Skip to main content
Log in

A Simple Geometrical Pattern for the Branching Distribution of the Bronchial Tree, Useful to Estimate Optimality Departures

  • Published:
Acta Biotheoretica Aims and scope Submit manuscript

Abstract

The design of the bronchial tree has largely been proposed as a model of optimal design from a physical-functional perspective. However, the distributive function of the airway may be more related to a geometrical than a physical problem. The bronchial tree must distribute a three dimensional volume of inspired air on a two dimensional alveolar surface, included in a limited volume. It is thus valid to ask whether an optimal bronchial tree from a physical perspective is also optimum from a geometrical point of view.

In this paper we generate a simple geometric model for the branching pattern of the bronchial tree, deducing relationships that permit estimation of the departures from the geometrical optimum of each bifurcation. We also, for comparative purposes, estimate the departures from the physical optimum. From the geometrical assumptions: i) a symmetrical dichotomic fractal design, ii) with minimum volume and iii) maximum dispersion of the terminal points; and several simulations we suggest that the optimality is characterized by a bifurcation angle Θ ∼ 60° and a length reduction scale γ = (1/2)1/3 = 0.7937. We propose distances from the physical and geometrical optimality defined as Euclidean distances from the expected optima. We show how the advanced relationships and the distances can be used to estimate departures from the optimality in bronchographs of four species. We found lower physical and geometrical departures in the distal zone than those of the proximal zones, as well as lower physical than geometrical departures from optimality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Andrade, J.S., A.M. Alencar, M.P. Almeida, J. Mendes Filho, S.V. Buldyrev, S. Zapperi, H.E. Stanley and B. Suki (1998). Asymmetric flow in symmetric branched structures. Physical Review Letters 81: 926-929.

    Article  Google Scholar 

  • Bacigalupe, L.D. and F. Bozinovic (2002). Design, limitations and sustained metabolic rate: lessons from small mammals. The Journal of Experimental Biology 205: 2963-2970.

    Google Scholar 

  • Canals, M., R. Olivares, F. Labra and F.F. Novoa (2000). Ontogenetic Changes in the fractal geometry of the bronchial tree in Rattus norvegicus. Biological Research 33: 31-35.

    Article  Google Scholar 

  • Canals, M., C. Atala, R. Olivares, F.F. Novoa and M. Rosenmann (2002a). La asimetría y el grado de optimización del árbol bronquial en Rattus norvegicus y Oryctolagus cuniculus. Revista Chilena de Historia Natural 75: 271-182.

    Article  Google Scholar 

  • Canals, M., C. Atala, R. Olivares, F.F. Novoa and M. Rosenmann (2002b). Departures from the optimality in the bronchial tree of rats (Rattus norvegicus). Biological Research 35:411-419.

    Google Scholar 

  • Canals, M., R. Olivares, F. Labra, L. Caputo, A. Rivera and F.F. Novoa (1998). Caracterización de la geometría fractal del árbol bronquial en mamíferos. Revista Chilena de Anatomía 16: 237-244.

    Article  Google Scholar 

  • Dudley, R., and C. Gans (1991). A critique of symmorphosis and optimality models in physiology. Physiological Zoology 64: 627-637.

    Google Scholar 

  • Dullemeijer, P. (1998). Optimality in the design of bony elements. In: Weibel, E.R., C.R. Taylor and L. Bolis (Eds). Principles of animal design. The optimization and symmorphosis debate. Cambridge: Cambridge University Press: 64-70.

    Google Scholar 

  • Glenny, R. and H.T. Robertson (1990). Fractal properties of pulmonary blood flow: characterization of spatial heterogeneity. Journal of Applied Physiology 69: 532-545.

    Google Scholar 

  • Garland, T. Jr. (1998). Conceptual and methodological issues in testing the predictions of symmorphosis. In: Weibel, E.R., C.R. Taylor and L. Bolis (Eds). Principles of Animal Design. The Optimization and Symmorphosis Debate. Cambridge University Press, Cambridge. pp. 40-47.

    Google Scholar 

  • Gordon, M.S. (1998). Evolution of optimal solutions. In: Weibel, E.R., C.R. Taylor and L. Bolis (Eds). Principles of Animal Design. The Optimization and Symmorphosis debate. Cambridge University Press, Cambridge.

    Google Scholar 

  • Horsfield, K. (1990). Diameters, generations and orders of branches in the bronchial tree. Journal of Applied Physiology 68: 457-461.

    Google Scholar 

  • Horsfield, K. and G. Cumming (1968). Morphology of the bronchial tree in man. Journal of Applied Physiology 24: 373-383.

    Google Scholar 

  • Horsfield, K., G. Dart, D.E. Olson, G.F. Filley and G. Cumming (1971). Models of the human bronchial tree. Journal of Applied Physiology 31: 201-217.

    Google Scholar 

  • Kamiya, A., T. Togawa and A. Yamamoto (1974). Theoretical relationship between the optimal models of the vascular tree. Bulletin of Mathematical Biology 36: 311-323.

    Article  Google Scholar 

  • Kitaoka, H., R. Takaki and B. Suki (1999). A three dimensional model of the human airway tree. Journal of Applied Physiology 87: 2207-2217.

    Google Scholar 

  • Kitaota, H. and B. Suki (1997). Branching design of the bronchial tree based on diameter-flow relationship. Journal of Applied Physiology 82: 968-976.

    Google Scholar 

  • Mc Namee, J.E. (1991). Fractal perspectives in pulmonary physiology. Journal of Applied Physiology 71: 1-8.

    Google Scholar 

  • Maina, J.N. and P. van Gils (2001). Morphometric characterization of the airway and vascular systems of the lung of the domestic pig, Sus scrofa: comparison of the airway, arterial and venous systems. Comparative Biochemistry and Physiology A 130: 781-798.

    Article  Google Scholar 

  • Mandelbrot B.B. (1982). The fractal geometry of nature. W.H. Freeman and Company, New York.

    Google Scholar 

  • McNeill Alexander, R. (1995). Optima for animals. Princeton University Press, Princeton, New Jersey.

    Google Scholar 

  • McNeill Alexander, R. (1998). Symmorphosis and safety factors. In: Weibel E.R., C.R. Taylor and L. Bolis (Eds). Principles of animal design. The optimization and symmorphosis debate. Cambridge University Press, Cambridge. pp. 28-36.

    Google Scholar 

  • Murray, C.D. (1926). The physiological principle of minimum work. Proceedings of the National Academy of Science USA 12: 207-214.

    Article  Google Scholar 

  • Nelson, T.R., B.J. West and A.L. Goldberger (1990). The fractal lung: universal and species-related scaling patterns. Experientia 46: 251-254.

    Article  Google Scholar 

  • Ramchandani, R., J.H.T. Bates X. Shen, B. Suki and R.S. Tepper (2001). Airway branching morphology of mature and immature rabbit lungs. Journal of Applied Physiology 90: 1584-1592.

    Google Scholar 

  • Rhorer, F. (1915). Flow resistance in human air passages and the effect of irregular branching of the bronchial system on the respiratory process in various regions of the lungs. Pfluegers Archives 162: 255-299.

    Google Scholar 

  • Rigaut, J.P. (1984). An empirical formulation relating boundary lenghts to resolution in specimens showing “non ideally fractal” dimensions. Journal of Microscopy 133: 41-54.

    Google Scholar 

  • Thurlbeck, A. and K. Horsfield (1980). Branching angles in the bronchial tree related to order branching. Respiration Physiology 41: 173-181.

    Article  Google Scholar 

  • Weibel, E.R. (1963). Morphometry of the human lung. Academic Press, New York.

    Google Scholar 

  • Weibel, E.R., and D.M. Gomez (1962). Architecture of the human lung. Science 137: 577-585.

    Google Scholar 

  • Weibel, E.R., R. Taylor and L. Bolis (1998). Principles of Animal design: The optimization and symmorphosis debate. Cambridge University Press, Cambridge.

    Google Scholar 

  • Weibel, E.R., R. Taylor and H. Hoppeler (1991a). The concept of symmorphosis: a testable hypothesis of structure function relationship. Proceedings of The Natural academy Science 88: 10357-10361.

    Article  Google Scholar 

  • Weibel, E.R., R. Taylor and H. Hoppeler (1991b). Variation in function and design: testing symmorphosis in the respiratory system. Respiration Physiology 60: 325-348.

    Google Scholar 

  • West, B.J., V. Bhargawa and A.L. Goldberger (1986). Beyond the principle of similitude: renormalization in the bronchial tree. Journal of Applied Physiology 60: 1089-1097.

    Google Scholar 

  • West, G.B., J.H. Brown and B.J. Enquist (1997). A general model for the origin of allometric scaling laws in biology. Science 276: 122-126.

    Article  Google Scholar 

  • Wilson, T. (1967). Design of the bronchial tree. Nature 668-669.

  • Zamir, M. (1976). Optimality principles in arterial branching. Journal of Theoretical Biology 62: 227-251.

    Article  Google Scholar 

  • Zamir, M. (1978). Nonsymmetrical bifurcation in arterial branching. Journal of General Physiology 72: 837-845.

    Article  Google Scholar 

  • Zamir, M. (1986). Cost analysis of arterial branching in the cardiovascular system of man and animals. Journal of Theoretical Biology 120: 111-123.

    Google Scholar 

  • Zamir, M. and D.C. Bigelow (1984). Cost of departure from optimality in arterial branching. Journal of Theoretical Biology 109: 401-409.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Canals, M., Novoa, F.F. & Rosenmann, M. A Simple Geometrical Pattern for the Branching Distribution of the Bronchial Tree, Useful to Estimate Optimality Departures. Acta Biotheor 52, 1–16 (2004). https://doi.org/10.1023/B:ACBI.0000015909.97029.c8

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:ACBI.0000015909.97029.c8

Keywords

Navigation