Skip to main content
Log in

The Diffuse Light of the Universe

On the Microwave Background Before and After Its Discovery: Open Questions

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

In 1965, the discovery of a new type of uniform radiation, located between radiowaves and infrared light, was accidental. Known today as Cosmic Microwave background (CMB), this diffuse radiation is commonly interpreted as a fossil light released in an early hot and dense universe and constitutes today the main ’pilar’ of the big bang cosmology. Considerable efforts have been devoted to derive fundamental cosmological parameters from the characteristics of this radiation that led to a surprising universe that is shaped by at least three major unknown components: inflation, dark matter and dark energy. This is an important weakness of the present consensus cosmological model that justifies raising several questions on the CMB interpretation. Can we consider its cosmological nature as undisputable? Do other possible interpretations exist in the context of other cosmological theories or simply as a result of other physical mechanisms that could account for it? In an effort to questioning the validity of scientific hypotheses and the under-determination of theories compared to observations, we examine here the difficulties that still exist on the interpretation of this diffuse radiation and explore other proposed tracks to explain its origin. We discuss previous historical concepts of diffuse radiation before and after the CMB discovery and underline the limit of our present understanding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Note that the discovery of the 3 K radiation could have been attributed to a French team. Jean-François Denisse, James Lequeux and Emile Roux, three physicists at the Ecole Normale of Paris, observing with a German Würzburg radar antenna at the wavelength of 33cm, reported in a communication to the Academy of sciences on 17 June 1957, 7 years before Penzias and Wilson: “Our measures have however shown that the sky brightness temperature is less than 3 K and its variations from one point to another is less than 0,5 degree”. This is the first known measure of this famous diffuse radiation, though the authors did not realize the scope of their observation. See Denisse J.F., Lequeux J., Le Roux E. (1957) “Nouvelles observations du rayonnement du ciel sur la longueur d’onde 33 cm”, CR Acad Sci 244, 3030.

  2. Concerning MOND, see also the critics based on the observations of colliding clusters (Clowe et al. (2006) “ A Direct Empirical Proof of the Existence of Dark Matter ”,ApJ. 648, L109) and the rebuttal by Mc Gaugh (http://astroweb.case.edu/ssm/mond/bullet_comments.html)

References

  1. Hubble, E.: A relation between distance and radial velocity among extra-galactic nebulae. PNAS 15(3), 168–173 (1929)

    Article  ADS  MATH  Google Scholar 

  2. Einstein, A.: Kosmologische Betrachtungen zur allegemeinen Relativitätstheorie. Sitzungsherichte Berl. Akad. 1, 142 (1917)

    MATH  Google Scholar 

  3. Friedman, A.: On the curvature of space. Zeitschrift für Physik 10, 377–386 (1922)

    Article  ADS  Google Scholar 

  4. Penzias, A., Wilson, R.: A measurement of excess antenna temperature at 4080 megacycles/s. Astrophys. J. 142, 419–421 (1965)

    Article  ADS  Google Scholar 

  5. Turner, M.: A sober assessment of cosmology at the new millennium. PASP 113, 653–657 (2001). Millennium Essay

    Article  ADS  Google Scholar 

  6. Dicke, R., Peebles, P., Roll, P., Wilkinson, D.: Cosmic black-body radiation. Astrophys. J. 142, 414–419 (1965)

    Article  ADS  Google Scholar 

  7. Alpher, R., Herman, R.: Evolution of the universe. Nature 162, 774–775 (1948)

    Article  ADS  MATH  Google Scholar 

  8. Alpher, R., Herman, R.: Neutron-capture theory of element formation in an expanding universe. Phys. Rev. 84, 60–68 (1951)

    Article  ADS  MATH  Google Scholar 

  9. Mather, J., et al.: A preliminary measurement of the cosmic microwave background spectrum by the Cosmic Background Explorer (COBE) satellite. ApJ 354, L37 (1990)

    Article  ADS  Google Scholar 

  10. Sunyaev, R., Zeldovich, Y.: Small-scale fluctuations of relic radiation. Astrophys. Space Sci. 7, 3–19 (1970)

    ADS  Google Scholar 

  11. Peebles, P., Yu, J.: Primeval adiabatic perturbation in an expanding universe. Astrophys. J. 162, 815–836 (1970)

    Article  ADS  Google Scholar 

  12. Smoot, G., et al.: Structure in the COBE differential microwave radiometer first-year maps. ApJ 396, L1 (1992)

    Article  ADS  Google Scholar 

  13. Komatsu, E., et al.: Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) observations : cosmological interpretation. Astrophys. J. Suppl. Ser. 192, 18–69 (2011)

    Article  ADS  Google Scholar 

  14. Bennett, C.: Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: final maps and results. ApJS 208(2), 20 (2013)

    Article  ADS  Google Scholar 

  15. Planck collaboration.: Planck 2013 results. XVI. Cosmological parameters. A&A 571, A16 (2014)

  16. Planck collaboration.: “Planck 2015 results. XIII. Cosmological parameters”. A&A 594, A13 (2016) arXiv:1502.01589

  17. Ade, P., et al.: BICEP2 I: detection of B-mode polarization at degree angular scales. Phys. Rev. Lett. 112, 241101 (2014)

    Article  ADS  Google Scholar 

  18. Ade, P., et al.: Joint analysis of BICEP2/Keck Array and Planck data. Phys. Rev. Lett. 114, 101301 (2015)

    Article  ADS  Google Scholar 

  19. Riess, A.: A 3% solution : determination of the Hubble constant with the Hubble space telescope and wide field camera 3. Astrophys. J. 730, 119–135 (2011)

    Article  ADS  Google Scholar 

  20. Planck collaboration (2015) “Planck 2015 results. XXIV. Cosmology from Sunyaev-Zeldovich cluster counts. arXiv:1502.01597

  21. Hu, W., et al.: The physics of microwave background anisotropies. Nature 386, 37–43 (1997)

    Article  ADS  Google Scholar 

  22. Address to the British Association for the Advancement of Science (1900) according to “ Superstring: A theory of everything?” (1988) by Paul Davies and Julian Brown. Note however, that this quotation may be misattributed to William Thompson (see https://en.wikipedia.org/wiki/William_Thomson,_1st_Baron_Kelvin)

  23. Milgrom, M.: A modification of the Newtonian dynamics as a possible alternative to the hidden mass hypothesis. Astrophys. J. 270, 365–370 (1983)

    Article  ADS  Google Scholar 

  24. Bekenstein, J.: Relativistic gravitation theory for the MOND paradigm. Phys. Rev. D 70, 083509 (2004)

    Article  ADS  Google Scholar 

  25. Skordis, C.: The tensor-vector-scalar theory and its cosmology. Class. Quant. Gravity 26, 1403001–1403044 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ferreira, P., Starkman, G.: Einstein’s theory of gravity and the problem of missing mass. Science 326, 812–815 (2009)

    Article  ADS  Google Scholar 

  27. Famaey, B., Mc Gaugh, S.: Modified Newtonian dynamics (MOND): observational phenomenology and relativistic extensions. Living Rev. Relativ, 15(10). arXiv:1112.3960 (2012)

  28. Angus, G.: Is an 11 eV sterile neutrino consistent with clusters, the cosmic microwave background and modified Newtonian dynamics? Mon. Not. R. Astron. Soc. 394, 527–532 (2009)

    Article  ADS  Google Scholar 

  29. Zeldovich, Y., Sunyaev, R.: The interaction of matter and radiation in a hot-model Universe. Astrophys. Space Sci. 4, 301–316 (1969)

    Article  ADS  Google Scholar 

  30. Guillaume, C.E.: La température de l’espace. La Nat. 24(2), 210–234 (1896)

    Google Scholar 

  31. Eddington, A.: The internal constitution of the stars, Chapter 13, 1st edn. Cambridge University Press, Cambridge (1988). (Reprint of 1926 edition)

    Book  Google Scholar 

  32. Regener, E.: The energy flux of cosmic rays. Zeitschrift für Physik 80, 666–669 (1933). (English translation in Apeiron, 1995, vol. 2, pp. 85–86)

    Article  ADS  Google Scholar 

  33. Bondi, H., Gold, T.: The steady-state theory of the expanding universe. Mon. Not. RAS 108, 252–270 (1948)

    Article  ADS  MATH  Google Scholar 

  34. Hoyle, F.: A new model for the expanding universe. Mon. Not. RAS 108, 372–382 (1948)

    Article  ADS  MATH  Google Scholar 

  35. Hoyle, F., Burbidge, G., Narlikar, J.: A quasi-steady state cosmological model with creation of matter. Astrophys. J. 410, 437–457 (1993)

    Article  ADS  Google Scholar 

  36. Burbidge, G., Burbidge, M., Fowler, W., Hoyle, F.: Synthesis of the elements in stars. Rev. Mod. Phys. 29, 547–650 (1957)

    Article  ADS  Google Scholar 

  37. Hoyle, F., Tayler, R.J.: The mystery of the cosmic helium abundance. Nature 209, 1108–1110 (1964)

    Article  ADS  Google Scholar 

  38. Hoyle, F., Burbidge, G., Narlikar, J.: Astrophysical deductions from the quasi-steady state cosmology. Mon. Not. RAS 267, 1007–1019 (1994)

    Article  ADS  Google Scholar 

  39. Hoyle, F., Wicramasinghe, N.: Metallic particles in astronomy. Astrophys. Space Sci. 147, 245–256 (1988)

    Article  ADS  Google Scholar 

  40. Narlikar, J., Burbidge, G., Vishwakarma, R.: Cosmology and cosmogony in a cyclic universe. J. Astrophys. Astron. 28, 67–99 (2007)

    Article  ADS  Google Scholar 

  41. Hoyle F.: Fred Hoyle, the rebel (Fred Hoyle, l’irréductible), Ciel & Espace 284, pp. 32–37 (interview by Jean-Marc Bonnet-Bidaud). http://bonnetbidaud.free.fr/ce/hoyle1993/pdf/Hoyle1993CE284p32_37.pdf (1993)

  42. Alfven, H.: On hierarchical cosmology. Astrophys. Space Sci. 89, 313–324 (1983)

    Article  ADS  Google Scholar 

  43. Alfven, H.: Cosmology in the plasma universe: an introductory exposition. IEEE Trans. Plasma Sci. 18, 10 (1990)

    Article  ADS  Google Scholar 

  44. Peratt, A.: In http://www.plasmauniverse.info/people/alfven.html (1995)

  45. Lerner, E.: Intergalactic radio absorption and the COBE data. Astrophys. Space Sci. 227, 61–81 (1995)

    Article  ADS  Google Scholar 

  46. Alfonso-Faus, A., Fullana, M.: Sources of microwave radiation and dark matter identified: millimeter black-holes. http://arxiv.org/abs/1004.2251 (2010)

  47. Assis, A.: On Hubble’s law of redshift, Olbers’ paradox and the cosmic background radiation. Apeiron 12, 10–16 (1992)

    Google Scholar 

  48. Fahr, H., Zönnchen, J.: The writing on the cosmic wall: Is there a straightforward explanation of the cosmic microwave background? Ann. Phys. 18(10–11), 699–721 (2009). (Berlin)

    Article  MATH  Google Scholar 

  49. Crawford, D.: Curvature cosmology: a model for a static, stable universe, p. 168. Brown Walker Press, Florida (2006)

    Google Scholar 

  50. Land, K., Magueijo, J.: The axis of evil. Phys. Rev. Lett. 95, 071301 (2005)

    Article  ADS  Google Scholar 

  51. Land, K., Magueijo, J.: The axis of evil revisited. Mon. Not. RAS 378, 153–158 (2007)

    Article  ADS  Google Scholar 

  52. Planck collaboration.: Planck 2015 results. XVI. Isotropy and statistics of the CMB. A&A 594, A16 (2016). http://arxiv.org/abs/1506.07135

  53. Fahr, H.-J., Sokaliwska, M.: Remaining problems in interpretation of the cosmic microwave background. Phys. Res. Int. 2015, 1–15 (2015). doi:10.1155/2015/503106. Article ID 503106

    Article  Google Scholar 

  54. Li, T.P., et al.: Observation number correlation in WMAP data. Mont. Not. RAS 398, 47–52 (2009)

    Article  ADS  Google Scholar 

  55. Liu H. et al.: Diagnosing timing error in WMAP data, Month. Not. RAS. Online 31 March, L236. http://arxiv.org/abs/1009.2701 (2011)

  56. Roukema, B.: On the suspected timing-offset-induced calibration error in the Wilkinson microwave anisotropy probe time-ordered data. Astron. Astrophys. 518, A34–41 (2011)

    Article  Google Scholar 

  57. McKellar, A.: Molecular lines from the lowest states of diatomic molecules composed of atoms probably present in interstellar space. Publ. Dom. Astrophys. BC 7, 251–272 (1941)

    ADS  Google Scholar 

  58. Slyk, K., et al.: CN column densities and excitation temperatures. Mon. Not. RAS 390, 1733–1750 (2008)

    ADS  Google Scholar 

  59. Srianand, H., Petitjean, P., Ledoux, C.: The cosmic microwave background radiation temperature at a redshift of 2.34. Nature 408, 931–935 (2000)

    Article  ADS  Google Scholar 

  60. Noterdaeme, P., et al.: The evolution of the cosmic microwave background temperature-measurements of TCMB at high redshift from carbon monoxide excitation. Astron. Astrophys. 526, L7–14 (2011)

    Article  ADS  Google Scholar 

  61. Fahr, H., Loch, R.: Photon stigmata from the recombination phase superimposed on the cosmological background radiation. Astron. Astrophys. 246, 1–9 (1991)

    ADS  Google Scholar 

  62. Harker, G., et al.: Power spectrum extraction for redshifted 21-cm Epoch of Reionization experiments: the LOFAR case. Mont. Not. RAS 405, 2492–2504 (2010)

    ADS  Google Scholar 

  63. Carilli C.: SKA Key science project: radio observations of cosmic reionization and first light. In: Beswick (ed) Proceedings of science, from planets to dark ages: the modern radio universe. http://arxiv.org/abs/0802.1727 (2010)

  64. Dolgov, A.: Neutrinos in cosmology. Phys. Rep. 370, 333–535 (2002)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Marc Bonnet-Bidaud.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bonnet-Bidaud, JM. The Diffuse Light of the Universe. Found Phys 47, 851–869 (2017). https://doi.org/10.1007/s10701-016-0056-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-016-0056-1

Keywords

Navigation