Skip to main content
Log in

Prebiotic world, macroevolution, and Darwin’s theory: a new insight

  • Published:
Biology & Philosophy Aims and scope Submit manuscript

Abstract

Darwin’s main contribution to modern biology was to make clear that all history of life on earth is dominated by a simple principle, which is usually summarised as 'descent with modification'. However, interpretations about how this modification is produced have been controversial. In light of the data provided by recent studies on molecular biology, developmental biology, genomics, and other biological disciplines we discuss, in this paper, how Darwin's theory may apply to two main 'types' of evolution: that occurring in the prebiotic world and that regarding the acquisition of major key-innovations differentiating higher-taxa, which makes up part of the so-called macroevolution. We argue that these studies show that evolution is a fascinating, complex and multifaceted process, with different mechanisms drivin it on different occasions and in different places.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aravind L, Koonin EV (1999) The fukutin protein. Curr Biol 9:836–837

    Article  Google Scholar 

  • Bartel DP, Szostak JW (1993) Isolation of new ribozymes from a large pool of random sequences. Science 261:1411–1418

    Article  Google Scholar 

  • Bemis W (1984) Paedomorphosis and the evolution of Dipnoi. Paleobiology 10:293–307

    Google Scholar 

  • Bowers JE, Chapman BA, Rong JK, Paterson AH (2003) Unraveling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events. Nature 422:433–438

    Article  Google Scholar 

  • Brown JR (2003) Ancient horizontal gene transfer. Nat Rev Genet 4:121–132

    Article  Google Scholar 

  • Ciccarelli FD, Doerks T, von Mering C, Creevey CJ, Snel B, Bork P (2006) Toward automatic reconstruction of a highly resolved tree of life. Science 311:1283–1287

    Article  Google Scholar 

  • Christoffels A, Koh EGL, Chia J-M, Brenner S, Aparicio S, Venkatesh B (2004) Fugu genome analysis provides evidences for a whole genome duplication early during the evolution of ray-finned fishes. Mol Biol Evol 21:1146–1151

    Article  Google Scholar 

  • Coghlan A, Eichler EE, Oliver SG, Paterson AH, Stein L (2005) Chromosome evolution in Eukaryotes: a Multi-kindong perspective. Trends Genet 21:673–682

    Article  Google Scholar 

  • Davidson EH, Erwin DH (2006) Gene regulatory networks and the evolution of animal body plans. Science 311:796–800

    Article  Google Scholar 

  • Darwin C (1859) On the origin of species by means of natural selection, or the preservation of the favored races in the struggle for life. D Appleton, New York, USA

    Google Scholar 

  • Dearden P, Akam M (1999) Developmental evolution: axial patterning in Insects. Curr Biol 9:591–594

    Article  Google Scholar 

  • de Duve C (2005) The onset of selection. Nature 433:581–582

    Article  Google Scholar 

  • Dehal P, Boore JL (2005) Two rounds of whole genome duplication in the ancestral vertebrate. Plos Biol 3:314

    Article  Google Scholar 

  • Diogo R (2004) Morphological evolution, aptations, homoplasies, constraints, and evolutionary trends: catfishes as a case study on general phylogeny and macroevolution. Science Publishers, Enfield, USA

    Google Scholar 

  • Diogo R In press. On the origin of higher clades: osteology, myology, phylogeny and evolution of bony fishes and the rise of tetrapods. Science Publishers, Enfield, USA

  • Diogo R, Vandewalle P (2003) Catfishes as a case study for discussions on general evolution: the importance of functional uncouplings in morphological macroevolution. Eur J Morphol 41:139–148

    Google Scholar 

  • Dobzhansky T (1937) Genetics and the origin of species. Columbia University Press, New York

    Google Scholar 

  • Donoghue PCJ, Purnell MA (2005) Genome duplication, extinction and vertebrate evolution. Trends Ecol Evol 20:312–319

    Article  Google Scholar 

  • Doolittle WF, Bapteste E (2007) Pattern pluralism and the tree of life hypothesis. Proc Natl Acad Sci US 104:2043–2049

    Article  Google Scholar 

  • Forterre P (2005) The two ages of the RNA world, and transition to the DNA world: a story of viruses and cells. Biochimie 87:793–803

    Article  Google Scholar 

  • Forterre P (2006) The origin of viruses and their possible roles in major evolutionary transitions. Virus Res 117:5–16

    Article  Google Scholar 

  • Fry I (2006) The origins of research into the origins of life. Endeavour 30:24–28

    Article  Google Scholar 

  • Galtier N, Tourasse N, Gouy M (1999) Non hypertermophilic common ancestor to extant life forms. Science 283:220–221

    Article  Google Scholar 

  • Garcia Fernadez J, Holland PW (1994) Archetypal organization of the Amphioxus Hox gene cluster. Nature 370:563–566

    Article  Google Scholar 

  • Garcia-Vallve S, Romeu A, Palau J (2000) Horizontal gene transfer of Glycosyl Hydrolases of the rumen fungi. Mol Biol Evol 17:352–361

    Google Scholar 

  • Ge F, Wang L-S, Kim J (2005) The cobweb of life revealed by genome-scale estimates of horizontal transfer. Plos Biol 3:316

    Article  Google Scholar 

  • Gilbert W (1986) The RNA world. Nature 319:618

    Article  Google Scholar 

  • Ginolhac CA, Jarrin C, Robe P, Perriere G, Vogel TM, Simonet P, Nalin R (2005) Type I polyketide synthases may have evolved trough horizontal gene transfer. J Mol Biol 60:716–725

    Google Scholar 

  • Gogarten JP, Doolittle WF, Lawrence JG (2002) Prokaryotic evolution in light of gene transfer. Mol Biol Evol 19:2226–2238

    Google Scholar 

  • Goldenfeld N, Woese C (2007) Biology’s next revolution. Nature 445:369

    Article  Google Scholar 

  • Gould SJ (2002) The structure of Evolutionary theory. The Belknap Press of Harvard University Press, Cambridge, MA, London

    Google Scholar 

  • Gupta RS, Golding GB (1993) Evolution of Hsp70 gene and its implications regarding relationships between Archaebacteria, Eubacteria , and Eukaryotes. J Mol Evol 37:573–582

    Article  Google Scholar 

  • Haldane JBS (1967) The origin of life. In: Bernal JD (ed) The origin of life. Appendix II, Weidenfeld and Nicolson, London, UK, pp 242–249

    Google Scholar 

  • Hancock JM (2005) Gene factories, microfunctionalization and the evolution of gene families. Trends Genet 21:541–545

    Article  Google Scholar 

  • Holland PW, Garcia Fernandez J, Williams NA, Sidow A (1994) Gene duplications and the origin of vertebrate development. Dev Suppl 43:125–133

    Google Scholar 

  • Jeffares DC, Poole D, Penny D (1998) Relics from the RNA world. J Mol Biol 46:18–36

    Google Scholar 

  • Kearney M (2005) Hybridization, glaciation and geographical parthenogenesis. Trend Ecol Evol 20:495–502

    Article  Google Scholar 

  • Kellis M, Birren BW, Lander ES (2004) Proof and evolutionary analysis of ancient genome duplication in yeast Saccharomyces cerevisiae. Nature 428:617–624

    Article  Google Scholar 

  • Kirschner MW, Gerhart JC (2005) The plausibility of life: resolving Darwin’s dilemma. Yale University Press, London, UK

    Google Scholar 

  • Koga Y, Kyurai T, Nisihara M, Sone N (1998) Archaeal and Bacterial cells arise independently from noncellular precursors? A hypothesis stating that the advent of membrane phospholipids with enantiomeric glycerophosphate backbone caused the separation of the two lines of descent. J Mol Evol 46:54–63

    Article  Google Scholar 

  • Koonin EV, Martin W (2005) On the origin of genomes and cells. Trends Genet 21:647–654

    Article  Google Scholar 

  • Kroll JS, Wilks KE, Farrant JL, Langford FR (1998) Natural genetic exchange between Haemophilus and Neisseria: Intergeneric transfer of chromosomal genes between major human pathogens. P Natl Acad Sci USA 95:12381–12385

    Article  Google Scholar 

  • Kurland CG (2005) What tangled web. Barriers to rampant horizontal gene transfer. Bioessays 27:741–747

    Article  Google Scholar 

  • Kurland CG, Collins LJ, Penny D (2006) Genomics and the irreducible nature of eukaryote cells. Science 312:1011–1014

    Article  Google Scholar 

  • Lan R, Reeves PR (2000) Intraspecies variation in bacterial genomes: the need for a species genome concept. Trends Microbiol 8:396–401

    Article  Google Scholar 

  • Lawrence MS, Bartel DP (2005) New ligase-derived RNA polymerase ribozymes. Rna 11:1173–1180

    Article  Google Scholar 

  • Lester L, Meade A, Pagel M (2005) The slow road to the eukaryotic genome. Bioessays 28:57–64

    Article  Google Scholar 

  • Lewontin RC, Birch RC (1966) Hybridization as a source of variation for adaptation to new environments. Evolution 20:315–336

    Article  Google Scholar 

  • Lowe CJ, Wray GA (1997) Radical alterations in the roles of homeobox genes during echinoderm evolution. Nature 389:718–721

    Article  Google Scholar 

  • Lynch M, Conery JS (2000) The evolutionary fate and consequences of duplicate genes. Science 290:1151–1155

    Article  Google Scholar 

  • Lynch J, Desplan C (2003) Evolution of development: beyond bicoid. Curr Biol 13:557–559

    Article  Google Scholar 

  • Lynch M, Katju V (2004) The altered trajectories of gene duplicates. Trends Genet 20:544–549

    Article  Google Scholar 

  • Ma W, Yu C (2005) Intramolecular RNA replicase: possibly the first self-replicating molecule in the RNA world. Origins Life Evol B 36:413–420

    Article  Google Scholar 

  • Mallet J (2005) Hybridization as an invasion of the genome. Trends Ecol Evol 20:229–237

    Article  Google Scholar 

  • Mayr E (1963) Animal species and evolution. Harvard University Press, Cambridge, UK

    Google Scholar 

  • Melosh HJ (1988) The rocky road to Panspermia. Nature 322:687–688

    Article  Google Scholar 

  • Meyer A, van de Peer Y (2005) From 2R to 3R. Evidence for a fish-specific genome duplication (FSGD). Bioessays 27:937–945

    Article  Google Scholar 

  • Miller SL (1998) The endogenous synthesis of organic compound. In: Brack A (ed) The molecular origins of life: assembling pieces of the puzzle. Cambridge University press, Cambridge, pp 59–85

    Google Scholar 

  • Mossel E, Steel M (2005) Random biochemical networks: the probability of self-sustaining autocatalysis. J Theor Biol 233:327–336

    Article  Google Scholar 

  • Muller HJ (1936) Bar duplication. Science 83:528–530

    Article  Google Scholar 

  • Müller UF (2006) Re-creating an RNA world. Cell Mol Life Sci 63:1278–1293

    Article  Google Scholar 

  • Nesbo C, L´Haridon S, Setter KO, Doolittle WF (2001) Phylogenetic analyses of two “archaeal” genes in Thermotoga maritima reveal multiple transfers between Archaea and Bacteria. Mol Biol Evol 18:362–375

    Google Scholar 

  • Ohno S (1970) Evolution by gene and genome duplication. Springer, Berlin, Germany

    Google Scholar 

  • Oparin AI (1967) The origin of life. In: Bernal JD (ed) The origin of life. Appendix I, Weidenfeld and Nicolson, London, UK, pp 199–235

    Google Scholar 

  • Orgel LE (2004) Prebiotic chemistry and the origin of the RNA world. Crit Rev Biochem Mol Biol 39:99–123

    Article  Google Scholar 

  • Pal C, Papp B, Lercher MJ (2005) Adaptative evolution of bacterial metabolic networks by horizontal gene transfer. Nat Genet 37:1372–1375

    Article  Google Scholar 

  • Panopoulou G, Poustka AJ (2005) Timing and mechanism of ancient vertebrate genome duplications. The adventure of a hypothesis. Trends Genet 21:559–567

    Article  Google Scholar 

  • Penny D (2005) An interpretative review of the origin of life research. Biol Phil 20:633–671

    Article  Google Scholar 

  • Penny D, Poole A (1999) The nature of the last universal common ancestor. Curr Opin Genet Dev 9:672–677

    Article  Google Scholar 

  • Philippe H, Douady CJ (2003) Horizontal gene transfer and phylogenetics. Curr Opin Microbiol 6:498–505

    Article  Google Scholar 

  • Poole AM, Jeffares DC, Penny D (1998) The path from the RNA world. J Mol Evol 46:1–17

    Article  Google Scholar 

  • Poole A, Jeffares A, Penny D (1999) Early evolution: prokaryotes, the new kids in the blocks. Bioessays 21:880–889

    Article  Google Scholar 

  • Raz E, van Luenen GAM (1997) Transposition of the nematode Caenorhabditis elegans Tc3 element in the zebrafish Danio rerio. Curr Biol 7:82–88

    Article  Google Scholar 

  • Ribeiro S, Golding GB (1998) The mosaic nature of the eukaryotic nucleus. Mol Biol Evol 15:779–788

    Google Scholar 

  • Riddle NC, Birchler JA (2003) Effects of diverged regulatory hierarchies I allopolyploids and species hybrids. Trends Genet 19:597–600

    Article  Google Scholar 

  • Rivera MC, Lake JA (2004) The ring of life provides evidence for a genomic fusion origin of eukaryotes. Nature 431:152–155

    Article  Google Scholar 

  • Robinson R (2005) Jump-starting a cellular world: Investigating the origin of life, from soup to networks. Plos Biol 3:396

    Article  Google Scholar 

  • Seehausen O (2004) Hybridization and adaptative radiation. Trends Ecol Evol 19:198–207

    Article  Google Scholar 

  • Stauber M, Jäckle H, Schmidt-Ott U (1999) The anterior determinant bicoid of Drosophila is a derived Hox class 3 gene. P Natl Acad Sci USA 96:3786–3789

    Article  Google Scholar 

  • Szathmary E (2004) From biological analysis to synthetic biology. Curr Biol 14:145–146

    Article  Google Scholar 

  • Troland LT (1914) The chemical origin and regulation of life. Monist 24:92–133

    Google Scholar 

  • Woese C (1998) The universal ancestor. P Natl Acad Sci USA 95:6854–6859

    Article  Google Scholar 

  • Wolf YI, Aravind L, Grishin NV, Koonin EV (1999) Evolution of aminoacyl-tRNA-synthases. Analysis of unique domain architectures and phylogenetic trees reveal a complex history of horizontal gene transfer events. Genome Res 9:689–710

    Google Scholar 

  • Wright MC, Joyce GF (1997) Continuous in vitro evolution of catalytic function. Science 276:614–617

    Article  Google Scholar 

  • Zhang J (2003) Evolution by gene duplication: an update. Trends Ecol Evol 18:292–302

    Article  Google Scholar 

Download references

Acknowledgments

This paper is dedicated to the memory of Prof. Pere Alberch. We specially acknowledge A. García Valdecasas, N. Lonergan, Kim Sterelny, and an anonymous referee for the improvement of this manuscript, as well as F. Meunier, D. Adriaens, M. de Pinna, P. Skelton, F. Poyato-Ariza, T. Grande, H. Gebhardt, M. Ebach, A. Wyss, J. Waters, G. Cuny, L. Cavin, F. Santini, J. Briggs, L. Gahagan, M. Gayet, J. Alves-Gomes, G. Lecointre, L. Soares-Porto, P. Bockmann, T. Roberts, G. Arratia, L. Taverne, C. Ferraris, C. Borden, E. Parmentier, P. Vandewalle, M. Chardon, B. Richmond, B. Wood, B. Hall and F. Galis and many other colleagues for their helpful advice and assistance and for their discussions on evolution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Boto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boto, L., Doadrio, I. & Diogo, R. Prebiotic world, macroevolution, and Darwin’s theory: a new insight. Biol Philos 24, 119–128 (2009). https://doi.org/10.1007/s10539-007-9072-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10539-007-9072-z

Keywords

Navigation