Skip to main content
Log in

Atoms and bonds in molecules and chemical explanations

  • Published:
Foundations of Chemistry Aims and scope Submit manuscript

Abstract

The concepts of atoms and bonds in molecules which appeared in chemistry during the nineteenth century are unavoidable to explain the structure and the reactivity of the matter at a chemical level of understanding. Although they can be criticized from a strict reductionist point of view, because neither atoms nor bonds are observable in the sense of quantum mechanics, the topological and statistical interpretative approaches of quantum chemistry (quantum theory of atoms in molecules, electron localization function and maximum probability domain) provide consistent definitions which accommodate chemistry and quantum mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Quantum mechanics is undeniably the intellectual scandal of the century! What do you mean by scandal? I mean Science has renounced intelligibility, It has really renounced! That’s something which asserts itself and which is not understandable.

  2. Condon’s calculation uses the \(\hbox{H}_{2}^{+}\) analytical result of Burrau (1927) to build the H2 approximate wavefunction. The MO method has been independently developed by Hund (1926, 1928, 1932), Mulliken (1928a, b), Lennard-Jones (1929).

  3. Lewis’s sixth postulate which seems in contradiction with quantum mechanics can be considered as an anticipation of Pauli’s exclusion principle (Pauli 1925).

References

  • Abegg, A.: Die valenz und das periodische system. versuch einer theorie der molekularverbindungen. Z. anorg. Chem. 39, 330–380 (1904)

    Google Scholar 

  • Abraham, R.H., Marsden J.E.: Foundations of Mechanics. Addison Wesley, Redwood City (1994)

    Google Scholar 

  • Alvarez, S., Hoffmann, R., Mealli, C.: A bonding quandary—or—a demonstration of the fact that scientists are not born with logic. Chem. Eur. J., 15(34), 8358–8373 (2009)

    Google Scholar 

  • Artmann, K.: Zur quantentheorie der gewinkelten valenz, i. mitteilung: Eigenfunktion und valenzbetätigung des zentralatoms. Z. Naturf. 1, 426–432 (1946)

    Google Scholar 

  • Aslangul, C.: Introduction of information theory in study of electron localizability in atoms and molecules. Compt. Rend. Acad. Sci. Ser. B 272(1), 1 (1971)

    Google Scholar 

  • Aslangul, C., Constanciel, R., Daudel, R., Kottis, P.: Aspects of the localizability of electrons and molecules: loge theory and related methods. In: Löwdin P.O. (eds.) Advances in Quantum Chemistry, vol. 6, pp. 93–141. Academic Press, New York (1972)

    Google Scholar 

  • Aslangul, C., Constanciel, R., Daudel, R., Esnault, L., Ludeña, E.V.: The loge theory as a starting point for variational calculations. I. General formalism. Int. J. Quant. Chem. 8, 499–522 (1974)

    Google Scholar 

  • Ayers, P.W.: Electron localization functions and local measures of the covariance. J. Chem. Sci. 117, 441–454 (2005)

    Google Scholar 

  • Bader, R.F.W.: Binding regions in polyatomic molecules and electron density distributions. J. Am. Chem. Soc. 86, 5070–5075 (1964)

    Google Scholar 

  • Bader, R.F.W.: Molecular fragments or chemical bonds? Acc. Chem. Res. 8, 34–40 (1975)

    Google Scholar 

  • Bader, R.F.W.: Atoms in molecules. Acc. Chem. Res. 18, 9–15 (1985)

    Google Scholar 

  • Bader, R.F.W.: Atoms in Molecules: A Quantum Theory. Oxford University Press, Oxford (1990)

    Google Scholar 

  • Bader, R.F.W.: A quantum theory of molecular structure and its applications. Chem. Rev. 91(5), 893–928 (1991)

    Google Scholar 

  • Bader, R.F.W.: The quantum mechanical basis of conceptual chemistry. Monatsh. Chem. 136, 819–854 (2005)

    Google Scholar 

  • Bader, R.F.W.: Everyman’s derivation of the theory of atoms in molecules. J. Phys. Chem. A 111, 7966–7972 (2007)

    Google Scholar 

  • Bader, R.F.W.: On the non-existence of parallel universes in chemistry. Found. Chem. 13, 11–37 (2011)

    Google Scholar 

  • Bader, R.F.W., Essén, H.: The characterization of atomic interactions. J. Chem. Phys. 80, 1943–1960 (1984)

    Google Scholar 

  • Bader, R.F.W., Matta, C.F.: Atoms in molecules as non-overlapping, bounded, space-filling open quantum systems. Found. Chem. (2012). doi:10.1007/s10698-012-9153-1

  • Bader, R.F.W., Nguyen-Dang, T.T.: Quantum theory of atoms in molecules—Dalton revisited. In: Advances in Quantum Chemistry, vol. 14, pp. 63–124. Academic Press, New York (1981)

  • Bader, R.F.W., Henneker, W.H., Cade, P.E.: Molecular charge distributions and chemical binding. J. Chem. Phys. 46, 3341–3363 (1966)

    Google Scholar 

  • Bader, R.F.W., Beddall, P.M., Cade, P.E.: Partitioning and characterization of molecular charge distributions. J. Am. Chem. Soc. 93, 3095–3107 (1971)

    Google Scholar 

  • Bader, R.F.W., Nguyen-Dang, T.T., Tal, Y.: Quantum topology of molecular charge distributions. II. molecular structure and its change. J. Chem. Phys. 70, 4316–4329 (1979)

    Google Scholar 

  • Bader, R.F.W., Gillespie, R.J., MacDougall, P.J.: A physical basis for the vsepr model of molecular geometry. J. Am. Chem. Soc. 110, 7329–7336 (1988)

    Google Scholar 

  • Bader, R.F.W., Johnson, S., Tang, T.-H., Popelier, P.L.A.: The electron pair. J. Phys. Chem. 100, 15398–15415 (1996a)

    Google Scholar 

  • Bader, R.F.W., Streitwieser, A., Neuhaus, A., Laidig, K.E., Speers, P.: Electron delocalization and the fermi hole. J. Am. Chem. Soc. 118, 4959–4965 (1996b)

    Google Scholar 

  • Becke, A.D., Edgecombe, K.E.: A simple mesure of electron localization in atomic and molecular systems. J. Chem. Phys. 92, 5397–5403 (1990)

    Google Scholar 

  • Bianchi, R., Gervasio, G., Marabello, D.: Experimental electron density analysis of Mn 2(CO)10: metal-metal and metal-ligand bond characterization. Inorg. Chem.39, 2360–2366 (2000)

    Google Scholar 

  • Burdett, J.K., McCormick, T.A.: Electron localization in molecules and solids: the meaning of elf. J. Phys. Chem. A 102, 6366–6372 (1998)

    Google Scholar 

  • Burrau, Ø.: Berechnung des energiewertes des wasserstoffmolekel- ions (H +2 ) im normalzustand. Naturwissenschaften 15, 16–17 (1927)

    Google Scholar 

  • Cancès, E., Keriven, R., Lodier, F., Savin, A.: How electrons guard the space: shape optimization with probability distribution criteria. Theor. Chem. Acc. 111, 373–380 (2004)

    Google Scholar 

  • Causà, M., Savin, A.: Maximum probability domains in crystals: the rock-salt structure. J. Phys. Chem. A 115(45), 13139–13148 (2011)

    Google Scholar 

  • Condon, E.U.: Wave mechanics and the normal state of the hydrogen molecule. Proc. Nat. Acad. Sci. 13, 466–470 (1927)

    Google Scholar 

  • Cooper, D.L., Ponec, R.: A one-electron approximation to domain-averaged fermi hole analysis. Phys. Chem. Chem.Phys. 10, 1319–1329 (2008)

    Google Scholar 

  • Coulson, C.A.: Valence. Clarendon, Oxford (1952)

    Google Scholar 

  • Cremer, D., Kraka, E.: A description of the chemical bond in terms of local properties of the electron density and energy. Croat. Chem. Acta 57, 1259–1281 (1983)

    Google Scholar 

  • Cremer, D., Kraka, E.: Chemical bonds without bonding electron density - does the difference electron-density analysis suffice for a description of the chemical bond? Angew. Chem. Int. Ed. Engl. 23, 627–628 (1984)

    Google Scholar 

  • Dalton, J.: New System of Chemical Philosophy. R. Bickerstaff, London (1808)

    Google Scholar 

  • Daudel, R.: Sur la localisabilité des corpuscules dans les noyaux et les cortèges électroniques des atomes et des molécules. Compt. Rend. Acad. Sci. 237(12), 601–603 (1953)

    Google Scholar 

  • Daudel, R., Odiot, S., Brion, H.: Théorie de la localisabilité des corpuscules .1. la notion de loge et la signification géometrique de la notion de couche dans le cortège électronique des atomes. J. Chim. Phys. 51(2), 74–77 (1954)

    Google Scholar 

  • Daudel, R., Brion, H., Odiot, S. Localizability of electrons in atoms and molecules—application to the study of the notion of shell and of the nature of chemical bonds. J. Chem. Phys. 23(11), 2080–2083 (1955)

    Google Scholar 

  • De Proft, F., Geerlings, P.: Conceptual and computational DFT in the study of aromaticity. Chem. Rev. 101, 1451–1464 (2001)

    Google Scholar 

  • Del Re, G.: Reaction mechanisms and chemical explanation. Ann. N. Y. Acad. Sci. 988(1), 133–140 (2003)

    Google Scholar 

  • Diner, S., Claverie, P.: Statistical and stochastic aspects of the delocalization problem in quantum mechanics. In: Chalvet, O., Daudel, R., Diner, S., Malrieu, J.P., (eds.) Localization and Delocalization in Quantum Chemistry, vol. II, pp. 395–448. Reidel, Dordrecht (1976)

    Google Scholar 

  • Dirac, P.A.M.: Quantum mechanics of many-electron systems. Proc. Roy. Soc. A 123, 714–733 (1929)

    Google Scholar 

  • Dobson, J.F.: Interpretation of the fermi hole curvature. J. Chem. Phys. 94, 4328–4333 (1991)

    Google Scholar 

  • Fourré, I., Silvi, B.: What can we learn from two-center three-electron bonding with the topological analysis of ELF? Heteroat. Chem. 18, 135–160 (2007)

    Google Scholar 

  • Fradera, X., Austen, M.A., Bader, R.F.W.: The lewis model and beyond. J. Phys. Chem. A 103, 304–314 (1998)

    Google Scholar 

  • Francisco, E., Pendás, A.M., Blanco, M.A.: Electron number probability distributions for correlated wave functions. J. Chem. Phys. 126(9), 094102 (2007)

    Google Scholar 

  • Friedman, M.: Explanation and scientific understanding. J. Philos. 71, 5–19 (1974)

    Google Scholar 

  • Gallegos, A., Carbo-Dorca, R., Lodier, F., Cancès, E., Savin, A.: Maximal probability domains in linear molecules. J. Comput. Chem. 26, 455–460 (2005)

    Google Scholar 

  • Geerlings, P., De Proft, F., Langenaeker, W.: Conceptual density functional theory. Chem. Rev. 103, 1793–1873 (2003)

    Google Scholar 

  • Gillespie, R.J.: Molecular Geometry. Van Nostrand Reinhold, London (1972)

    Google Scholar 

  • Gillespie, R.J.: The VSEPR model revisited. Chem. Soc. Rev. 21, 59–69 (1991)

    Google Scholar 

  • Gillespie, R.J.: Improving our understanding of molecular geometry and the VSEPR model through the ligand close-packing model and the analysis of electron density distributions. Coord. Chem. Chem. Rev. 197, 51–69 (2000)

    Google Scholar 

  • Gillespie, R.J., Nyholm, R.S.: Inorganic stereochemistry. Quart. Rev. Chem. Soc. 11, 339–380 (1957)

    Google Scholar 

  • Gillespie, R.J., Popelier, P.L.A.: Chemical Bonding and Molecular Geometry. Oxford University Press, Oxford (2001)

    Google Scholar 

  • Gillespie, R.J., Robinson, E.A.: Electron domains and the VSEPR model of molecular geometry. Angew. Chem. Int. Ed. Engl. 35, 495–514 (1996)

    Google Scholar 

  • Gillespie, R.J., Robinson, E.A.: Models of molecular geometry. J. Comput. Chem. 28, 87–97 (2007)

    Google Scholar 

  • Gillespie, R.J., Bytheway, I., Tang, T.-H., Bader, R.F.W.: Geometry of the fluorides, oxofluorides, hydrides, and methanides of vanadium(v), chromium(vi), and molybdenum(vi): understanding the geometry of non-VSEPR molecules in terms of core distortion. Inorg. Chem. 35, 3954–3963 (1996)

    Google Scholar 

  • Gillespie, R.J., Bayles, D., Platts, J., Heard, G.L., Bader, R. F.W.: The Lennard-Jones function: a quantitative description of the spatial correlation of electrons as determined by the exclusion principle. J. Phys. Chem. A 102, 3407–3414 (1998)

    Google Scholar 

  • Gourlaouen, C., Parisel, O.: Is an electronic shield at the molecular origin of saturnism? a computational modelling experiment. Angew. Chem. 119, 559–562 (2007)

    Google Scholar 

  • Häussermann, U., Wengert, S., Nesper, R.: Localization of electrons in intermetallic phases containing aluminium. Angew. Chem. Int. Ed. Engl. 33, 2069–2072 (1994a)

    Google Scholar 

  • Häussermann, U., Wengert, S., Nesper, R.: Unequivocal partitioning of crystal structures. exemplified by intermetallic phases containing aluminium. Angew. Chem. Int. Ed. Engl. 33, 2073–2076 (1994b)

    Google Scholar 

  • Heelan, P.A.: Paradoxes of measurement. Ann. N. Y. Acad. Sci. 988(1), 114–127 (2003)

    Google Scholar 

  • Heitler, W., London, F.: Wechselwirkung neutraler atome und homoöpolare bindung nach quantenmechanik. Z. Physik 44, 455–472 (1927)

    Google Scholar 

  • Hempel, C.G., Oppenheim, P.: Studies in the logic of explanation. Philos. Sci.15, 135–175 (1948)

    Google Scholar 

  • Hoffmann, R., Shaik, S., Hiberty, P.C.: A conversation on VB vs MO theory: a never-ending rivalry? Acc. Chem. Res. 36, 750–756 (2003)

    Google Scholar 

  • Howard, K., Zimmerman, J. Rysselberghe, P.V.: Directed valence as a property of determinant wave functions. J Chem Phys 17(7), 598–602 (1949)

    Google Scholar 

  • Huggins, M.L.: The structure of benzene. Sci. Technol. Human. Values 55, 679–680 (1922)

    Google Scholar 

  • Hund, F.: Zur deutung einiger erscheinungen in den molekelspektren. Z. Physik. 36, 657–674 (1926)

    Google Scholar 

  • Hund, F.: Zur deutung der molekelspektren. iv. Z. Physik. 51, 759–795 (1928)

    Google Scholar 

  • Hund, F.: Zur frage der chemischen bindung. Z. Physik. 73, 1–30 (1932)

    Google Scholar 

  • Ingold, C.K.: The structure of the benzene nucleus, part I: intranuclear tautomerism. J. Chem. Soc. 121, 1133–1143 (1922)

    Google Scholar 

  • Ingold, C.K.: Significance of tautomerism and of the reactions of aromatic compounds in the electronic theory of organic reactions. J. Chem. Soc., 143, 1120–1127 (1933)

    Google Scholar 

  • Ingold, C.K.: Mesomerism and tautomerism. Nat. Environ. Pollut. Technol. 133, 946–947 (1934)

    Google Scholar 

  • Jayatilaka, D., Grimwood, D.: Electron localization functions obtained from x-ray constrained Hartree–Fock wavefunctions for molecular crystals of ammonia, urea and alloxan. Acta Cryst. A 60, 111–119 (2004)

    Google Scholar 

  • Kitcher, P.: Explanatory unification. Philos. Sci 48, 507–531 (1981)

    Google Scholar 

  • Kohout, M., Pernal, K., Wagner, F.R., Grin, Y.: Electron localizability indicator for correlared wavefunctions. I. Parallel spin pairs. Theor. Chem. Acc. 112, 453–459 (2004)

    Google Scholar 

  • Kohout, M., Pernal, K., Wagner, F.R., Grin, Y.: Electron localizability indicator for correlared wavefunctions. I. Antiparallel spin pairs. Theor. Chem. Acc. 113, 287–293 (2005)

    Google Scholar 

  • Kraka, E., Cremer, D.: Description of chemical reactions in terms of the properties of the electron density. J. Mol. Struct. (Theochem), 255, 189–206 (1992)

    Google Scholar 

  • Laming, R.: Observation on a paper by prof. Faraday concerning electric conduction and the nature of matter. Phil. Mag. 27, 420–423 (1845)

    Google Scholar 

  • Lennard-Jones, J. E.: The electronic structure of some diatomic molecules. Trans. Faraday Soc. 25, 668–686 (1929)

    Google Scholar 

  • Lennard-Jones, J.E.: The spatial correlation of electrons in molecules. J. Chem. Phys. 20, 1024–1029 (1952)

    Google Scholar 

  • Lewis, G.N.: The atom and the molecule. J. Am. Chem. Soc. 38, 762–786 (1916)

    Google Scholar 

  • Lewis, G.N.: Valence and the Structure of Atoms and Molecules. Dover, New York (1966)

    Google Scholar 

  • Linnett, J.W.: A modification of the Lewis-Langmuir octet rule. J. Am. Chem. Soc. 83, 2643–2653 (1961)

    Google Scholar 

  • Linnett, J.W.: The Electronic Structure of Molecules. A new approach. Methuen, London (1964)

    Google Scholar 

  • Lopes, Jr., O.M., Braida, B., Causa, M., Savin, A.: Understanding maximum probability domains with simple models. In: Hoggan, P.E.E., Brandas, E.J.J., Maruani, J., Piecuch, P., DelgadoBarrio, G., (ed.) Advances in the Theory of Quantum Systems in Chemistry and Physics, vol. 22 of Progress in Theoretical Chemistry and Physics, pp. 173–184. Springer, Netherlands (2010)

  • Lüchow, A., Petz, R.: Single electron densities: a new tool to analyze molecular wavefunctions. J. Comput. Chem. 32, 2619–2626 (2011)

    Google Scholar 

  • Luken, W.L.: Properties of the fermi hole in molecules. Croat. Chem. Acta 57, 1283–1294 (1984)

    Google Scholar 

  • Luken, W.L., Culberson, J.C.: Mobility of the fermi hole in a single-determinant wavefunction. Int. J. Quant. Chem. 22, 265–276 (1982)

    Google Scholar 

  • Luken, W.L., Culberson, J.C.: Localized orbitals based on the fermi hole. Theor. Chim. Acta (Berlin), 66, 279–293 (1984)

    Google Scholar 

  • Macchi, P., Proserpio, D.M., Sironi, A.: Experimental electron density in a transition metal dimer: metal-metal and metal-ligand bonds. J. Am. Chem. Soc. 120, 13429–13435 (1998)

    Google Scholar 

  • Malcolm, N.O.J., Popelier, P.L.A.: The full topology of the Laplacian of the electron density: scrutinising a physical basis for the vsepr model. Faraday Discuss. 124, 353–363 (2003)

    Google Scholar 

  • Martín Pendás, A., Francisco, E., Blanco, M.A.: Pauling resonant structures in real space through electron number probability distributions. J. Phys. Chem. A 111(6), 1084–1090 (2007a)

    Google Scholar 

  • Martín Pendás, A., Francisco, E., Blanco, M.A.: An electron number distribution view of chemical bonds in real space. Phys. Chem. Chem.Phys. 9, 1087–1092 (2007b)

    Google Scholar 

  • Martín Pendás, A., Francisco, E., Blanco, M.A.: Spin resolved electron number distribution functions: how spins couple in real space. J. Chem. Phys. 127, 144103 (2007c)

    Google Scholar 

  • Martín Pendás, A., Francisco, E., Blanco, M.: Electron-electron interactions between ELF basins. Chem. Phys. Lett. 454,396–403 (2008)

    Google Scholar 

  • Matito, E., Silvi, B., Duran, M., Solà, M.: Electron localization function at the correlated level. J. Chem. Phys. 125, 024301 (2006)

    Google Scholar 

  • McNaught, A.D., Wilkinson, A.: Compendium of Chemical Terminology The Gold Book, 2nd edn. Blackwell Science, Oxford (1997)

    Google Scholar 

  • Mori-Sánchez, P., Martín Pendás, A., Luaña, V.: A classification of covalent, ionic, and metallic solids based on the electron density. J. Am. Chem. Soc. 124, 14721–14723 (2002)

    Google Scholar 

  • Mulliken, R.S.: The assignment of quantum numbers for electrons in molecules. I. Phys. Rev. 32, 186–222 (1928a)

    Google Scholar 

  • Mulliken, R.S.: The assignment of quantum numbers for electrons in molecules. ii. correlation of molecular and atomic electron states. Phys. Rev. 32, 761–772 (1928b)

    Google Scholar 

  • Nalewajski, R.F., Koster, A.M., Escalante, S.: Electron localization function as information measure. J. Phys. Chem. A 109(44), 10038–10043 (2005)

    Google Scholar 

  • Parr, R.G., Pearson, R.G.: Absolute hardness: companion parameter to absolute electronegativity. J. Am. Chem. Soc. 105, 7512–7516 (1983)

    Google Scholar 

  • Parr, R.G., Donnelly, R.A., Levy, M., Palke, W.E.: Electronegativity: the density functional viewpoint. J. Chem. Phys. 68(8), 3801–3807 (1978)

    Google Scholar 

  • Pauli, W.: über den einfluss der geschwindigkeitsabhängigkeit der elektronenmasse auf den zeemaneffekt. Z. Phys. 31, 373–385 (1925)

    Google Scholar 

  • Pauling, L.: The Nature of the Chemical Bond. Cornell University Press, Ithaca (1948)

    Google Scholar 

  • Pauling, L.: Modern structural chemistry. Nobel Lecture (1954)

  • Pilme, J., Piquemal, J.-P.: Advancing beyond charge analysis using the electronic localization function chemically intuitive distribution of electrostatic moments. J. Comput. Chem. 29, 1440–1449 (2008)

    Google Scholar 

  • Pitzer, K.S.: Electron deficient molecules. i. the principles of hydroboron structures. J. Am. Chem. Soc. 67, 1126–1132 (1946)

    Google Scholar 

  • Ponec, R.: Electron pairing and chemical bonds. Chemical structure, valences and structural similarities from the analysis of the fermi holes. J. Math. Chem. 21, 323–333 (1997)

    Google Scholar 

  • Ponec, R.: Electron pairing and chemical bonds. molecular structure from the analysis of pair densities and related quantities. J. Math. Chem. 23, 85–103 (1998)

    Google Scholar 

  • Ponec, R., Duben, A.J.: Electron pairing and chemical bonds: bonding in hypervalent molecules from analysis of fermi holes. J. Comput. Chem. 20, 760–771 (1999)

    Google Scholar 

  • Ponec, R., Roithova, J.: Domain-averaged Fermi holes—a new means of visualization of chemical bonds: bonding in hypervalent molecules. Theor. Chem. Acc. 105, 383–392 (2001)

    Google Scholar 

  • Ponec, R., Cooper, D.L., Savin, A.: Analytic models of domain-averaged Fermi holes: a new tool for the study of the nature of chemical bonds. Chem. Eur. J. 14, 3338–3345 (2008)

    Google Scholar 

  • Popper, K.R.: Quantum Theory and the Schism in Physics: From The Postscript to the Logic of Scientific Discovery. Routledge, Oxon (1992)

    Google Scholar 

  • Salem, L.: Faithful couple: the electron pair. J. Chem. Educ. 55(6), 344–348 (1978)

    Google Scholar 

  • Salmon, W.: Explanation and the causal structure of the world. Princeton University Press, Princeton, NJ (1984)

    Google Scholar 

  • Savin, A.: On the significance of ELF basins. J. Chem. Sci. 117, 473–475 (2005)

    Google Scholar 

  • Savin, A., Becke, A.D., Flad, J., Nesper, R., Preuss, H., von Schnering, H.G.: A new look at electron localization. Angew. Chem. Int. Ed. Engl. 30, 409 (1991)

    Google Scholar 

  • Savin, A., Jepsen, O., Flad, J., Andersen, O.K., Preuss, H., von Schnering, H.G.: Electron localization in the solid-state structures of the elements: the diamond structure. Angew. Chem. Int. Ed. Engl. 31, 187–190 (1992)

    Google Scholar 

  • Savin, A., Silvi, B., Colonna, F.: Topological analysis of the electron localization function applied to delocalized bonds. Can. J. Chem. 74, 1088–1096 (1996)

    Google Scholar 

  • Savin, A., Nesper, R., Wengert, S., Fässler, T.F.: ELF: The electron localization function. Angew. Chem. Int. Ed. Engl. 36, 1809–1832 (1997)

    Google Scholar 

  • Scemama, A., Chaquin, P., Caffarel, M.: Electron pair localization function: a practical tool to visualize electron localization in molecules from quantum Monte Carlo data. J. Chem. Phys. 121, 1725–1735 (2004)

    Google Scholar 

  • Scemama, A., Caffarel, M., Savin, A.: Maximum probability domains from quantum Monte Carlo calculations. J. Comput. Chem. 28, 442 (2007)

    Google Scholar 

  • Scerri, E.R.: Philosophy of chemistrys-a new interdisciplinary field?. J. Chem. Educ. 77(4), 522 (2000)

    Google Scholar 

  • Schmider, H.L., Becke, A.D.: Chemical content of the kinetic energy density. J. Mol. Struct. (Theochem) 527, 51–61 (2000)

    Google Scholar 

  • Shaik, S.S., Danovich, D., Silvi, B., Lauvergnat, D., Hiberty, P.: Charge-shift bonding–a class of electron pair bonds emerges from valence bond theory and supported by electron localization function approach. Chem. Eur. J. 21, 6358–6371 (2005)

    Google Scholar 

  • Shannon, C.E., Weaver, W.: The Mathematical Theory of Communication. The University of Illinois Press, Urbana (1949)

    Google Scholar 

  • Sidgwick, N.V., Powell, H.M.: Bakerian lecture. stereochemical types and valency groups. Proc. Roy. Soc. A 176, 153–180 (1940)

    Google Scholar 

  • Silvi, B.: The synaptic order: a key concept to understand multicenter bonding. J. Mol. Struct. 614, 3–10 (2002)

    Google Scholar 

  • Silvi, B.: The spin pair compositions as local indicators of the nature of the bonding. J. Phys. Chem. A 107, 3081–3085 (2003)

    Google Scholar 

  • Silvi, B.: How topological partitions of the electron distributions reveal delocalization. Phys. Chem. Chem. Phys. 6, 256–260 (2004)

    Google Scholar 

  • Silvi, B., Gatti, C.: Direct space representation of the metallic bond. J. Phys. Chem. A 104, 947–953 (2000)

    Google Scholar 

  • Silvi, B., Gillespie, R.: The ELF topological analysis contribution to conceptual chemistry and phenomenological models. In: Matta, C.F., Boyd, R.J., (eds.) The Quantum Theory of Atoms in Molecules: From Solid State to DNA and Drug Design, pp. 141–161. Wiley, New York (2007)

    Google Scholar 

  • Silvi, B., Savin, A.: Classification of chemical bonds based on topological analysis of electron localization function. Nature 371, 683–686 (1994)

    Google Scholar 

  • Silvi, B., Fourré, I., Alikhani, E.: The topological analysis of the electron localization function: a key for a position space representation of chemical bonds. Monatsh. Chem. 136, 855–879 (2005)

    Google Scholar 

  • Strevens, M.: The causal and unification approaches to explanation unified-causally. Noûs 38, 154–176 (2004)

    Google Scholar 

  • Strevens, M.: Scientific explanation. In: Borchert, D.M. (ed.) Encyclopedia of Philosophy, 2nd edn. Mcmillan Reference USA, Detroit (2006)

    Google Scholar 

  • Thom, R.: Prédire n’est pas expliquer. Flammarion, Paris (1993)

    Google Scholar 

  • Thomson, J.J.: On the structure of the atom: an investigation of the stability and periods of oscillation of a number of corpuscles arranged at equal intervals around the circumference of a circle; with application of the results to the theory of atomic structure. Phil. Mag. 7, 237–265 (1904)

    Google Scholar 

  • Tsirelson, V., Stash, A.: Determination of the electron localization function from electron density. Chem. Phys. Lett. 351, 142–148 (2002)

    Google Scholar 

  • Uhlenbeck, S.G.G.: Spinning electrons and the structure of spectra. Nature 117, 264–265 (1926)

    Google Scholar 

  • Uhlenbeck, G.E., Goudsmit, S.: Ersetzung der hypothese vom unmechanischen zwang durch eine forderung bezglich des inneren verhaltens jedes einzelnen elektrons. Naturwissenschaften 13, 953–954 (1925)

    Google Scholar 

  • van Brakel, J.: The ignis fatuusa of reduction and unification. Ann. N. Y. Acad. Sci. 988, 30–43 (2003)

    Google Scholar 

  • van Brakel, J.: Kant’s legacy for the philosophy of chemistry. In: Baird, D., Scerri, E., McIntyre, L. (eds.) Philosophy Of Chemistry, vol. 242 of Boston Studies in the Philosophy of Science, pp. 69–91. Springer, Netherlands (2006)

    Google Scholar 

  • Vasconi, P.: Sistema delle scienze naturali e unitsà della conoscenza nell’ultimo Kant. Leo S. Olschki, Firenze (1999)

  • von Weizsäcker, C.F.: Zur theorie der kermassen. Z. Phys. 96, 431–458 (1935)

    Google Scholar 

  • Wagner, F.R., Bezugly, V., Kohout, M., Grin, Y.: Charge decomposition analysis of the electron localizability indicator: a bridge between the orbital and direct space representation of the chemical bond. Chem. Eur. J. 13, 5724–5741 (2007)

    Google Scholar 

  • Woodward J.: Scientific explanation. In: Zalta E.N. (ed.) The Stanford Encyclopedia of Philosophy. Winter 2011 edition (2011)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard Silvi.

Additional information

Dedicated to the memory of Professor Richard F. W. Bader.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Causá, M., Savin, A. & Silvi, B. Atoms and bonds in molecules and chemical explanations. Found Chem 16, 3–26 (2014). https://doi.org/10.1007/s10698-013-9192-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10698-013-9192-2

Keywords

Navigation