Skip to main content
Log in

The Evolution of Teaching Instruments and Their Use Between 1800 and 1930

  • Published:
Science & Education Aims and scope Submit manuscript

Abstract

At the beginning of the nineteenth century, the core of a typical teaching collection was composed by apparatus, which were very similar to the ones proposed in the eighteenth century by ‘s Gravesande, Nollet, Desaguliers and others lecturer demonstrators and makers. Since 1820 circa, new didactic instruments were introduced. Most of them concerned the fast developing branches of physics such as wave optics, electromagnetisms and acoustics. Instrument makers (and many scientists as well) were extremely prolific in inventing new devices for better demonstrating all the laws of physics and for clearly visualizing all its phenomena. Therefore, around 1900 all the most important German, French and British makers proposed in their thick catalogues thousands of didactic apparatus. But were all these instrument really used? Probably not. Many of them were acquired by schools and universities because they were considered “status symbol” marking the importance and the completeness of a collection. Others were simply shown as “tri-dimensional” illustrations. For various reasons, during the first decade of the twentieth century the number of available didactic instruments was drastically reduced. The introduction of student training laboratory, the increasing cost of labour and of materials after WWI, the needs of a more standardized production, the progresses of physics not only eliminated from the trade catalogues many of the classical but old fashioned instruments but also stimulated the use of modular and simpler didactic apparatus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. See for example Turner (1983, 1991).

  2. Turner (1996), Brenni (1998).

  3. About the concept of “normal science » see Kuhn (1970).

  4. It would be difficult to catch the attention of the students without experiments.” Quoted in Hulin (1992, p. 1409).

  5. Brenni (1998).

  6. Galison (1997, pp. 65–141).

  7. Turner (1987a, b).

  8. Brenni (2004).

  9. Brenni (1998) and Brenni: Jean Antoine Nollet et les instruments de physique expérimentale in Gauvin and Pyenson (2002, pp. 11–27).

  10. In my article I will essentially focus my attention on didactic instruments which were used in teaching physics. However most of my considerations are valid also for other sciences.

  11. See for example Turner A. (1987a, b), especially pp. 190–202.

  12. See for example Gauvin J. F. and Pyenson L. (2002).

  13. Sutton G. V. (1995).

  14. See the example of the University of Pavia in Bellodi et al. (2002).

  15. For the case of physics teaching in France in the eighteenth century France see Balpe (2001, pp. 39–61).

  16. See for example Bishop (1994) and Brock (1996).

  17. For the development of laboratory and technical education see for example Fox and Guagnini (1999).

  18. See for example Balpe (2001), Leon A. and Roche P. (2003).

  19. It has to be pointed out that often the lycées had various denomination in the nineteenth century. Following the alternations of various regimes they were also called lycées impériaux (with Napoleon I and again with Napoleon III) or colleges royaux (under the Restauration).

  20. See Balpe (2001, pp. 39–65).

  21. It was compulsory for the écoles centrales but not for the Napoleonic lycées.

  22. Belhoste B. (1995, pp. 98–101).

  23. Belhoste B. (1995, pp. 181–185).

  24. See for example Ruiz-Castell (2008) and the article of Cuenca Lorente and Simon Castel in this volume.

  25. Brock (1996).

  26. D’Alembert considered that “general physics” was the science studying the general proprieties and law commons to all bodies, while the “particular physics” was considering exclusively the bodies themselves. However it is possible to find various definitions of the two terms between the late eighteenth century and 1850 circa.

  27. See for example G. Turner (1983, 1996). As far as electrical instruments are concerned see Brenni (2000a). For a short history of optical instrument in the nineteenth century see Brenni (2000b). For the acoustical apparatus of the nineteenth century: Pantalony (2009).

  28. See Pixii (1821, 1842, 1852).

  29. With the reform of 1852 and the so called bifurcation a scientific baccalauréat was introduced for the first time. With this reform the role of sciences and experimentation in the curricula was increased.

  30. Balpe (2001).

  31. In fact during the nineteenth century, the apparatus of the high school physics cabinets and the ones which were described in textbooks were mainly demonstration apparatus, often copied from historical instruments. They were shown and their function was illustrated, but the experiments were rarely performed.” See Blondel C., L’impact d la réforme de 1902 sur l’enseignement de l’électricité, in Hulin (2000).

  32. The problems related to replication of historical experiments to use of historical instruments can be seen in Heering (1989) und in Heering et al. (2000).

  33. An entire lesson would not be enough to illustrate the construction of Atwood’s machine and its improvements. One would need several hours to perform with a certain precision all the operations which are necessary for weighing a litre of air or of whatever gas. And also the experiments for verifying the relationship existing between the pitch of a sound and the number of vibrations per second, as well as the determinations of the dilatation coefficient or of the specific heat of a body would be very long. It is evident that in this way, it would be necessary not only to have many hours a week but the entire timetable for teaching of fundamentals of physics…” See Boltshauser (1866, p. 275).

  34. Blondel and Dörries (1994).

  35. See for example de Clercq (1985).

  36. See for example A. Turner (1987a, b) and Clifton G. “La produzione di strumenti scientifici in Inghilterra”, in G. Turner (1991, pp. 338–349) and Williams (1994).

  37. Brennni (2006).

  38. Brenni (2010).

  39. See for example Cahan (1989).

  40. Brenni (2002).

  41. It would be far to long to mention here too many trade catalogues. A large number of them can be seen on line in the reference webpage of the Scientific Instrument Commission: http://www.sic.iuhps.org/refertxt/catalogs.htm.

  42. About the evolution of the instrument industry in the nineteenth century see de Clercq (1985), Brenni P. “La industria de precisión en el siglo XIX Una panorámica de los instrumentos, los constructores y el mercato en diferentes contextos nacionales” in Bertomeu Sánchez and García Belmar (2002, pp. 53–72) (and translated in Enghlish pp. 425–433).

  43. See for example Ganot (1853), Ganot and Maneuvrier (1894) and the others editions.

    In 1859 Ganot also published Cours de physique purement expérimentale. See Ganot (1859).

  44. See Simon (2008), Gires (2006, pp. 19–24). From the nineteenth edition onward the treatise was reedited and updated by G. Maneuvrier, professor of physics and natural sciences and under-director of the physics laboratory of la Sorbonne.

  45. Simon (2008, p. 141).

  46. See note 27.

  47. See Drion C. and Fernet M. (1861) and Privat-Deschanel (1869).

  48. Therefore it is very important that science teaching will be accessible thank to appropriate treatises.” See Müller (1844, p. vi).

  49. See Pfaundler (1905–1914). It is curious to note that in spite of the fact that the last editions were completely different from the original Pouillet textbook the title of treatise always remained Müller-Pouillet’s Lehrbuch der Physik and was commonly known as Müller-Pouillet.

  50. See for example Weinhold (1881), Lommel (1895), Ebert and Wiedemann (1904), Donle (1907).

  51. Préparateurs were skilful laboratory assistants, who knew very well the instruments and their function. They prepared the experiments, they were responsible of the scientific collections, they preserved the instruments in good conditions and they made the necessary repairs. Sometime they also made simple pieces of apparatus on demand.

  52. Fau was the author of a famous illustrated book of anatomy.

  53. “…the only pretention of introducing the instruments, which are necessary to the physicists, forgetting all theoretical considerations.” See Fau and Chevalier (1853, p. 2).

  54. Frick (1856).

  55. Also the best apparatus is useless for the school, if it is in the hands of an unpractical, also if learned teacher and many good instruments were deteriorated because they were manipulated in a wrong way.” Schmid (1867, p. 61).

  56. Lehmann (1904–1909).

  57. “…[it is] not a textbook, but it essentially deals with the technique of experiments in the frame of the teaching demonstrations.” See Weinhold (1881, p. III).

  58. Recently optical projections find more frequent and proper applications in order to profitably enable a large number of peoples of doing simultaneous observations…” ibidem, p. IV.

  59. Molteni (1900).

  60. Heering (2008).

  61. Ministère (1884, 1900).

  62. For example the physics collections of two important French high schools are well documented in Gires (2004, 2006).

  63. It would be desirable to get rid of many imperfect and old instruments, which today can be substituted by others which are more suitable to the development of physics.” See Catalogue (1900).

  64. See Zwei Normalverzeichnisse… (1896).

  65. See for example Max Kohl AG (1911), Leybold’s Nachfolger (1913) and Zoller (2009).

  66. Physical teaching can be done only if a sufficient collection of apparatus and a special lecture room are available” See Grimsel (1911, p. X, 39).

  67. For the several aspects of the 1902 French reform see Balpe (2001), Belhoste et al. (1996), Hulin (2000, 2007).

  68. Scientific studies must contribute, as the others, to the formation of man.” A statement of Louis Liard quoted in Hulin (2000, p. 11 and 248). Louis Liard (1846–1917) was a French philosopher and administrator. He founded the École pratique des hautes etudes in 1886 and became vice-rector of the Académie de Paris in 1902.

  69. In France, the idea of introducing experimental exercises and manipulation for students in physics and chemistry was not new, but in the second half of the nineteenth century, they could be realized only for the classes following some special advanced curricula.

  70. “It is not enough to observe the experiments performed by the professor during the lesson. One has to personally repeat them.”Quoted by Hulin (2007, p. 66).

  71. The old instruments generally they are not suitable anymore for the new teaching method. They had been conceived for being displayed on a table during the lecture of the professor and they were not intended to be used for experiments.” See Lemoine (1907).

  72. Bouasse (1901, 1913), and also in Hulin (2000 pp. 207–226) and in Hulin (2001, pp. 135–154).

  73. The elementary treatises are strange collections of old fashioned instruments. One has the feeling of being in an antiquity museum in which the heritage of the past’s heritage has been accumulated without selection. (…) There are instruments which are not justified in practice nor in theory. (…) These apparatus seem absurd. Once, they represented progress, in the sense that they replaced other apparatus which were even more absurd. Today they are a scandal. There are apparatus which in the past produced good results, but they are unpractical, they were abandoned, and have disappeared from the trade catalogues. (…) There are instruments which have double usage, one is just an improved version of the other, or presents only a minor modification. (…) There are instruments which are useful in practice, but they do not have any pedagogical interest. Their theory is complicated and their graduated scales are empiric and not very rational. (…) There are apparatus which present a dubious historical interest. The ordinary pneumatic machine bore the students and oblige them to study even the memorable Babinet’s improvement. The general Morin’s fall machine of primitive construction which obstinately refuses to work, etc. etc.There are demonstration apparatus crystallized in an archaic, absurd and inconvenient design. They do not work and the professor does not even think to use them. (…) I am not kidding. All the professors know so well that these instruments are useless, but they spend three quarters of their time to show them to the students . One can say, and it is not a paradox, that an elementary physics course is a methodic catalogue of the apparatus which do not have to be used.” See Bouasse (1901).

    I have shortened the text of Bouasse. Where I inserted the brackets (…), he mentioned several apparatus, which he considered useless and absurd. Among them there were for example the Laplace and Lavoisier calorimeter, the hygrometers of Daniel, Régnault and Alluard, Armstrong’s electrical machine, the Wheatstone photometer, Gambey’s magnetic compass, the magneto-electric machines of Pixii and Clarke, Morin’s fall machine, Bourbouze’s galvanometer, Wedgwood’s pyrometer and many others. (The bold font in the quotation is in italic in Bousse’s text) .

  74. I think that today it is wrong to insist of using in the teaching the mirror galvanometer which is related with the old type of Scwheigger’s multipicatorIn the same way the presence in the school collections of many other apparatus is only justified by the fact that they were made and recommended many years ago by an outstanding teacher, whose name remained attached to them. I am convinced that today the same practical man would not use such apparatus, if he knew the newer ones.” See Grimsehl (1911, p. X,70).

  75. In the very last years I visited many school collections and I still met teachers, who like to use some of the apparatus which had been acquired a century ago!

  76. Sydenham (1979), Brenni (1997).

  77. Since the beginning of the war, the development of the firm entered in the third phase. The experience made during the war opened new ways for producing and controlling the apparatus and a new series of instruments became available beside the existing ones.” See Schmidt (1926, p. 24).

  78. Zoller (2009).

  79. If we compare this catalogue with the previous editions, it is easy to see that many apparatus have been improved and that several new ones have been created. On the other hand, we have eliminated all the apparatus which only had an historical interest or were not suitable for a living teaching.” See Leybold (1938)

  80. See for example Bud et al. (1992), Van Helden and Hankins (1994), Bud and Warner (1998), Grob and Hooijmaijers (2006).

References

  • Balpe, C. (2001). Enseigner la physique au collège et au lycée. Rennes: Presses Universitaires de Rennes.

    Google Scholar 

  • Belhoste, B. (1995). Les sciences dans l’enseignement secondaire français Textes officiels. Paris: Tome I: 1789–1914, Inst. national de recherche pédagogique.

    Google Scholar 

  • Belhoste, B., Gispert, H., & Hulin, N. (Eds.). (1996). Les sciences au lycée. Un siècle de réformes des mathématiques et de la physique en France et à l’étranger. INRP, Paris: Vuibert.

    Google Scholar 

  • Bellodi, G., Bevilacqua, F., Bonera, G., & Falomo, L. (Eds.). (2002). Gli strumenti di Volta. Il Gabinetto di Fisica dell’Università di Pavia. Hoepli, Milano: Università Degli Studi Pavia.

    Google Scholar 

  • Bertomeu Sánchez, J. R., & García Belmar, A. (Eds.). (2002). Abriendo las Cajas Negras Coléccion de instrumentos científicos de la Universitat de València. València: Universítad de València.

    Google Scholar 

  • Bishop, G. (1994). Eight hundred years of physics teaching. Basingstoke: Fisher Miller Publishing.

    Google Scholar 

  • Blondel, C., & Dörries, M. (Eds.). (1994). Restaging Coulomb Usages, controverses et réplications autour de la balance de Coulomb (Biblioteca di nuncius XV). Firenze: Leo S. Olschki.

  • Boltshauser, G. A. (1866). Riflessioni sull’ordinamento dei Gabinetti di Fisica delle Scuole Secondarie. Rivista contemporanea nazionale Italiana, XLV, 272–285.

  • Bouasse, H. (1901). De l’enseignement des sciences expérimentales dans les lycée. L’Enseignement secondaire, 11, pp. 183–183 and 12, pp. 203–206.

  • Bouasse, H. (1913). Du rôle pédagogique des expériences et des manipulations. In Introduction of the Cours de thérmodynamique, Deuxième partie, Tome deuxième du Cours de Physique (2nd ed., pp. xvii–xix). Paris: Ch.Delagrave.

  • Brenni, P. (1997). Physics instruments in the 20th century. In J. Kriege & D. Pestre (Eds.), Science in the 20th century (pp. 741–757). Amsterdam: Harwood Academic Publisher.

    Google Scholar 

  • Brenni, P. (1998). La funzione degli strumenti scientifici nella didattica fra Settecento e Ottocento. Studi Settecenteschi, 18, 421–431.

    Google Scholar 

  • Brenni, P. (2000a). Les instruments électriques des XVIIIe et XIXe siècles Histoire, evolution, design. Techne, 12, 9–17.

    Google Scholar 

  • Brenni, P. (2000b). L’evoluzione degli strumenti ottici nell’Ottocento. In L’ottica in Italia tra Otto e Novecento. Un contributo alla storia della scienza e della tecnica, special issue of the Atti della Fondazione Giorgio Ronchi (pp. 621–651), Anno LV, 4–5.

  • Brenni, P. (2002). 19th century scientific instrument advertising. Nuncius, Annali di Storia della Scienza, 2, 497–514.

    Google Scholar 

  • Brenni, P. (2004). Mechanical and hydraulic models for illustrating electromagnetic phenomena. Nuncius Annali di Storia della Scienza, Anno XIX, fasc. 2, 629–657.

  • Brenni, P. (2010). La science Française au Crystal Palace. In P. Bret, I. Gouzévitch, & L. Pérez (Eds.), Les techniques et la technologie entre France et Grande-Bretagne (XVIeXIXe siècle), Documents pour l’histoire des techniques, n° spécial (forthcoming).

  • Brennni, P. (2006). Artist and engineer: The saga of 19th century French precision industry (the annual invitation lecture). Bulletin of the Scientific Instrument Society, 91, 2–11.

    Google Scholar 

  • Brock, W. H. (1996). Science for all studies in the history of Victorian science education. Aldershot: Variorum.

    Google Scholar 

  • Bud, R., Cozzens, S. E., & Potter, R. F. (Eds.). (1992). Invisible connections: Instruments, institutions and science. Bellingham: Optical Engineering Press.

    Google Scholar 

  • Bud, R., & Warner, D. J. (1998). Instruments of science: An historical encyclopedia, London: Science Museum; National museum of American history, New York and London: Smithsonian Institution in association with Garland Publishing.

  • Cahan, D. (1989). An institute for an empire: The Pysikalisch-Technische Reichsanstalt, 1871–1918. Cambridge, NY: Cambridge University Press.

    Google Scholar 

  • de Clercq, P. (Ed.). (1985) Nineteenth-century scientific instruments and their maker. Paper presented at the 4th scientific instrument symposium, Amsterdam October 23–26, 1985, Rodopi, Amsterdam.

  • Donle, W. (1907). Lehrbuch der Experimentalphysik für den Unterricht an höheren Lehranstalten (4th ed.). Stuttgart: Fr.Grub Verlag.

    Google Scholar 

  • Drion, C., & Fernet, M. (1861). Traité de physique élémentaire. Paris: Masson et fils.

    Google Scholar 

  • Ebert, H., & Wiedemann, E. (1904). Physikalisches Praktikum (5th ed.). Braunschweig: F. Vieweg und Sohn.

  • Fau, J., & Chevalier, C. (1853). Nouveau manuel complet du physicien-préparateur. Paris: Roret.

    Google Scholar 

  • Fox, R., & Guagnini, A. (1999). Laboratories, workshops and sites. Concept and practices of research in industrial Europe. Berkeley: University of California.

    Google Scholar 

  • Frick, J. (1856). Die physikalische Technik oder Anleitung zur Anstellung von physikalischen Versuchen und zur Herstellung physikalischen Apparate (2nd ed.). Braunschweig: Friedrich Vieweg un Sohn.

  • Galison, P. (1997). Image and logic a material culture of microphysics. Chicago: University of Chicago Press.

    Google Scholar 

  • Ganot, A. (1853). Traité élémentaire de physique expérimentale et appliquée (II ed.). Paris: chez l’auteur.

    Google Scholar 

  • Ganot, A. (1859). Cours de physique purement expérimentale: à l’usage des personnes étrangères aux connaissances mathématiques. Paris: chez l’auteur.

    Google Scholar 

  • Ganot, A., & Maneuvrier, G. (1894). Traité de physique élémentaire (XXIst ed.). Paris: Hachette.

  • Gauvin, J. F., & Pyenson, L. (Eds.). (2002). L’art d’enseigner la physique Les appareils de démonstration de Jean-Antoine Nollet. Québec: Septentrion, Sillery.

    Google Scholar 

  • Gires, F. (Ed.). (2004). Physique impériale. Cabinet de physique du Lycée impérial de Périgueux. Niort: ASEISTE.

    Google Scholar 

  • Gires, F. (Ed.). (2006). L’empire de la physique. Cabinet de physique du lycée Guez de Balzac d’Angoulême. Niort: ASEISTE.

    Google Scholar 

  • Grimsehl, E. (1911). Didaktik und Methodik der Physik. München: C.H. Beck.

    Google Scholar 

  • Grob, B., & Hooijmaijers, H. (Eds.). (2006). Who needs scientific instruments?. Leiden: Museum Boerhaave.

    Google Scholar 

  • Heering, P. (Ed.). (1989). Welt erforschen-Welten konstruiren: Physikalische Experimentierkultur vom 16. Bis zum 19. Jahrhundert. Oldenburg: Isensee-Verlag.

    Google Scholar 

  • Heering, P. (2008). The enlightened microscope—Re-enacting and analysing projections with 18th century solar microscopes. British Journal for the History of Science, 41, 345–367.

    Google Scholar 

  • Heering, P., Riess, F., & Sichau, C. (2000). Im Labor der Physikgeschichte: Zur Untersuchung historischer Experimentalpraxis. Oldenburg: Bibliothek-und Informationssyste der Universität Oldenburg.

  • Hulin, N. (1992). Caractère expérimental de l’enseignement de la physique XIXème-XXème siècles. Bulletin de l’Union de Physiciens, 86, 1403–1415, 1565–1530.

    Google Scholar 

  • Hulin, N. (Ed.). (2000). Physique et « humanité scientifique »s. Autour de la réforme de l’enseignement de 1902. Etudes et documents, Villeneuve d’Ascq: Presse Universitaires du Septentrion.

  • Hulin, N. (Ed.). (2001). Études sur l’histoire des sciences physiques et naturelles. Lyon: ENS.

    Google Scholar 

  • Hulin, N. (2007). L’enseignement secondaire en France d’un siècle à l’autre 1802–1980. Paris: Institut National de Recherche Pédagogiques.

    Google Scholar 

  • Kuhn, T. S. (1970). The structure of scientific revolutions (2nd ed.). Chicago: University of Chicago Press.

  • Lehmann, O. (Ed.). (1904–1909). Dr. Frick’s Physikalische Technik oder Anleitung zu Experimentalvorträgen sowie zur Selbstherstellung einfacher Demonstrationsapparate (VIIth ed.). Braunschweig: Friedrich Vieweg und Sohn.

  • Lemoine, J. (1907). Étude critique des collections de Physique, Chimie, Histoire Naturelle. Bulletin de l’Union de Physiciens, (2), 23–25.

  • Leon, A., & Roche, P. (2003). Histoire de l’enseignement en France. Paris: PUF.

  • Leybold’s, N. (1938). Appareil de physique. Köln-Bayental: Leybold.

    Google Scholar 

  • Leybold’s, N. (non dated but 1913). Einrichtungen und Apparate für den physikalischen Unterricht sowie Übungen in Praktikum nebst Literaturangaben, Köln: Leybold.

  • Lommel, E. (1895). Lehrbuch der Experimentalphysik (2nd ed.). Leipzig: Johann Ambrosius Barth.

  • Max Kohl, A. G. (not dated but published in 1911). Physikalische Apparate Preisliste Nr.50 Band II und III, Chemnitz: By the author.

  • Ministère de l’instruction publique et des beaux-arts. (1884). Catalogue du matériel scientifique des lycées et des collèges de garçon. Paris: Imprimerie Nationale.

    Google Scholar 

  • Ministère de l’instruction publique et des beaux-arts. (1900). Catalogue du matériel scientifique des lycées et des collèges de garçon. Paris: Imprimerie Nationale.

    Google Scholar 

  • Molteni, A. (1900). Catalogue des tableaux sur verre en noir et en couleur pour l’enseignement par projections. Paris: Molteni.

  • Molteni, A. (1900). Les projections lumineuses à l’école et chez l’amateur. Paris: Molteni.

  • Müller, J. (1844). Lehrbuch der Physik und Meteorologie (2nd ed.). Braunschweig: F. Vieweg und Sohn.

  • Pantalony, D. (2009). Altered sensations Rudolph Koenig’s acoustical workshop in nineteenth-century Paris. Dordrecht, Heidelberg, New York: Springer.

  • Pfaundler, L. (Ed.). (1905–1914). Müller-Pouillet’s Lehrbuch der Physik und Meteorologie (Xth ed.). Braunschweig: F.Vieweg and Sohn.

  • Pixii. (1821). Notice de différents instruments de physique, d’optique de mathématique et autres à l’usage des sciences. Paris: imprimerie de P.N.Rougeron.

  • Pixii père et fils. (1842). Catalogue des principaux instruments de physique, chimie, optique, mathématique et autres à l’usage des sciences. Paris: chez l’auteur.

    Google Scholar 

  • Pixii père et fils. 1852. Catalogue des principaux instruments de physique, chimie, optique, mathématique et autres à l’usage des sciences. Paris: chez l’auteur.

  • Privat-Deschanel, A. (1869). Traité de physique. Paris: Hachette.

    Google Scholar 

  • Ruiz-Castell, P. (2008). Scientific instruments for education in early twentieth-century Spain. Annals of Science, 65, 519–527.

    Google Scholar 

  • Schmid, K. A. (1867). Encyklopädie des gesammten Erziehungs- und Unterrichtswesen. Gotha: VI Band, R. Besser.

  • Schmidt, A. (1926). Geschiche der Firma Leybold’s Nachfolger 1850–1925. Köln: Paul Gehly.

    Google Scholar 

  • Simon, J. (2008). The Franco-British communication and appropriation of Ganot’s physique (1851–1881). In J. Simon, N. Herran, et al. (Eds.), Beyond borders fresh perspective in history of science (pp. 141–168). Newcastle: Cambridge Scholars Publishing.

  • Sutton, G. V. (1995). Science for a polite society: Gender, culture and the demonstration of enlightment. Oxford: Westview Press.

    Google Scholar 

  • Sydenham, P. H. (1979). Measuring instruments: Tools of knowledge and control. Stevenage: Peter Peregrinus Ltd, Science Museum.

    Google Scholar 

  • Turner, G. L. E. (1983). Nineteenth-century scientific instruments. London, Berkeley: Sotheby, University of California Press.

    Google Scholar 

  • Turner, A. (1987a). Early scientific instruments: Europe 1400–1800. London: Sotheby’s Publications.

    Google Scholar 

  • Turner, G. L. E. (1987). Scientific toys: Presidential address. British Journal for the History of Science, 20, 245–258 (Reprinted in Turner, G. L. E. (1990). Scientific instruments and experimental philosophy15501850. Aldershot, Hampshire: Variorum.).

  • Turner, G. L. E. (Ed.). (1991). Gli strumenti. Torino: Einaudi.

    Google Scholar 

  • Turner, G. L. E. (1996). The practice of science in the nineteenth century: Teaching and research apparatus in the Teyler Museum. Haarlem: Teyler Museum.

    Google Scholar 

  • Van Helden, A., & Hankins, T. L. (1994). Instruments. Special issue of Osiris, 9.

  • Weinhold, A. F. (1881). Physikalische Demonstrationen: Anleitung zum Experimentieren. Leipzig: Von Quandt and Händel.

    Google Scholar 

  • William, M. E. W. (1994). The precision maker a history of the instrument industry in Britain and France 1870-1939. London, New York: Routlege.

  • Zoller, P. (2009). Physics experiments for everyones: German makers. Bulletin of the Scientific Instrument Society, (102), 21–28.

  • Zwei Normalverzeichnisse physikalischer Apparate (1896). Zeitschrift für den physikalischen und chemischen Unterricht, Heft IV, pp. 175–183.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Brenni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brenni, P. The Evolution of Teaching Instruments and Their Use Between 1800 and 1930. Sci & Educ 21, 191–226 (2012). https://doi.org/10.1007/s11191-010-9326-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11191-010-9326-z

Keywords

Navigation