Skip to main content
Log in

Extended Scale Relativity, p-Loop Harmonic Oscillator, and Logarithmic Corrections to the Black Hole Entropy

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

An extended scale relativity theory, actively developed by one of the authors, incorporates Nottale's scale relativity principle where the Planck scale is the minimum impassible invariant scale in Nature, and the use of polyvector-valued coordinates in C-spaces (Clifford manifolds) where all lengths, areas, volumes⋅ are treated on equal footing. We study the generalization of the ordinary point-particle quantum mechanical oscillator to the p-loop (a closed p-brane) case in C-spaces. Its solution exhibits some novel features: an emergence of two explicit scales delineating the asymptotic regimes (Planck scale region and a smooth region of a quantum point oscillator). In the most interesting Planck scale regime, the solution recovers in an elementary fashion some basic relations of string theory (including string tension quantization and string uncertainty relation). It is shown that the degeneracy of the first collective excited state of the p-loop oscillator yields not only the well-known Bekenstein–Hawking area-entropy linear relation but also the logarithmic corrections therein. In addition we obtain for any number of dimensions the Hawking temperature, the Schwarschild radius, and the inequalities governing the area of a black hole formed in a fusion of two black holes. One of the interesting results is a demonstration that the evaporation of a black hole is limited by the upper bound on its temperature, the Planck temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Sakharov, Sov. Phys. Dok. 12, 1040(1968).

    Google Scholar 

  2. W. G. Unruh, Phys. Rev. Lett. 46, 1351(1981).

    Google Scholar 

  3. G. Chapline, E. Hohlfeld, R. B. Laughlin, and D. Santiago, arXiv: gr-qc/0012094.

  4. G. Chapline, J. Chaos, Solitons and Fractals 10, 311(1999).

    Google Scholar 

  5. G. Chapline, Mod. Phys. Lett. A 7, 1959(1992).

    Google Scholar 

  6. C. Castro, “Hints of a new relativity principle from p-brane quantum mechanics, ” J. Chaos, Solitons and Fractals 11, 1721(2000).

    Google Scholar 

  7. C. Castro, “An elementary derivation of the black-hole area-entropy relation in any dimension, ” arXiv: hep-th/0004018, J. Entropy 3, 12–26 (2001).

    Google Scholar 

  8. C. Castro, “The search for the origins of M theory: Loop quantum mechanics and bulk/boundary duality, ” arXiv: hep-th/9809102; to be published in Information and Entropy Journal.

  9. C. Castro, “Is quantum spacetime infinite dimensional?” J. Chaos, Solitons and Fractals 11, 1663(2000).

    Google Scholar 

  10. C. Castro, “The string uncertainty relations follow from the new relativity theory, ” arXiv: hep-th/0001023; Found. Phys. 30, 1301(2000).

    Google Scholar 

  11. C. Castro and A. Granik, “On M theory, quantum paradoxes and the new relativity, ” arXiv: physics/0002019.

  12. C. Castro and A. Granik, “How a new scale relativity resolves some quantum paradoxes, ” J. Chaos, Solitons, and Fractals 11, 2167(2000).

    Google Scholar 

  13. C. Castro and A. Granik, “Scale relativity in Cantorian ℰ space and average dimensions of the world, ” J. Chaos, Solitons and Fractals 12, 1793(2001).

    Google Scholar 

  14. C. Castro, “The status and programs of the new relativity theory, ” physics/0011040, J. Chaos, Solitons and Fractals 12, 1585(2001).

    Google Scholar 

  15. S. Ansoldi, C. Castro, and E. Spallucci, “String representation of quantum loops, ” Class. Quant. Gravity 16, 1833(1999); arXiv: hep-th/9809182.

    Google Scholar 

  16. A. Aurilia, S. Ansoldi, and E. Spallucci, J. Chaos, Solitons and Fractals 10, 197(1999).

    Google Scholar 

  17. G. Baker, Phys. Rev. 109, 2198(1958).

    Google Scholar 

  18. M. Vasiliev, “Higher spin gauge theories: Star-product and AdS space, ” arXiv: hep-th/9910096.

  19. J. Moyal, Proc. Camb. Phil. Soc. 45, 99(1949).

    Google Scholar 

  20. A. Nesterov and Lev Sabinin, “Non-associative geometry and discrete structure of spacetime, ” arXiv: hep-th/0003238.

  21. B. Fauser, “Clifford Hopf algebra for two-dimensional space, ” arXiv: math.QA/0011263.

  22. Z. Oziwiecz, Czech J. Phys. 47, 1267(1997).

    Google Scholar 

  23. O. Dayi, “q-deformed star products and Moyal brackets, ” arXiv: q-alg/9609023.

  24. M. S. El Naschie, J. Chaos, Solitons and Fractals 10, 567(1999).

    Google Scholar 

  25. M. Pitkannen, “Topological geometrydynamics: TGD, mathematical ideas, ” arXiv: hep-th/9506097 (available at http://www.blues.helsinki.fi/matpitka).V. Vladimorov, I. Volovich, and E. Zelenov, p-Adic Numbers in Mathematical Physics (World Scientific, Singapore, 1994).L. Brekke and P. Freund, Phys. Rep. 231, 1–66 (1993).

  26. W. Pezzaglia, “Dimensionally democratic calculus and principles of polydimensional physics, ” arXiv: gr-qc/9912025“Polydimensional supersymmetric principles, ” arXiv: gr-qc/9909071“Polydimensional relativity, a classical generalization of the automorphism invariance principle, ” arXiv: gr-qc/9608052“Dimensionally democratic calculus and principles of polydimensional physics, ” arXiv: gr-qc/9912025“Physical applications of a generalized Clifford calculus, Papapetrou equations and metamorphic curvature, ” arXiv: gr-qc/9710027.M. Pavsic, “Clifford algebra based polydimensional relativity and relativistic dynamics, ” arXiv: hep-th/0011216, Found. Phys. 31, 1185–1209 (2001)M. PavsicThe Landscape of Theoretical Physics: A Global View, From Point Particles to the Brane World and Beyond, in Search of a Unifying Principle (Kluwer Academic, Dordrecht, 2001).

    Google Scholar 

  27. M. Van Dyke, Perturbations Methods in Fluid Mechanics (Academic, New York, 1964).

    Google Scholar 

  28. E. Witten, “Reflections on the fate of spacetime, ” Physics Today 24,April 1996.

  29. C. Castro and M. Pavsic, “Higher derivative gravity and torsion from the geometry of C-spaces, ” Phys. Lett. B 539, 133(2002), arXiv: hep-th/0110079.

    Google Scholar 

  30. M. Li and T. Yoneya, “Short distance space-time structure and black holes, ” J. Chaos, Solitons and Fractals 10, 429(1999).

    Google Scholar 

  31. K. Fujikawa, “Shannon's statistical entropy and the H-theorem in quantum statistical mechanics, ” arXiv: cond-mat/0005496.

  32. P. Majumdar, “Quantum aspects of black hole entropy, ” arXiv: hep-th/0009008.

  33. J. W. Moffat, “Comment on the variation of fundamental constants, ” arXiv: hep-th/0208109.

  34. L. Nottale, Int. J. Mod. Phys. A 4, 5047(1989).

    Google Scholar 

  35. C. Castro, “Maximal-acceleration phase space relativity from Clifford algebras, ” arXiv: hep-th/0208138;“Variable fine structure constant from maximal-acceleration phase space relativity, ” arXiv: hep-th/0210061.

  36. C. Castro, “Noncommutative quantum mechanics and geometry from the quantization in C-spaces, ” arXiv: hepth/0206181.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Castro, C., Granik, A. Extended Scale Relativity, p-Loop Harmonic Oscillator, and Logarithmic Corrections to the Black Hole Entropy. Foundations of Physics 33, 445–466 (2003). https://doi.org/10.1023/A:1023763615328

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023763615328

Navigation