)}$$

Since function 1/x-1/(1-x) is strictly decreasing in x, we must then have P(A,C) ≥ P(B,D).\(\square\)

Proof of Proposition 4

We first prove the sufficiency part. If the independence from irrelevant alternatives (6) holds then

$$O\left(A|\Omega \right)-O\left(B|\Omega \right)=O\left(A,B\right)-O\left(B,A\right)$$

Using probabilistic completeness, this equation can be rewritten as

$$\frac{1}{P\left(A|\Omega \right)}-\frac{1}{P\left(B|\Omega \right)}=\frac{1}{P\left(A,B\right)}-\frac{1}{1-P\left(A,B\right)}$$

By proposition 1 and 2 there is utility function \(u:\Omega \to {\mathbb{R}}\) such that the right-hand side of this equation is equal to \(u\left(B\right)-u\left(A\right)\). Rearranging then yields

$$\frac{1}{P\left(A|\Omega \right)}+u\left(A\right)=\frac{1}{P\left(B|\Omega \right)}+u\left(B\right)$$

A similar argument implies that \(\frac{1}{P\left(A|\Omega \right)}+u\left(A\right)\) is constant for any other choice alternative. Let us denote this constant by x(Ω). Then choice probability is given by \(P\left(A|\Omega \right)=1/\left[x\left(\Omega \right)-u\left(A\right)\right]\). Summing over all choice alternatives A ∊ Ω and using (4) then yields Eq. (8) that implicitly defines constant x(Ω). In general, Eq. (8) has n real roots but only the highest root is such that all choice probabilities are strictly positive.

For the “necessity” part, if alternative A ∊ Ω is chosen with probability \(P\left(A|\Omega \right)=1/\left[x\left(\Omega \right)-u\left(A\right)\right]\) then

$$\frac{1}{P\left(A|\Omega \right)}-\frac{1}{P\left(B|\Omega \right)}=u\left(B\right)-u\left(A\right)=\frac{1}{P\left(A,B\right)}-\frac{1}{1-P\left(A,B\right)}$$

Using probabilistic completeness, the equality between the left-most and the right-most part can be rewritten as the independence from irrelevant alternatives (6). \(\square\)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blavatskyy, P.R. Harmonic choice model. Theory Decis 96, 49–69 (2024). https://doi.org/10.1007/s11238-023-09939-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11238-023-09939-7

Keywords

Navigation